blob: 0c96531a56f021b5c8aeef462fb5ed0123a16fe1 [file] [log] [blame]
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "hw/isa/isa.h"
#include "migration/cpu.h"
#include "hyperv.h"
#include "hw/i386/x86.h"
#include "kvm_i386.h"
#include "sysemu/kvm.h"
#include "sysemu/tcg.h"
#include "qemu/error-report.h"
static const VMStateDescription vmstate_segment = {
.name = "segment",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(selector, SegmentCache),
VMSTATE_UINTTL(base, SegmentCache),
VMSTATE_UINT32(limit, SegmentCache),
VMSTATE_UINT32(flags, SegmentCache),
VMSTATE_END_OF_LIST()
}
};
#define VMSTATE_SEGMENT(_field, _state) { \
.name = (stringify(_field)), \
.size = sizeof(SegmentCache), \
.vmsd = &vmstate_segment, \
.flags = VMS_STRUCT, \
.offset = offsetof(_state, _field) \
+ type_check(SegmentCache,typeof_field(_state, _field)) \
}
#define VMSTATE_SEGMENT_ARRAY(_field, _state, _n) \
VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_segment, SegmentCache)
static const VMStateDescription vmstate_xmm_reg = {
.name = "xmm_reg",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(ZMM_Q(0), ZMMReg),
VMSTATE_UINT64(ZMM_Q(1), ZMMReg),
VMSTATE_END_OF_LIST()
}
};
#define VMSTATE_XMM_REGS(_field, _state, _start) \
VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \
vmstate_xmm_reg, ZMMReg)
/* YMMH format is the same as XMM, but for bits 128-255 */
static const VMStateDescription vmstate_ymmh_reg = {
.name = "ymmh_reg",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(ZMM_Q(2), ZMMReg),
VMSTATE_UINT64(ZMM_Q(3), ZMMReg),
VMSTATE_END_OF_LIST()
}
};
#define VMSTATE_YMMH_REGS_VARS(_field, _state, _start, _v) \
VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, _v, \
vmstate_ymmh_reg, ZMMReg)
static const VMStateDescription vmstate_zmmh_reg = {
.name = "zmmh_reg",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(ZMM_Q(4), ZMMReg),
VMSTATE_UINT64(ZMM_Q(5), ZMMReg),
VMSTATE_UINT64(ZMM_Q(6), ZMMReg),
VMSTATE_UINT64(ZMM_Q(7), ZMMReg),
VMSTATE_END_OF_LIST()
}
};
#define VMSTATE_ZMMH_REGS_VARS(_field, _state, _start) \
VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \
vmstate_zmmh_reg, ZMMReg)
#ifdef TARGET_X86_64
static const VMStateDescription vmstate_hi16_zmm_reg = {
.name = "hi16_zmm_reg",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(ZMM_Q(0), ZMMReg),
VMSTATE_UINT64(ZMM_Q(1), ZMMReg),
VMSTATE_UINT64(ZMM_Q(2), ZMMReg),
VMSTATE_UINT64(ZMM_Q(3), ZMMReg),
VMSTATE_UINT64(ZMM_Q(4), ZMMReg),
VMSTATE_UINT64(ZMM_Q(5), ZMMReg),
VMSTATE_UINT64(ZMM_Q(6), ZMMReg),
VMSTATE_UINT64(ZMM_Q(7), ZMMReg),
VMSTATE_END_OF_LIST()
}
};
#define VMSTATE_Hi16_ZMM_REGS_VARS(_field, _state, _start) \
VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \
vmstate_hi16_zmm_reg, ZMMReg)
#endif
static const VMStateDescription vmstate_bnd_regs = {
.name = "bnd_regs",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(lb, BNDReg),
VMSTATE_UINT64(ub, BNDReg),
VMSTATE_END_OF_LIST()
}
};
#define VMSTATE_BND_REGS(_field, _state, _n) \
VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_bnd_regs, BNDReg)
static const VMStateDescription vmstate_mtrr_var = {
.name = "mtrr_var",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(base, MTRRVar),
VMSTATE_UINT64(mask, MTRRVar),
VMSTATE_END_OF_LIST()
}
};
#define VMSTATE_MTRR_VARS(_field, _state, _n, _v) \
VMSTATE_STRUCT_ARRAY(_field, _state, _n, _v, vmstate_mtrr_var, MTRRVar)
typedef struct x86_FPReg_tmp {
FPReg *parent;
uint64_t tmp_mant;
uint16_t tmp_exp;
} x86_FPReg_tmp;
static void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f)
{
CPU_LDoubleU temp;
temp.d = f;
*pmant = temp.l.lower;
*pexp = temp.l.upper;
}
static floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper)
{
CPU_LDoubleU temp;
temp.l.upper = upper;
temp.l.lower = mant;
return temp.d;
}
static int fpreg_pre_save(void *opaque)
{
x86_FPReg_tmp *tmp = opaque;
/* we save the real CPU data (in case of MMX usage only 'mant'
contains the MMX register */
cpu_get_fp80(&tmp->tmp_mant, &tmp->tmp_exp, tmp->parent->d);
return 0;
}
static int fpreg_post_load(void *opaque, int version)
{
x86_FPReg_tmp *tmp = opaque;
tmp->parent->d = cpu_set_fp80(tmp->tmp_mant, tmp->tmp_exp);
return 0;
}
static const VMStateDescription vmstate_fpreg_tmp = {
.name = "fpreg_tmp",
.post_load = fpreg_post_load,
.pre_save = fpreg_pre_save,
.fields = (VMStateField[]) {
VMSTATE_UINT64(tmp_mant, x86_FPReg_tmp),
VMSTATE_UINT16(tmp_exp, x86_FPReg_tmp),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_fpreg = {
.name = "fpreg",
.fields = (VMStateField[]) {
VMSTATE_WITH_TMP(FPReg, x86_FPReg_tmp, vmstate_fpreg_tmp),
VMSTATE_END_OF_LIST()
}
};
static int cpu_pre_save(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
int i;
/* FPU */
env->fpus_vmstate = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
env->fptag_vmstate = 0;
for(i = 0; i < 8; i++) {
env->fptag_vmstate |= ((!env->fptags[i]) << i);
}
env->fpregs_format_vmstate = 0;
/*
* Real mode guest segments register DPL should be zero.
* Older KVM version were setting it wrongly.
* Fixing it will allow live migration to host with unrestricted guest
* support (otherwise the migration will fail with invalid guest state
* error).
*/
if (!(env->cr[0] & CR0_PE_MASK) &&
(env->segs[R_CS].flags >> DESC_DPL_SHIFT & 3) != 0) {
env->segs[R_CS].flags &= ~(env->segs[R_CS].flags & DESC_DPL_MASK);
env->segs[R_DS].flags &= ~(env->segs[R_DS].flags & DESC_DPL_MASK);
env->segs[R_ES].flags &= ~(env->segs[R_ES].flags & DESC_DPL_MASK);
env->segs[R_FS].flags &= ~(env->segs[R_FS].flags & DESC_DPL_MASK);
env->segs[R_GS].flags &= ~(env->segs[R_GS].flags & DESC_DPL_MASK);
env->segs[R_SS].flags &= ~(env->segs[R_SS].flags & DESC_DPL_MASK);
}
#ifdef CONFIG_KVM
/*
* In case vCPU may have enabled VMX, we need to make sure kernel have
* required capabilities in order to perform migration correctly:
*
* 1) We must be able to extract vCPU nested-state from KVM.
*
* 2) In case vCPU is running in guest-mode and it has a pending exception,
* we must be able to determine if it's in a pending or injected state.
* Note that in case KVM don't have required capability to do so,
* a pending/injected exception will always appear as an
* injected exception.
*/
if (kvm_enabled() && cpu_vmx_maybe_enabled(env) &&
(!env->nested_state ||
(!kvm_has_exception_payload() && (env->hflags & HF_GUEST_MASK) &&
env->exception_injected))) {
error_report("Guest maybe enabled nested virtualization but kernel "
"does not support required capabilities to save vCPU "
"nested state");
return -EINVAL;
}
#endif
/*
* When vCPU is running L2 and exception is still pending,
* it can potentially be intercepted by L1 hypervisor.
* In contrast to an injected exception which cannot be
* intercepted anymore.
*
* Furthermore, when a L2 exception is intercepted by L1
* hypervisor, its exception payload (CR2/DR6 on #PF/#DB)
* should not be set yet in the respective vCPU register.
* Thus, in case an exception is pending, it is
* important to save the exception payload seperately.
*
* Therefore, if an exception is not in a pending state
* or vCPU is not in guest-mode, it is not important to
* distinguish between a pending and injected exception
* and we don't need to store seperately the exception payload.
*
* In order to preserve better backwards-compatible migration,
* convert a pending exception to an injected exception in
* case it is not important to distinguish between them
* as described above.
*/
if (env->exception_pending && !(env->hflags & HF_GUEST_MASK)) {
env->exception_pending = 0;
env->exception_injected = 1;
if (env->exception_has_payload) {
if (env->exception_nr == EXCP01_DB) {
env->dr[6] = env->exception_payload;
} else if (env->exception_nr == EXCP0E_PAGE) {
env->cr[2] = env->exception_payload;
}
}
}
return 0;
}
static int cpu_post_load(void *opaque, int version_id)
{
X86CPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
int i;
if (env->tsc_khz && env->user_tsc_khz &&
env->tsc_khz != env->user_tsc_khz) {
error_report("Mismatch between user-specified TSC frequency and "
"migrated TSC frequency");
return -EINVAL;
}
if (env->fpregs_format_vmstate) {
error_report("Unsupported old non-softfloat CPU state");
return -EINVAL;
}
/*
* Real mode guest segments register DPL should be zero.
* Older KVM version were setting it wrongly.
* Fixing it will allow live migration from such host that don't have
* restricted guest support to a host with unrestricted guest support
* (otherwise the migration will fail with invalid guest state
* error).
*/
if (!(env->cr[0] & CR0_PE_MASK) &&
(env->segs[R_CS].flags >> DESC_DPL_SHIFT & 3) != 0) {
env->segs[R_CS].flags &= ~(env->segs[R_CS].flags & DESC_DPL_MASK);
env->segs[R_DS].flags &= ~(env->segs[R_DS].flags & DESC_DPL_MASK);
env->segs[R_ES].flags &= ~(env->segs[R_ES].flags & DESC_DPL_MASK);
env->segs[R_FS].flags &= ~(env->segs[R_FS].flags & DESC_DPL_MASK);
env->segs[R_GS].flags &= ~(env->segs[R_GS].flags & DESC_DPL_MASK);
env->segs[R_SS].flags &= ~(env->segs[R_SS].flags & DESC_DPL_MASK);
}
/* Older versions of QEMU incorrectly used CS.DPL as the CPL when
* running under KVM. This is wrong for conforming code segments.
* Luckily, in our implementation the CPL field of hflags is redundant
* and we can get the right value from the SS descriptor privilege level.
*/
env->hflags &= ~HF_CPL_MASK;
env->hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
#ifdef CONFIG_KVM
if ((env->hflags & HF_GUEST_MASK) &&
(!env->nested_state ||
!(env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE))) {
error_report("vCPU set in guest-mode inconsistent with "
"migrated kernel nested state");
return -EINVAL;
}
#endif
/*
* There are cases that we can get valid exception_nr with both
* exception_pending and exception_injected being cleared.
* This can happen in one of the following scenarios:
* 1) Source is older QEMU without KVM_CAP_EXCEPTION_PAYLOAD support.
* 2) Source is running on kernel without KVM_CAP_EXCEPTION_PAYLOAD support.
* 3) "cpu/exception_info" subsection not sent because there is no exception
* pending or guest wasn't running L2 (See comment in cpu_pre_save()).
*
* In those cases, we can just deduce that a valid exception_nr means
* we can treat the exception as already injected.
*/
if ((env->exception_nr != -1) &&
!env->exception_pending && !env->exception_injected) {
env->exception_injected = 1;
}
env->fpstt = (env->fpus_vmstate >> 11) & 7;
env->fpus = env->fpus_vmstate & ~0x3800;
env->fptag_vmstate ^= 0xff;
for(i = 0; i < 8; i++) {
env->fptags[i] = (env->fptag_vmstate >> i) & 1;
}
if (tcg_enabled()) {
target_ulong dr7;
update_fp_status(env);
update_mxcsr_status(env);
cpu_breakpoint_remove_all(cs, BP_CPU);
cpu_watchpoint_remove_all(cs, BP_CPU);
/* Indicate all breakpoints disabled, as they are, then
let the helper re-enable them. */
dr7 = env->dr[7];
env->dr[7] = dr7 & ~(DR7_GLOBAL_BP_MASK | DR7_LOCAL_BP_MASK);
cpu_x86_update_dr7(env, dr7);
}
tlb_flush(cs);
return 0;
}
static bool async_pf_msr_needed(void *opaque)
{
X86CPU *cpu = opaque;
return cpu->env.async_pf_en_msr != 0;
}
static bool pv_eoi_msr_needed(void *opaque)
{
X86CPU *cpu = opaque;
return cpu->env.pv_eoi_en_msr != 0;
}
static bool steal_time_msr_needed(void *opaque)
{
X86CPU *cpu = opaque;
return cpu->env.steal_time_msr != 0;
}
static bool exception_info_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
/*
* It is important to save exception-info only in case
* we need to distinguish between a pending and injected
* exception. Which is only required in case there is a
* pending exception and vCPU is running L2.
* For more info, refer to comment in cpu_pre_save().
*/
return env->exception_pending && (env->hflags & HF_GUEST_MASK);
}
static const VMStateDescription vmstate_exception_info = {
.name = "cpu/exception_info",
.version_id = 1,
.minimum_version_id = 1,
.needed = exception_info_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8(env.exception_pending, X86CPU),
VMSTATE_UINT8(env.exception_injected, X86CPU),
VMSTATE_UINT8(env.exception_has_payload, X86CPU),
VMSTATE_UINT64(env.exception_payload, X86CPU),
VMSTATE_END_OF_LIST()
}
};
/* Poll control MSR enabled by default */
static bool poll_control_msr_needed(void *opaque)
{
X86CPU *cpu = opaque;
return cpu->env.poll_control_msr != 1;
}
static const VMStateDescription vmstate_steal_time_msr = {
.name = "cpu/steal_time_msr",
.version_id = 1,
.minimum_version_id = 1,
.needed = steal_time_msr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.steal_time_msr, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_async_pf_msr = {
.name = "cpu/async_pf_msr",
.version_id = 1,
.minimum_version_id = 1,
.needed = async_pf_msr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.async_pf_en_msr, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_pv_eoi_msr = {
.name = "cpu/async_pv_eoi_msr",
.version_id = 1,
.minimum_version_id = 1,
.needed = pv_eoi_msr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.pv_eoi_en_msr, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_poll_control_msr = {
.name = "cpu/poll_control_msr",
.version_id = 1,
.minimum_version_id = 1,
.needed = poll_control_msr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.poll_control_msr, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool fpop_ip_dp_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->fpop != 0 || env->fpip != 0 || env->fpdp != 0;
}
static const VMStateDescription vmstate_fpop_ip_dp = {
.name = "cpu/fpop_ip_dp",
.version_id = 1,
.minimum_version_id = 1,
.needed = fpop_ip_dp_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT16(env.fpop, X86CPU),
VMSTATE_UINT64(env.fpip, X86CPU),
VMSTATE_UINT64(env.fpdp, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool tsc_adjust_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->tsc_adjust != 0;
}
static const VMStateDescription vmstate_msr_tsc_adjust = {
.name = "cpu/msr_tsc_adjust",
.version_id = 1,
.minimum_version_id = 1,
.needed = tsc_adjust_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.tsc_adjust, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool msr_smi_count_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return cpu->migrate_smi_count && env->msr_smi_count != 0;
}
static const VMStateDescription vmstate_msr_smi_count = {
.name = "cpu/msr_smi_count",
.version_id = 1,
.minimum_version_id = 1,
.needed = msr_smi_count_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_smi_count, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool tscdeadline_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->tsc_deadline != 0;
}
static const VMStateDescription vmstate_msr_tscdeadline = {
.name = "cpu/msr_tscdeadline",
.version_id = 1,
.minimum_version_id = 1,
.needed = tscdeadline_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.tsc_deadline, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool misc_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->msr_ia32_misc_enable != MSR_IA32_MISC_ENABLE_DEFAULT;
}
static bool feature_control_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->msr_ia32_feature_control != 0;
}
static const VMStateDescription vmstate_msr_ia32_misc_enable = {
.name = "cpu/msr_ia32_misc_enable",
.version_id = 1,
.minimum_version_id = 1,
.needed = misc_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_ia32_misc_enable, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_msr_ia32_feature_control = {
.name = "cpu/msr_ia32_feature_control",
.version_id = 1,
.minimum_version_id = 1,
.needed = feature_control_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_ia32_feature_control, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool pmu_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
int i;
if (env->msr_fixed_ctr_ctrl || env->msr_global_ctrl ||
env->msr_global_status || env->msr_global_ovf_ctrl) {
return true;
}
for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
if (env->msr_fixed_counters[i]) {
return true;
}
}
for (i = 0; i < MAX_GP_COUNTERS; i++) {
if (env->msr_gp_counters[i] || env->msr_gp_evtsel[i]) {
return true;
}
}
return false;
}
static const VMStateDescription vmstate_msr_architectural_pmu = {
.name = "cpu/msr_architectural_pmu",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmu_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_fixed_ctr_ctrl, X86CPU),
VMSTATE_UINT64(env.msr_global_ctrl, X86CPU),
VMSTATE_UINT64(env.msr_global_status, X86CPU),
VMSTATE_UINT64(env.msr_global_ovf_ctrl, X86CPU),
VMSTATE_UINT64_ARRAY(env.msr_fixed_counters, X86CPU, MAX_FIXED_COUNTERS),
VMSTATE_UINT64_ARRAY(env.msr_gp_counters, X86CPU, MAX_GP_COUNTERS),
VMSTATE_UINT64_ARRAY(env.msr_gp_evtsel, X86CPU, MAX_GP_COUNTERS),
VMSTATE_END_OF_LIST()
}
};
static bool mpx_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
unsigned int i;
for (i = 0; i < 4; i++) {
if (env->bnd_regs[i].lb || env->bnd_regs[i].ub) {
return true;
}
}
if (env->bndcs_regs.cfgu || env->bndcs_regs.sts) {
return true;
}
return !!env->msr_bndcfgs;
}
static const VMStateDescription vmstate_mpx = {
.name = "cpu/mpx",
.version_id = 1,
.minimum_version_id = 1,
.needed = mpx_needed,
.fields = (VMStateField[]) {
VMSTATE_BND_REGS(env.bnd_regs, X86CPU, 4),
VMSTATE_UINT64(env.bndcs_regs.cfgu, X86CPU),
VMSTATE_UINT64(env.bndcs_regs.sts, X86CPU),
VMSTATE_UINT64(env.msr_bndcfgs, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool hyperv_hypercall_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->msr_hv_hypercall != 0 || env->msr_hv_guest_os_id != 0;
}
static const VMStateDescription vmstate_msr_hypercall_hypercall = {
.name = "cpu/msr_hyperv_hypercall",
.version_id = 1,
.minimum_version_id = 1,
.needed = hyperv_hypercall_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_hv_guest_os_id, X86CPU),
VMSTATE_UINT64(env.msr_hv_hypercall, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool hyperv_vapic_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->msr_hv_vapic != 0;
}
static const VMStateDescription vmstate_msr_hyperv_vapic = {
.name = "cpu/msr_hyperv_vapic",
.version_id = 1,
.minimum_version_id = 1,
.needed = hyperv_vapic_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_hv_vapic, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool hyperv_time_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->msr_hv_tsc != 0;
}
static const VMStateDescription vmstate_msr_hyperv_time = {
.name = "cpu/msr_hyperv_time",
.version_id = 1,
.minimum_version_id = 1,
.needed = hyperv_time_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_hv_tsc, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool hyperv_crash_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
int i;
for (i = 0; i < HV_CRASH_PARAMS; i++) {
if (env->msr_hv_crash_params[i]) {
return true;
}
}
return false;
}
static const VMStateDescription vmstate_msr_hyperv_crash = {
.name = "cpu/msr_hyperv_crash",
.version_id = 1,
.minimum_version_id = 1,
.needed = hyperv_crash_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(env.msr_hv_crash_params, X86CPU, HV_CRASH_PARAMS),
VMSTATE_END_OF_LIST()
}
};
static bool hyperv_runtime_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
if (!hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
return false;
}
return env->msr_hv_runtime != 0;
}
static const VMStateDescription vmstate_msr_hyperv_runtime = {
.name = "cpu/msr_hyperv_runtime",
.version_id = 1,
.minimum_version_id = 1,
.needed = hyperv_runtime_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_hv_runtime, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool hyperv_synic_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
int i;
if (env->msr_hv_synic_control != 0 ||
env->msr_hv_synic_evt_page != 0 ||
env->msr_hv_synic_msg_page != 0) {
return true;
}
for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
if (env->msr_hv_synic_sint[i] != 0) {
return true;
}
}
return false;
}
static int hyperv_synic_post_load(void *opaque, int version_id)
{
X86CPU *cpu = opaque;
hyperv_x86_synic_update(cpu);
return 0;
}
static const VMStateDescription vmstate_msr_hyperv_synic = {
.name = "cpu/msr_hyperv_synic",
.version_id = 1,
.minimum_version_id = 1,
.needed = hyperv_synic_enable_needed,
.post_load = hyperv_synic_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_hv_synic_control, X86CPU),
VMSTATE_UINT64(env.msr_hv_synic_evt_page, X86CPU),
VMSTATE_UINT64(env.msr_hv_synic_msg_page, X86CPU),
VMSTATE_UINT64_ARRAY(env.msr_hv_synic_sint, X86CPU, HV_SINT_COUNT),
VMSTATE_END_OF_LIST()
}
};
static bool hyperv_stimer_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
int i;
for (i = 0; i < ARRAY_SIZE(env->msr_hv_stimer_config); i++) {
if (env->msr_hv_stimer_config[i] || env->msr_hv_stimer_count[i]) {
return true;
}
}
return false;
}
static const VMStateDescription vmstate_msr_hyperv_stimer = {
.name = "cpu/msr_hyperv_stimer",
.version_id = 1,
.minimum_version_id = 1,
.needed = hyperv_stimer_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(env.msr_hv_stimer_config, X86CPU,
HV_STIMER_COUNT),
VMSTATE_UINT64_ARRAY(env.msr_hv_stimer_count, X86CPU, HV_STIMER_COUNT),
VMSTATE_END_OF_LIST()
}
};
static bool hyperv_reenlightenment_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->msr_hv_reenlightenment_control != 0 ||
env->msr_hv_tsc_emulation_control != 0 ||
env->msr_hv_tsc_emulation_status != 0;
}
static const VMStateDescription vmstate_msr_hyperv_reenlightenment = {
.name = "cpu/msr_hyperv_reenlightenment",
.version_id = 1,
.minimum_version_id = 1,
.needed = hyperv_reenlightenment_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_hv_reenlightenment_control, X86CPU),
VMSTATE_UINT64(env.msr_hv_tsc_emulation_control, X86CPU),
VMSTATE_UINT64(env.msr_hv_tsc_emulation_status, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool avx512_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
unsigned int i;
for (i = 0; i < NB_OPMASK_REGS; i++) {
if (env->opmask_regs[i]) {
return true;
}
}
for (i = 0; i < CPU_NB_REGS; i++) {
#define ENV_XMM(reg, field) (env->xmm_regs[reg].ZMM_Q(field))
if (ENV_XMM(i, 4) || ENV_XMM(i, 6) ||
ENV_XMM(i, 5) || ENV_XMM(i, 7)) {
return true;
}
#ifdef TARGET_X86_64
if (ENV_XMM(i+16, 0) || ENV_XMM(i+16, 1) ||
ENV_XMM(i+16, 2) || ENV_XMM(i+16, 3) ||
ENV_XMM(i+16, 4) || ENV_XMM(i+16, 5) ||
ENV_XMM(i+16, 6) || ENV_XMM(i+16, 7)) {
return true;
}
#endif
}
return false;
}
static const VMStateDescription vmstate_avx512 = {
.name = "cpu/avx512",
.version_id = 1,
.minimum_version_id = 1,
.needed = avx512_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(env.opmask_regs, X86CPU, NB_OPMASK_REGS),
VMSTATE_ZMMH_REGS_VARS(env.xmm_regs, X86CPU, 0),
#ifdef TARGET_X86_64
VMSTATE_Hi16_ZMM_REGS_VARS(env.xmm_regs, X86CPU, 16),
#endif
VMSTATE_END_OF_LIST()
}
};
static bool xss_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->xss != 0;
}
static const VMStateDescription vmstate_xss = {
.name = "cpu/xss",
.version_id = 1,
.minimum_version_id = 1,
.needed = xss_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.xss, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool umwait_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->umwait != 0;
}
static const VMStateDescription vmstate_umwait = {
.name = "cpu/umwait",
.version_id = 1,
.minimum_version_id = 1,
.needed = umwait_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.umwait, X86CPU),
VMSTATE_END_OF_LIST()
}
};
#ifdef TARGET_X86_64
static bool pkru_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->pkru != 0;
}
static const VMStateDescription vmstate_pkru = {
.name = "cpu/pkru",
.version_id = 1,
.minimum_version_id = 1,
.needed = pkru_needed,
.fields = (VMStateField[]){
VMSTATE_UINT32(env.pkru, X86CPU),
VMSTATE_END_OF_LIST()
}
};
#endif
static bool tsc_khz_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
X86MachineClass *x86mc = X86_MACHINE_CLASS(mc);
return env->tsc_khz && x86mc->save_tsc_khz;
}
static const VMStateDescription vmstate_tsc_khz = {
.name = "cpu/tsc_khz",
.version_id = 1,
.minimum_version_id = 1,
.needed = tsc_khz_needed,
.fields = (VMStateField[]) {
VMSTATE_INT64(env.tsc_khz, X86CPU),
VMSTATE_END_OF_LIST()
}
};
#ifdef CONFIG_KVM
static bool vmx_vmcs12_needed(void *opaque)
{
struct kvm_nested_state *nested_state = opaque;
return (nested_state->size >
offsetof(struct kvm_nested_state, data.vmx[0].vmcs12));
}
static const VMStateDescription vmstate_vmx_vmcs12 = {
.name = "cpu/kvm_nested_state/vmx/vmcs12",
.version_id = 1,
.minimum_version_id = 1,
.needed = vmx_vmcs12_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8_ARRAY(data.vmx[0].vmcs12,
struct kvm_nested_state,
KVM_STATE_NESTED_VMX_VMCS_SIZE),
VMSTATE_END_OF_LIST()
}
};
static bool vmx_shadow_vmcs12_needed(void *opaque)
{
struct kvm_nested_state *nested_state = opaque;
return (nested_state->size >
offsetof(struct kvm_nested_state, data.vmx[0].shadow_vmcs12));
}
static const VMStateDescription vmstate_vmx_shadow_vmcs12 = {
.name = "cpu/kvm_nested_state/vmx/shadow_vmcs12",
.version_id = 1,
.minimum_version_id = 1,
.needed = vmx_shadow_vmcs12_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8_ARRAY(data.vmx[0].shadow_vmcs12,
struct kvm_nested_state,
KVM_STATE_NESTED_VMX_VMCS_SIZE),
VMSTATE_END_OF_LIST()
}
};
static bool vmx_nested_state_needed(void *opaque)
{
struct kvm_nested_state *nested_state = opaque;
return (nested_state->format == KVM_STATE_NESTED_FORMAT_VMX &&
nested_state->hdr.vmx.vmxon_pa != -1ull);
}
static const VMStateDescription vmstate_vmx_nested_state = {
.name = "cpu/kvm_nested_state/vmx",
.version_id = 1,
.minimum_version_id = 1,
.needed = vmx_nested_state_needed,
.fields = (VMStateField[]) {
VMSTATE_U64(hdr.vmx.vmxon_pa, struct kvm_nested_state),
VMSTATE_U64(hdr.vmx.vmcs12_pa, struct kvm_nested_state),
VMSTATE_U16(hdr.vmx.smm.flags, struct kvm_nested_state),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_vmx_vmcs12,
&vmstate_vmx_shadow_vmcs12,
NULL,
}
};
static bool nested_state_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return (env->nested_state &&
vmx_nested_state_needed(env->nested_state));
}
static int nested_state_post_load(void *opaque, int version_id)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
struct kvm_nested_state *nested_state = env->nested_state;
int min_nested_state_len = offsetof(struct kvm_nested_state, data);
int max_nested_state_len = kvm_max_nested_state_length();
/*
* If our kernel don't support setting nested state
* and we have received nested state from migration stream,
* we need to fail migration
*/
if (max_nested_state_len <= 0) {
error_report("Received nested state when kernel cannot restore it");
return -EINVAL;
}
/*
* Verify that the size of received nested_state struct
* at least cover required header and is not larger
* than the max size that our kernel support
*/
if (nested_state->size < min_nested_state_len) {
error_report("Received nested state size less than min: "
"len=%d, min=%d",
nested_state->size, min_nested_state_len);
return -EINVAL;
}
if (nested_state->size > max_nested_state_len) {
error_report("Recieved unsupported nested state size: "
"nested_state->size=%d, max=%d",
nested_state->size, max_nested_state_len);
return -EINVAL;
}
/* Verify format is valid */
if ((nested_state->format != KVM_STATE_NESTED_FORMAT_VMX) &&
(nested_state->format != KVM_STATE_NESTED_FORMAT_SVM)) {
error_report("Received invalid nested state format: %d",
nested_state->format);
return -EINVAL;
}
return 0;
}
static const VMStateDescription vmstate_kvm_nested_state = {
.name = "cpu/kvm_nested_state",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_U16(flags, struct kvm_nested_state),
VMSTATE_U16(format, struct kvm_nested_state),
VMSTATE_U32(size, struct kvm_nested_state),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_vmx_nested_state,
NULL
}
};
static const VMStateDescription vmstate_nested_state = {
.name = "cpu/nested_state",
.version_id = 1,
.minimum_version_id = 1,
.needed = nested_state_needed,
.post_load = nested_state_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_POINTER(env.nested_state, X86CPU,
vmstate_kvm_nested_state,
struct kvm_nested_state),
VMSTATE_END_OF_LIST()
}
};
#endif
static bool mcg_ext_ctl_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return cpu->enable_lmce && env->mcg_ext_ctl;
}
static const VMStateDescription vmstate_mcg_ext_ctl = {
.name = "cpu/mcg_ext_ctl",
.version_id = 1,
.minimum_version_id = 1,
.needed = mcg_ext_ctl_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.mcg_ext_ctl, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool spec_ctrl_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->spec_ctrl != 0;
}
static const VMStateDescription vmstate_spec_ctrl = {
.name = "cpu/spec_ctrl",
.version_id = 1,
.minimum_version_id = 1,
.needed = spec_ctrl_needed,
.fields = (VMStateField[]){
VMSTATE_UINT64(env.spec_ctrl, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool intel_pt_enable_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
int i;
if (env->msr_rtit_ctrl || env->msr_rtit_status ||
env->msr_rtit_output_base || env->msr_rtit_output_mask ||
env->msr_rtit_cr3_match) {
return true;
}
for (i = 0; i < MAX_RTIT_ADDRS; i++) {
if (env->msr_rtit_addrs[i]) {
return true;
}
}
return false;
}
static const VMStateDescription vmstate_msr_intel_pt = {
.name = "cpu/intel_pt",
.version_id = 1,
.minimum_version_id = 1,
.needed = intel_pt_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.msr_rtit_ctrl, X86CPU),
VMSTATE_UINT64(env.msr_rtit_status, X86CPU),
VMSTATE_UINT64(env.msr_rtit_output_base, X86CPU),
VMSTATE_UINT64(env.msr_rtit_output_mask, X86CPU),
VMSTATE_UINT64(env.msr_rtit_cr3_match, X86CPU),
VMSTATE_UINT64_ARRAY(env.msr_rtit_addrs, X86CPU, MAX_RTIT_ADDRS),
VMSTATE_END_OF_LIST()
}
};
static bool virt_ssbd_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->virt_ssbd != 0;
}
static const VMStateDescription vmstate_msr_virt_ssbd = {
.name = "cpu/virt_ssbd",
.version_id = 1,
.minimum_version_id = 1,
.needed = virt_ssbd_needed,
.fields = (VMStateField[]){
VMSTATE_UINT64(env.virt_ssbd, X86CPU),
VMSTATE_END_OF_LIST()
}
};
static bool svm_npt_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return !!(env->hflags2 & HF2_NPT_MASK);
}
static const VMStateDescription vmstate_svm_npt = {
.name = "cpu/svn_npt",
.version_id = 1,
.minimum_version_id = 1,
.needed = svm_npt_needed,
.fields = (VMStateField[]){
VMSTATE_UINT64(env.nested_cr3, X86CPU),
VMSTATE_UINT32(env.nested_pg_mode, X86CPU),
VMSTATE_END_OF_LIST()
}
};
#ifndef TARGET_X86_64
static bool intel_efer32_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->efer != 0;
}
static const VMStateDescription vmstate_efer32 = {
.name = "cpu/efer32",
.version_id = 1,
.minimum_version_id = 1,
.needed = intel_efer32_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.efer, X86CPU),
VMSTATE_END_OF_LIST()
}
};
#endif
static bool msr_tsx_ctrl_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->features[FEAT_ARCH_CAPABILITIES] & ARCH_CAP_TSX_CTRL_MSR;
}
static const VMStateDescription vmstate_msr_tsx_ctrl = {
.name = "cpu/msr_tsx_ctrl",
.version_id = 1,
.minimum_version_id = 1,
.needed = msr_tsx_ctrl_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.tsx_ctrl, X86CPU),
VMSTATE_END_OF_LIST()
}
};
VMStateDescription vmstate_x86_cpu = {
.name = "cpu",
.version_id = 12,
.minimum_version_id = 11,
.pre_save = cpu_pre_save,
.post_load = cpu_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINTTL_ARRAY(env.regs, X86CPU, CPU_NB_REGS),
VMSTATE_UINTTL(env.eip, X86CPU),
VMSTATE_UINTTL(env.eflags, X86CPU),
VMSTATE_UINT32(env.hflags, X86CPU),
/* FPU */
VMSTATE_UINT16(env.fpuc, X86CPU),
VMSTATE_UINT16(env.fpus_vmstate, X86CPU),
VMSTATE_UINT16(env.fptag_vmstate, X86CPU),
VMSTATE_UINT16(env.fpregs_format_vmstate, X86CPU),
VMSTATE_STRUCT_ARRAY(env.fpregs, X86CPU, 8, 0, vmstate_fpreg, FPReg),
VMSTATE_SEGMENT_ARRAY(env.segs, X86CPU, 6),
VMSTATE_SEGMENT(env.ldt, X86CPU),
VMSTATE_SEGMENT(env.tr, X86CPU),
VMSTATE_SEGMENT(env.gdt, X86CPU),
VMSTATE_SEGMENT(env.idt, X86CPU),
VMSTATE_UINT32(env.sysenter_cs, X86CPU),
VMSTATE_UINTTL(env.sysenter_esp, X86CPU),
VMSTATE_UINTTL(env.sysenter_eip, X86CPU),
VMSTATE_UINTTL(env.cr[0], X86CPU),
VMSTATE_UINTTL(env.cr[2], X86CPU),
VMSTATE_UINTTL(env.cr[3], X86CPU),
VMSTATE_UINTTL(env.cr[4], X86CPU),
VMSTATE_UINTTL_ARRAY(env.dr, X86CPU, 8),
/* MMU */
VMSTATE_INT32(env.a20_mask, X86CPU),
/* XMM */
VMSTATE_UINT32(env.mxcsr, X86CPU),
VMSTATE_XMM_REGS(env.xmm_regs, X86CPU, 0),
#ifdef TARGET_X86_64
VMSTATE_UINT64(env.efer, X86CPU),
VMSTATE_UINT64(env.star, X86CPU),
VMSTATE_UINT64(env.lstar, X86CPU),
VMSTATE_UINT64(env.cstar, X86CPU),
VMSTATE_UINT64(env.fmask, X86CPU),
VMSTATE_UINT64(env.kernelgsbase, X86CPU),
#endif
VMSTATE_UINT32(env.smbase, X86CPU),
VMSTATE_UINT64(env.pat, X86CPU),
VMSTATE_UINT32(env.hflags2, X86CPU),
VMSTATE_UINT64(env.vm_hsave, X86CPU),
VMSTATE_UINT64(env.vm_vmcb, X86CPU),
VMSTATE_UINT64(env.tsc_offset, X86CPU),
VMSTATE_UINT64(env.intercept, X86CPU),
VMSTATE_UINT16(env.intercept_cr_read, X86CPU),
VMSTATE_UINT16(env.intercept_cr_write, X86CPU),
VMSTATE_UINT16(env.intercept_dr_read, X86CPU),
VMSTATE_UINT16(env.intercept_dr_write, X86CPU),
VMSTATE_UINT32(env.intercept_exceptions, X86CPU),
VMSTATE_UINT8(env.v_tpr, X86CPU),
/* MTRRs */
VMSTATE_UINT64_ARRAY(env.mtrr_fixed, X86CPU, 11),
VMSTATE_UINT64(env.mtrr_deftype, X86CPU),
VMSTATE_MTRR_VARS(env.mtrr_var, X86CPU, MSR_MTRRcap_VCNT, 8),
/* KVM-related states */
VMSTATE_INT32(env.interrupt_injected, X86CPU),
VMSTATE_UINT32(env.mp_state, X86CPU),
VMSTATE_UINT64(env.tsc, X86CPU),
VMSTATE_INT32(env.exception_nr, X86CPU),
VMSTATE_UINT8(env.soft_interrupt, X86CPU),
VMSTATE_UINT8(env.nmi_injected, X86CPU),
VMSTATE_UINT8(env.nmi_pending, X86CPU),
VMSTATE_UINT8(env.has_error_code, X86CPU),
VMSTATE_UINT32(env.sipi_vector, X86CPU),
/* MCE */
VMSTATE_UINT64(env.mcg_cap, X86CPU),
VMSTATE_UINT64(env.mcg_status, X86CPU),
VMSTATE_UINT64(env.mcg_ctl, X86CPU),
VMSTATE_UINT64_ARRAY(env.mce_banks, X86CPU, MCE_BANKS_DEF * 4),
/* rdtscp */
VMSTATE_UINT64(env.tsc_aux, X86CPU),
/* KVM pvclock msr */
VMSTATE_UINT64(env.system_time_msr, X86CPU),
VMSTATE_UINT64(env.wall_clock_msr, X86CPU),
/* XSAVE related fields */
VMSTATE_UINT64_V(env.xcr0, X86CPU, 12),
VMSTATE_UINT64_V(env.xstate_bv, X86CPU, 12),
VMSTATE_YMMH_REGS_VARS(env.xmm_regs, X86CPU, 0, 12),
VMSTATE_END_OF_LIST()
/* The above list is not sorted /wrt version numbers, watch out! */
},
.subsections = (const VMStateDescription*[]) {
&vmstate_exception_info,
&vmstate_async_pf_msr,
&vmstate_pv_eoi_msr,
&vmstate_steal_time_msr,
&vmstate_poll_control_msr,
&vmstate_fpop_ip_dp,
&vmstate_msr_tsc_adjust,
&vmstate_msr_tscdeadline,
&vmstate_msr_ia32_misc_enable,
&vmstate_msr_ia32_feature_control,
&vmstate_msr_architectural_pmu,
&vmstate_mpx,
&vmstate_msr_hypercall_hypercall,
&vmstate_msr_hyperv_vapic,
&vmstate_msr_hyperv_time,
&vmstate_msr_hyperv_crash,
&vmstate_msr_hyperv_runtime,
&vmstate_msr_hyperv_synic,
&vmstate_msr_hyperv_stimer,
&vmstate_msr_hyperv_reenlightenment,
&vmstate_avx512,
&vmstate_xss,
&vmstate_umwait,
&vmstate_tsc_khz,
&vmstate_msr_smi_count,
#ifdef TARGET_X86_64
&vmstate_pkru,
#endif
&vmstate_spec_ctrl,
&vmstate_mcg_ext_ctl,
&vmstate_msr_intel_pt,
&vmstate_msr_virt_ssbd,
&vmstate_svm_npt,
#ifndef TARGET_X86_64
&vmstate_efer32,
#endif
#ifdef CONFIG_KVM
&vmstate_nested_state,
#endif
&vmstate_msr_tsx_ctrl,
NULL
}
};