blob: 00707ca9a3438fcd25e76aec8bed0dae3f40f08c [file] [log] [blame]
#include <xmmintrin.h>
#include "qcmsint.h"
/* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */
#define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE)
#define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZE )
static const ALIGN float floatScaleX4[4] =
{ FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE};
static const ALIGN float clampMaxValueX4[4] =
{ CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL};
void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform,
unsigned char *src,
unsigned char *dest,
size_t length)
{
unsigned int i;
float (*mat)[4] = transform->matrix;
char input_back[32];
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
* because they don't work on stack variables. gcc 4.4 does do the right thing
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
/* share input and output locations to save having to keep the
* locations in separate registers */
uint32_t const * output = (uint32_t*)input;
/* deref *transform now to avoid it in loop */
const float *igtbl_r = transform->input_gamma_table_r;
const float *igtbl_g = transform->input_gamma_table_g;
const float *igtbl_b = transform->input_gamma_table_b;
/* deref *transform now to avoid it in loop */
const uint8_t *otdata_r = &transform->output_table_r->data[0];
const uint8_t *otdata_g = &transform->output_table_g->data[0];
const uint8_t *otdata_b = &transform->output_table_b->data[0];
/* input matrix values never change */
const __m128 mat0 = _mm_load_ps(mat[0]);
const __m128 mat1 = _mm_load_ps(mat[1]);
const __m128 mat2 = _mm_load_ps(mat[2]);
/* these values don't change, either */
const __m128 max = _mm_load_ps(clampMaxValueX4);
const __m128 min = _mm_setzero_ps();
const __m128 scale = _mm_load_ps(floatScaleX4);
/* working variables */
__m128 vec_r, vec_g, vec_b, result;
/* CYA */
if (!length)
return;
/* one pixel is handled outside of the loop */
length--;
/* setup for transforming 1st pixel */
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
src += 3;
/* transform all but final pixel */
for (i=0; i<length; i++)
{
/* position values from gamma tables */
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
/* gamma * matrix */
vec_r = _mm_mul_ps(vec_r, mat0);
vec_g = _mm_mul_ps(vec_g, mat1);
vec_b = _mm_mul_ps(vec_b, mat2);
/* crunch, crunch, crunch */
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
vec_r = _mm_max_ps(min, vec_r);
vec_r = _mm_min_ps(max, vec_r);
result = _mm_mul_ps(vec_r, scale);
/* store calc'd output tables indices */
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
result = _mm_movehl_ps(result, result);
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ;
/* load for next loop while store completes */
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
src += 3;
/* use calc'd indices to output RGB values */
dest[0] = otdata_r[output[0]];
dest[1] = otdata_g[output[1]];
dest[2] = otdata_b[output[2]];
dest += 3;
}
/* handle final (maybe only) pixel */
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
vec_r = _mm_mul_ps(vec_r, mat0);
vec_g = _mm_mul_ps(vec_g, mat1);
vec_b = _mm_mul_ps(vec_b, mat2);
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
vec_r = _mm_max_ps(min, vec_r);
vec_r = _mm_min_ps(max, vec_r);
result = _mm_mul_ps(vec_r, scale);
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
result = _mm_movehl_ps(result, result);
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
dest[0] = otdata_r[output[0]];
dest[1] = otdata_g[output[1]];
dest[2] = otdata_b[output[2]];
_mm_empty();
}
void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform,
unsigned char *src,
unsigned char *dest,
size_t length)
{
unsigned int i;
float (*mat)[4] = transform->matrix;
char input_back[32];
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
* because they don't work on stack variables. gcc 4.4 does do the right thing
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
/* share input and output locations to save having to keep the
* locations in separate registers */
uint32_t const * output = (uint32_t*)input;
/* deref *transform now to avoid it in loop */
const float *igtbl_r = transform->input_gamma_table_r;
const float *igtbl_g = transform->input_gamma_table_g;
const float *igtbl_b = transform->input_gamma_table_b;
/* deref *transform now to avoid it in loop */
const uint8_t *otdata_r = &transform->output_table_r->data[0];
const uint8_t *otdata_g = &transform->output_table_g->data[0];
const uint8_t *otdata_b = &transform->output_table_b->data[0];
/* input matrix values never change */
const __m128 mat0 = _mm_load_ps(mat[0]);
const __m128 mat1 = _mm_load_ps(mat[1]);
const __m128 mat2 = _mm_load_ps(mat[2]);
/* these values don't change, either */
const __m128 max = _mm_load_ps(clampMaxValueX4);
const __m128 min = _mm_setzero_ps();
const __m128 scale = _mm_load_ps(floatScaleX4);
/* working variables */
__m128 vec_r, vec_g, vec_b, result;
unsigned char alpha;
/* CYA */
if (!length)
return;
/* one pixel is handled outside of the loop */
length--;
/* setup for transforming 1st pixel */
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
alpha = src[3];
src += 4;
/* transform all but final pixel */
for (i=0; i<length; i++)
{
/* position values from gamma tables */
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
/* gamma * matrix */
vec_r = _mm_mul_ps(vec_r, mat0);
vec_g = _mm_mul_ps(vec_g, mat1);
vec_b = _mm_mul_ps(vec_b, mat2);
/* store alpha for this pixel; load alpha for next */
dest[3] = alpha;
alpha = src[3];
/* crunch, crunch, crunch */
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
vec_r = _mm_max_ps(min, vec_r);
vec_r = _mm_min_ps(max, vec_r);
result = _mm_mul_ps(vec_r, scale);
/* store calc'd output tables indices */
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
result = _mm_movehl_ps(result, result);
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
/* load gamma values for next loop while store completes */
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
src += 4;
/* use calc'd indices to output RGB values */
dest[0] = otdata_r[output[0]];
dest[1] = otdata_g[output[1]];
dest[2] = otdata_b[output[2]];
dest += 4;
}
/* handle final (maybe only) pixel */
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
vec_r = _mm_mul_ps(vec_r, mat0);
vec_g = _mm_mul_ps(vec_g, mat1);
vec_b = _mm_mul_ps(vec_b, mat2);
dest[3] = alpha;
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
vec_r = _mm_max_ps(min, vec_r);
vec_r = _mm_min_ps(max, vec_r);
result = _mm_mul_ps(vec_r, scale);
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
result = _mm_movehl_ps(result, result);
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
dest[0] = otdata_r[output[0]];
dest[1] = otdata_g[output[1]];
dest[2] = otdata_b[output[2]];
_mm_empty();
}