Merge branch 'master' into v4
diff --git a/Makefile b/Makefile
index 042761e..ce119b7 100644
--- a/Makefile
+++ b/Makefile
@@ -1,13 +1,13 @@
 
-#COVERAGE_FLAGS=-fprofile-arcs -ftest-coverage 
+COVERAGE_FLAGS=-fprofile-arcs -ftest-coverage
 #COVERAGE_FLAGS=
 OPT_FLAGS=-O0
 OPT_FLAGS=
 CFLAGS=-Wall $(OPT_FLAGS) $(COVERAGE_FLAGS) -Wdeclaration-after-statement -ggdb `pkg-config --cflags lcms`
 LDFLAGS=`pkg-config --libs lcms` -ldl
 
-QCMS_SRC=iccread.c transform.c transform-sse2.c transform-sse1.c
-QCMS_OBJS=iccread.o transform.o transform-sse2.o transform-sse1.o
+QCMS_SRC=iccread.c transform.c matrix.c chain.c transform_util.c transform-sse2.c transform-sse1.c
+QCMS_OBJS=iccread.o transform.o matrix.o chain.o transform_util.o transform-sse2.o transform-sse1.o
 
 PROGRAMS=profile-gen test test-invalid lcms-compare dump-profile div-test coverage malloc-fail invalid-coverage
 
@@ -15,5 +15,10 @@
 
 $(PROGRAMS): $(QCMS_OBJS)
 
+gen-coverage:
+	mkdir -p lcov
+	lcov -d . -c --output-file lcov/lcov.info
+	genhtml -o lcov/ lcov/lcov.info
+
 clean:
 	rm -f $(PROGRAMS) $(QCMS_OBJS)
diff --git a/chain.c b/chain.c
new file mode 100644
index 0000000..9c52e3f
--- /dev/null
+++ b/chain.c
@@ -0,0 +1,989 @@
+/* vim: set ts=8 sw=8 noexpandtab: */
+//  qcms
+//  Copyright (C) 2009 Mozilla Corporation
+//  Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining 
+// a copy of this software and associated documentation files (the "Software"), 
+// to deal in the Software without restriction, including without limitation 
+// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
+// and/or sell copies of the Software, and to permit persons to whom the Software 
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in 
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#include <stdlib.h>
+#include <math.h>
+#include <assert.h>
+#include <string.h> //memcpy
+#include "qcmsint.h"
+#include "transform_util.h"
+#include "matrix.h"
+
+static struct matrix build_lut_matrix(struct lutType *lut)
+{
+	struct matrix result;
+	if (lut) {
+		result.m[0][0] = s15Fixed16Number_to_float(lut->e00);
+		result.m[0][1] = s15Fixed16Number_to_float(lut->e01);
+		result.m[0][2] = s15Fixed16Number_to_float(lut->e02);
+		result.m[1][0] = s15Fixed16Number_to_float(lut->e10);
+		result.m[1][1] = s15Fixed16Number_to_float(lut->e11);
+		result.m[1][2] = s15Fixed16Number_to_float(lut->e12);
+		result.m[2][0] = s15Fixed16Number_to_float(lut->e20);
+		result.m[2][1] = s15Fixed16Number_to_float(lut->e21);
+		result.m[2][2] = s15Fixed16Number_to_float(lut->e22);
+		result.invalid = false;
+	} else {
+		memset(&result, 0, sizeof(struct matrix));
+		result.invalid = true;
+	}
+	return result;
+}
+
+static struct matrix build_mAB_matrix(struct lutmABType *lut)
+{
+	struct matrix result;
+	if (lut) {
+		result.m[0][0] = s15Fixed16Number_to_float(lut->e00);
+		result.m[0][1] = s15Fixed16Number_to_float(lut->e01);
+		result.m[0][2] = s15Fixed16Number_to_float(lut->e02);
+		result.m[1][0] = s15Fixed16Number_to_float(lut->e10);
+		result.m[1][1] = s15Fixed16Number_to_float(lut->e11);
+		result.m[1][2] = s15Fixed16Number_to_float(lut->e12);
+		result.m[2][0] = s15Fixed16Number_to_float(lut->e20);
+		result.m[2][1] = s15Fixed16Number_to_float(lut->e21);
+		result.m[2][2] = s15Fixed16Number_to_float(lut->e22);
+		result.invalid = false;
+	} else {
+		memset(&result, 0, sizeof(struct matrix));
+		result.invalid = true;
+	}
+	return result;
+}
+
+//Based on lcms cmsLab2XYZ
+#define f(t) (t <= (24.0f/116.0f)*(24.0f/116.0f)*(24.0f/116.0f)) ? ((841.0/108.0) * t + (16.0/116.0)) : pow(t,1.0/3.0)
+#define f_1(t) (t <= (24.0f/116.0f)) ? ((108.0/841.0) * (t - (16.0/116.0))) : (t * t * t)
+static void qcms_transform_module_LAB_to_XYZ(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
+{
+	size_t i;
+	// lcms: D50 XYZ values
+	float WhitePointX = 0.9642f;
+	float WhitePointY = 1.0f;
+	float WhitePointZ = 0.8249f;
+	for (i = 0; i < length; i++) {
+		float device_L = *src++ * 100.0f;
+		float device_a = *src++ * 255.0f - 128.0f;
+		float device_b = *src++ * 255.0f - 128.0f;
+		float y = (device_L + 16.0f) / 116.0f;
+
+		float X = f_1((y + 0.002f * device_a)) * WhitePointX;
+		float Y = f_1(y) * WhitePointY;
+		float Z = f_1((y - 0.005f * device_b)) * WhitePointZ;
+		*dest++ = X / (1.0 + 32767.0/32768.0);
+		*dest++ = Y / (1.0 + 32767.0/32768.0);
+		*dest++ = Z / (1.0 + 32767.0/32768.0);
+	}
+}
+
+//Based on lcms cmsXYZ2Lab
+static void qcms_transform_module_XYZ_to_LAB(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
+{
+	size_t i;
+        // lcms: D50 XYZ values
+        float WhitePointX = 0.9642f;
+        float WhitePointY = 1.0f;
+        float WhitePointZ = 0.8249f;
+        for (i = 0; i < length; i++) {
+                float device_x = *src++ * (1.0 + 32767.0/32768.0) / WhitePointX;
+                float device_y = *src++ * (1.0 + 32767.0/32768.0) / WhitePointY;
+                float device_z = *src++ * (1.0 + 32767.0/32768.0) / WhitePointZ;
+
+		float fx = f(device_x);
+		float fy = f(device_y);
+		float fz = f(device_z);
+
+                float L = 116.0f*fy - 16.0f;
+                float a = 500.0f*(fx - fy);
+                float b = 200.0f*(fy - fz);
+                *dest++ = L / 100.0f;
+                *dest++ = (a+128.0f) / 255.0f;
+                *dest++ = (b+128.0f) / 255.0f;
+        }
+
+}
+
+static void qcms_transform_module_clut_only(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
+{
+	size_t i;
+	int xy_len = 1;
+	int x_len = transform->grid_size;
+	int len = x_len * x_len;
+	float* r_table = transform->r_clut;
+	float* g_table = transform->g_clut;
+	float* b_table = transform->b_clut;
+
+	for (i = 0; i < length; i++) {
+		float linear_r = *src++;
+		float linear_g = *src++;
+		float linear_b = *src++;
+
+		int x = floor(linear_r * (transform->grid_size-1));
+		int y = floor(linear_g * (transform->grid_size-1));
+		int z = floor(linear_b * (transform->grid_size-1));
+		int x_n = ceil(linear_r * (transform->grid_size-1));
+		int y_n = ceil(linear_g * (transform->grid_size-1));
+		int z_n = ceil(linear_b * (transform->grid_size-1));
+		float x_d = linear_r * (transform->grid_size-1) - x;
+		float y_d = linear_g * (transform->grid_size-1) - y;
+		float z_d = linear_b * (transform->grid_size-1) - z;
+
+		float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d);
+		float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d);
+		float r_y1 = lerp(r_x1, r_x2, y_d);
+		float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d);
+		float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d);
+		float r_y2 = lerp(r_x3, r_x4, y_d);
+		float clut_r = lerp(r_y1, r_y2, z_d);
+
+		float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d);
+		float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d);
+		float g_y1 = lerp(g_x1, g_x2, y_d);
+		float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d);
+		float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d);
+		float g_y2 = lerp(g_x3, g_x4, y_d);
+		float clut_g = lerp(g_y1, g_y2, z_d);
+
+		float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d);
+		float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d);
+		float b_y1 = lerp(b_x1, b_x2, y_d);
+		float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d);
+		float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d);
+		float b_y2 = lerp(b_x3, b_x4, y_d);
+		float clut_b = lerp(b_y1, b_y2, z_d);
+
+		*dest++ = clamp_float(clut_r);
+		*dest++ = clamp_float(clut_g);
+		*dest++ = clamp_float(clut_b);
+	}
+}
+
+static void qcms_transform_module_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
+{
+	size_t i;
+	int xy_len = 1;
+	int x_len = transform->grid_size;
+	int len = x_len * x_len;
+	float* r_table = transform->r_clut;
+	float* g_table = transform->g_clut;
+	float* b_table = transform->b_clut;
+	for (i = 0; i < length; i++) {
+		float device_r = *src++;
+		float device_g = *src++;
+		float device_b = *src++;
+		float linear_r = lut_interp_linear_float(device_r,
+				transform->input_clut_table_r, transform->input_clut_table_length);
+		float linear_g = lut_interp_linear_float(device_g,
+				transform->input_clut_table_g, transform->input_clut_table_length);
+		float linear_b = lut_interp_linear_float(device_b,
+				transform->input_clut_table_b, transform->input_clut_table_length);
+
+		int x = floor(linear_r * (transform->grid_size-1));
+		int y = floor(linear_g * (transform->grid_size-1));
+		int z = floor(linear_b * (transform->grid_size-1));
+		int x_n = ceil(linear_r * (transform->grid_size-1));
+		int y_n = ceil(linear_g * (transform->grid_size-1));
+		int z_n = ceil(linear_b * (transform->grid_size-1));
+		float x_d = linear_r * (transform->grid_size-1) - x;
+		float y_d = linear_g * (transform->grid_size-1) - y;
+		float z_d = linear_b * (transform->grid_size-1) - z;
+
+		float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d);
+		float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d);
+		float r_y1 = lerp(r_x1, r_x2, y_d);
+		float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d);
+		float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d);
+		float r_y2 = lerp(r_x3, r_x4, y_d);
+		float clut_r = lerp(r_y1, r_y2, z_d);
+
+		float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d);
+		float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d);
+		float g_y1 = lerp(g_x1, g_x2, y_d);
+		float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d);
+		float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d);
+		float g_y2 = lerp(g_x3, g_x4, y_d);
+		float clut_g = lerp(g_y1, g_y2, z_d);
+
+		float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d);
+		float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d);
+		float b_y1 = lerp(b_x1, b_x2, y_d);
+		float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d);
+		float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d);
+		float b_y2 = lerp(b_x3, b_x4, y_d);
+		float clut_b = lerp(b_y1, b_y2, z_d);
+
+		float pcs_r = lut_interp_linear_float(clut_r,
+				transform->output_clut_table_r, transform->output_clut_table_length);
+		float pcs_g = lut_interp_linear_float(clut_g,
+				transform->output_clut_table_g, transform->output_clut_table_length);
+		float pcs_b = lut_interp_linear_float(clut_b,
+				transform->output_clut_table_b, transform->output_clut_table_length);
+
+		*dest++ = clamp_float(pcs_r);
+		*dest++ = clamp_float(pcs_g);
+		*dest++ = clamp_float(pcs_b);
+	}
+}
+
+/* NOT USED
+static void qcms_transform_module_tetra_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
+{
+	size_t i;
+	int xy_len = 1;
+	int x_len = transform->grid_size;
+	int len = x_len * x_len;
+	float* r_table = transform->r_clut;
+	float* g_table = transform->g_clut;
+	float* b_table = transform->b_clut;
+	float c0_r, c1_r, c2_r, c3_r;
+	float c0_g, c1_g, c2_g, c3_g;
+	float c0_b, c1_b, c2_b, c3_b;
+	float clut_r, clut_g, clut_b;
+	float pcs_r, pcs_g, pcs_b;
+	for (i = 0; i < length; i++) {
+		float device_r = *src++;
+		float device_g = *src++;
+		float device_b = *src++;
+		float linear_r = lut_interp_linear_float(device_r,
+				transform->input_clut_table_r, transform->input_clut_table_length);
+		float linear_g = lut_interp_linear_float(device_g,
+				transform->input_clut_table_g, transform->input_clut_table_length);
+		float linear_b = lut_interp_linear_float(device_b,
+				transform->input_clut_table_b, transform->input_clut_table_length);
+
+		int x = floor(linear_r * (transform->grid_size-1));
+		int y = floor(linear_g * (transform->grid_size-1));
+		int z = floor(linear_b * (transform->grid_size-1));
+		int x_n = ceil(linear_r * (transform->grid_size-1));
+		int y_n = ceil(linear_g * (transform->grid_size-1));
+		int z_n = ceil(linear_b * (transform->grid_size-1));
+		float rx = linear_r * (transform->grid_size-1) - x;
+		float ry = linear_g * (transform->grid_size-1) - y;
+		float rz = linear_b * (transform->grid_size-1) - z;
+
+		c0_r = CLU(r_table, x, y, z);
+		c0_g = CLU(g_table, x, y, z);
+		c0_b = CLU(b_table, x, y, z);
+		if( rx >= ry ) {
+			if (ry >= rz) { //rx >= ry && ry >= rz
+				c1_r = CLU(r_table, x_n, y, z) - c0_r;
+				c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
+				c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+				c1_g = CLU(g_table, x_n, y, z) - c0_g;
+				c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
+				c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+				c1_b = CLU(b_table, x_n, y, z) - c0_b;
+				c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
+				c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+			} else {
+				if (rx >= rz) { //rx >= rz && rz >= ry
+					c1_r = CLU(r_table, x_n, y, z) - c0_r;
+					c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+					c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
+					c1_g = CLU(g_table, x_n, y, z) - c0_g;
+					c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+					c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
+					c1_b = CLU(b_table, x_n, y, z) - c0_b;
+					c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+					c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
+				} else { //rz > rx && rx >= ry
+					c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
+					c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+					c3_r = CLU(r_table, x, y, z_n) - c0_r;
+					c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
+					c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+					c3_g = CLU(g_table, x, y, z_n) - c0_g;
+					c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
+					c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+					c3_b = CLU(b_table, x, y, z_n) - c0_b;
+				}
+			}
+		} else {
+			if (rx >= rz) { //ry > rx && rx >= rz
+				c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
+				c2_r = CLU(r_table, x_n, y_n, z) - c0_r;
+				c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+				c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
+				c2_g = CLU(g_table, x_n, y_n, z) - c0_g;
+				c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+				c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
+				c2_b = CLU(b_table, x_n, y_n, z) - c0_b;
+				c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+			} else {
+				if (ry >= rz) { //ry >= rz && rz > rx 
+					c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+					c2_r = CLU(r_table, x, y_n, z) - c0_r;
+					c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
+					c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+					c2_g = CLU(g_table, x, y_n, z) - c0_g;
+					c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
+					c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+					c2_b = CLU(b_table, x, y_n, z) - c0_b;
+					c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
+				} else { //rz > ry && ry > rx
+					c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+					c2_r = CLU(r_table, x, y_n, z) - c0_r;
+					c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+					c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+					c2_g = CLU(g_table, x, y_n, z) - c0_g;
+					c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+					c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+					c2_b = CLU(b_table, x, y_n, z) - c0_b;
+					c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+				}
+			}
+		}
+
+		clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
+		clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
+		clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;
+
+		pcs_r = lut_interp_linear_float(clut_r,
+				transform->output_clut_table_r, transform->output_clut_table_length);
+		pcs_g = lut_interp_linear_float(clut_g,
+				transform->output_clut_table_g, transform->output_clut_table_length);
+		pcs_b = lut_interp_linear_float(clut_b,
+				transform->output_clut_table_b, transform->output_clut_table_length);
+		*dest++ = clamp_float(pcs_r);
+		*dest++ = clamp_float(pcs_g);
+		*dest++ = clamp_float(pcs_b);
+	}
+}
+*/
+
+static void qcms_transform_module_gamma_table(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
+{
+	size_t i;
+	float out_r, out_g, out_b;
+	for (i = 0; i < length; i++) {
+		float in_r = *src++;
+		float in_g = *src++;
+		float in_b = *src++;
+
+		out_r = lut_interp_linear_float(in_r, transform->input_clut_table_r, 256);
+		out_g = lut_interp_linear_float(in_g, transform->input_clut_table_g, 256);
+		out_b = lut_interp_linear_float(in_b, transform->input_clut_table_b, 256);
+
+		*dest++ = clamp_float(out_r);
+		*dest++ = clamp_float(out_g);
+		*dest++ = clamp_float(out_b);
+	}
+}
+
+static void qcms_transform_module_gamma_lut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
+{
+	size_t i;
+	float out_r, out_g, out_b;
+	for (i = 0; i < length; i++) {
+		float in_r = *src++;
+		float in_g = *src++;
+		float in_b = *src++;
+
+		out_r = lut_interp_linear(in_r,
+				transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
+		out_g = lut_interp_linear(in_g,
+				transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
+		out_b = lut_interp_linear(in_b,
+				transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
+
+		*dest++ = clamp_float(out_r);
+		*dest++ = clamp_float(out_g);
+		*dest++ = clamp_float(out_b);
+	}
+}
+
+static void qcms_transform_module_matrix_translate(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
+{
+	size_t i;
+	struct matrix mat;
+
+	/* store the results in column major mode
+	 * this makes doing the multiplication with sse easier */
+	mat.m[0][0] = transform->matrix.m[0][0];
+	mat.m[1][0] = transform->matrix.m[0][1];
+	mat.m[2][0] = transform->matrix.m[0][2];
+	mat.m[0][1] = transform->matrix.m[1][0];
+	mat.m[1][1] = transform->matrix.m[1][1];
+	mat.m[2][1] = transform->matrix.m[1][2];
+	mat.m[0][2] = transform->matrix.m[2][0];
+	mat.m[1][2] = transform->matrix.m[2][1];
+	mat.m[2][2] = transform->matrix.m[2][2];
+
+	for (i = 0; i < length; i++) {
+		float in_r = *src++;
+		float in_g = *src++;
+		float in_b = *src++;
+
+		float out_r = mat.m[0][0]*in_r + mat.m[1][0]*in_g + mat.m[2][0]*in_b + transform->tx;
+		float out_g = mat.m[0][1]*in_r + mat.m[1][1]*in_g + mat.m[2][1]*in_b + transform->ty;
+		float out_b = mat.m[0][2]*in_r + mat.m[1][2]*in_g + mat.m[2][2]*in_b + transform->tz;
+
+		*dest++ = clamp_float(out_r);
+		*dest++ = clamp_float(out_g);
+		*dest++ = clamp_float(out_b);
+	}
+}
+
+static void qcms_transform_module_matrix(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
+{
+	size_t i;
+	struct matrix mat;
+
+	/* store the results in column major mode
+	 * this makes doing the multiplication with sse easier */
+	mat.m[0][0] = transform->matrix.m[0][0];
+	mat.m[1][0] = transform->matrix.m[0][1];
+	mat.m[2][0] = transform->matrix.m[0][2];
+	mat.m[0][1] = transform->matrix.m[1][0];
+	mat.m[1][1] = transform->matrix.m[1][1];
+	mat.m[2][1] = transform->matrix.m[1][2];
+	mat.m[0][2] = transform->matrix.m[2][0];
+	mat.m[1][2] = transform->matrix.m[2][1];
+	mat.m[2][2] = transform->matrix.m[2][2];
+
+	for (i = 0; i < length; i++) {
+		float in_r = *src++;
+		float in_g = *src++;
+		float in_b = *src++;
+
+		float out_r = mat.m[0][0]*in_r + mat.m[1][0]*in_g + mat.m[2][0]*in_b;
+		float out_g = mat.m[0][1]*in_r + mat.m[1][1]*in_g + mat.m[2][1]*in_b;
+		float out_b = mat.m[0][2]*in_r + mat.m[1][2]*in_g + mat.m[2][2]*in_b;
+
+		*dest++ = clamp_float(out_r);
+		*dest++ = clamp_float(out_g);
+		*dest++ = clamp_float(out_b);
+	}
+}
+
+static struct qcms_modular_transform* qcms_modular_transform_alloc() {
+	return calloc(1, sizeof(struct qcms_modular_transform));
+}
+
+static void qcms_modular_transform_release(struct qcms_modular_transform *transform)
+{
+	struct qcms_modular_transform *next_transform;
+	while (transform != NULL) {
+		next_transform = transform->next_transform;
+		// clut may use a single block of memory.
+		// Perhaps we should remove this to simply the code.
+		if (transform->input_clut_table_r + transform->input_clut_table_length == transform->input_clut_table_g && transform->input_clut_table_g + transform->input_clut_table_length == transform->input_clut_table_b) {
+			if (transform->input_clut_table_r) free(transform->input_clut_table_r);
+		} else {
+			if (transform->input_clut_table_r) free(transform->input_clut_table_r);
+			if (transform->input_clut_table_g) free(transform->input_clut_table_g);
+			if (transform->input_clut_table_b) free(transform->input_clut_table_b);
+		}
+		if (transform->r_clut + 1 == transform->g_clut && transform->g_clut + 1 == transform->b_clut) {
+			if (transform->r_clut) free(transform->r_clut);
+		} else {
+			if (transform->r_clut) free(transform->r_clut);
+			if (transform->g_clut) free(transform->g_clut);
+			if (transform->b_clut) free(transform->b_clut);
+		}
+		if (transform->output_clut_table_r + transform->output_clut_table_length == transform->output_clut_table_g && transform->output_clut_table_g+ transform->output_clut_table_length == transform->output_clut_table_b) {
+			if (transform->output_clut_table_r) free(transform->output_clut_table_r);
+		} else {
+			if (transform->output_clut_table_r) free(transform->output_clut_table_r);
+			if (transform->output_clut_table_g) free(transform->output_clut_table_g);
+			if (transform->output_clut_table_b) free(transform->output_clut_table_b);
+		}
+		if (transform->output_gamma_lut_r) free(transform->output_gamma_lut_r);
+		if (transform->output_gamma_lut_g) free(transform->output_gamma_lut_g);
+		if (transform->output_gamma_lut_b) free(transform->output_gamma_lut_b);
+		free(transform);
+		transform = next_transform;
+	}
+}
+
+/* Set transform to be the next element in the linked list. */
+static void append_transform(struct qcms_modular_transform *transform, struct qcms_modular_transform ***next_transform)
+{
+	**next_transform = transform;
+	while (transform) {
+		*next_transform = &(transform->next_transform);
+		transform = transform->next_transform;
+	}
+}
+
+/* reverse the transformation list (used by mBA) */
+static struct qcms_modular_transform* reverse_transform(struct qcms_modular_transform *transform) 
+{
+	struct qcms_modular_transform *prev_transform = NULL;
+	while (transform != NULL) {
+		struct qcms_modular_transform *next_transform = transform->next_transform;
+		transform->next_transform = prev_transform;
+		prev_transform = transform;
+		transform = next_transform;
+	}
+	
+	return prev_transform;
+}
+
+#define EMPTY_TRANSFORM_LIST NULL
+static struct qcms_modular_transform* qcms_modular_transform_create_mAB(struct lutmABType *lut)
+{
+	struct qcms_modular_transform *first_transform = NULL;
+	struct qcms_modular_transform **next_transform = &first_transform;
+	struct qcms_modular_transform *transform = NULL;
+
+	if (lut->a_curves[0] != NULL) {
+		size_t clut_length;
+		float *clut;
+
+		// If the A curve is present this also implies the 
+		// presence of a CLUT.
+		if (!lut->clut_table) 
+			goto fail;
+
+		// Prepare A curve.
+		transform = qcms_modular_transform_alloc();
+		if (!transform)
+			goto fail;
+		append_transform(transform, &next_transform);
+		transform->input_clut_table_r = build_input_gamma_table(lut->a_curves[0]);
+		transform->input_clut_table_g = build_input_gamma_table(lut->a_curves[1]);
+		transform->input_clut_table_b = build_input_gamma_table(lut->a_curves[2]);
+		transform->transform_module_fn = qcms_transform_module_gamma_table;
+		if (lut->num_grid_points[0] != lut->num_grid_points[1] ||
+			lut->num_grid_points[1] != lut->num_grid_points[2] ) {
+			//XXX: We don't currently support clut that are not squared!
+			goto fail;
+		}
+
+		// Prepare CLUT
+		transform = qcms_modular_transform_alloc();
+		if (!transform) 
+			goto fail;
+		append_transform(transform, &next_transform);
+		clut_length = sizeof(float)*pow(lut->num_grid_points[0], 3)*3;
+		clut = malloc(clut_length);
+		if (!clut)
+			goto fail;
+		memcpy(clut, lut->clut_table, clut_length);
+		transform->r_clut = clut + 0;
+		transform->g_clut = clut + 1;
+		transform->b_clut = clut + 2;
+		transform->grid_size = lut->num_grid_points[0];
+		transform->transform_module_fn = qcms_transform_module_clut_only;
+	}
+	if (lut->m_curves[0] != NULL) {
+		// M curve imples the presence of a Matrix
+
+		// Prepare M curve
+		transform = qcms_modular_transform_alloc();
+		if (!transform)
+			goto fail;
+		append_transform(transform, &next_transform);
+		transform->input_clut_table_r = build_input_gamma_table(lut->m_curves[0]);
+		transform->input_clut_table_g = build_input_gamma_table(lut->m_curves[1]);
+		transform->input_clut_table_b = build_input_gamma_table(lut->m_curves[2]);
+		transform->transform_module_fn = qcms_transform_module_gamma_table;
+
+		// Prepare Matrix
+		transform = qcms_modular_transform_alloc();
+		if (!transform) 
+			goto fail;
+		append_transform(transform, &next_transform);
+		transform->matrix = build_mAB_matrix(lut);
+		if (transform->matrix.invalid)
+			goto fail;
+		transform->tx = s15Fixed16Number_to_float(lut->e03);
+		transform->ty = s15Fixed16Number_to_float(lut->e13);
+		transform->tz = s15Fixed16Number_to_float(lut->e23);
+		transform->transform_module_fn = qcms_transform_module_matrix_translate;
+	}
+	if (lut->b_curves[0] != NULL) {
+		// Prepare B curve
+		transform = qcms_modular_transform_alloc();
+		if (!transform) 
+			goto fail;
+		append_transform(transform, &next_transform);
+		transform->input_clut_table_r = build_input_gamma_table(lut->b_curves[0]);
+		transform->input_clut_table_g = build_input_gamma_table(lut->b_curves[1]);
+		transform->input_clut_table_b = build_input_gamma_table(lut->b_curves[2]);
+		transform->transform_module_fn = qcms_transform_module_gamma_table;
+	} else {
+		// B curve is mandatory
+		goto fail;
+	}
+
+	if (lut->reversed) {
+		// mBA are identical to mAB except that the transformation order
+		// is reversed
+		first_transform = reverse_transform(first_transform);
+	}
+
+	return first_transform;
+fail:
+	qcms_modular_transform_release(first_transform);
+	return NULL;
+}
+
+static struct qcms_modular_transform* qcms_modular_transform_create_lut(struct lutType *lut)
+{
+	struct qcms_modular_transform *first_transform = NULL;
+	struct qcms_modular_transform **next_transform = &first_transform;
+	struct qcms_modular_transform *transform = NULL;
+
+	size_t in_curve_len, clut_length, out_curve_len;
+	float *in_curves, *clut, *out_curves;
+
+	// Prepare Matrix
+	transform = qcms_modular_transform_alloc();
+	if (!transform) 
+		goto fail;
+	append_transform(transform, &next_transform);
+	transform->matrix = build_lut_matrix(lut);
+	if (transform->matrix.invalid)
+		goto fail;
+	transform->transform_module_fn = qcms_transform_module_matrix;
+
+	// Prepare input curves
+	transform = qcms_modular_transform_alloc();
+	if (!transform) 
+		goto fail;
+	append_transform(transform, &next_transform);
+	in_curve_len = sizeof(float)*lut->num_input_table_entries * 3;
+	in_curves = malloc(in_curve_len);
+	if (!in_curves) 
+		goto fail;
+	memcpy(in_curves, lut->input_table, in_curve_len);
+	transform->input_clut_table_r = in_curves + lut->num_input_table_entries * 0;
+	transform->input_clut_table_g = in_curves + lut->num_input_table_entries * 1;
+	transform->input_clut_table_b = in_curves + lut->num_input_table_entries * 2;
+	transform->input_clut_table_length = lut->num_input_table_entries;
+
+	// Prepare table
+	clut_length = sizeof(float)*pow(lut->num_clut_grid_points, 3)*3;
+	clut = malloc(clut_length);
+	if (!clut) 
+		goto fail;
+	memcpy(clut, lut->clut_table, clut_length);
+	transform->r_clut = clut + 0;
+	transform->g_clut = clut + 1;
+	transform->b_clut = clut + 2;
+	transform->grid_size = lut->num_clut_grid_points;
+
+	// Prepare output curves
+	out_curve_len = sizeof(float) * lut->num_output_table_entries * 3;
+	out_curves = malloc(out_curve_len);
+	if (!out_curves) 
+		goto fail;
+	memcpy(out_curves, lut->output_table, out_curve_len);
+	transform->output_clut_table_r = out_curves + lut->num_output_table_entries * 0;
+	transform->output_clut_table_g = out_curves + lut->num_output_table_entries * 1;
+	transform->output_clut_table_b = out_curves + lut->num_output_table_entries * 2;
+	transform->output_clut_table_length = lut->num_output_table_entries;
+	transform->transform_module_fn = qcms_transform_module_clut;
+
+	return first_transform;
+fail:
+	qcms_modular_transform_release(first_transform);
+	return NULL;
+}
+
+struct qcms_modular_transform* qcms_modular_transform_create_input(qcms_profile *in)
+{
+	struct qcms_modular_transform *first_transform = NULL;
+	struct qcms_modular_transform **next_transform = &first_transform;
+
+	if (in->A2B0) {
+		struct qcms_modular_transform *lut_transform;
+		lut_transform = qcms_modular_transform_create_lut(in->A2B0);
+		if (!lut_transform)
+			goto fail;
+		append_transform(lut_transform, &next_transform);
+	} else if (in->mAB && in->mAB->num_in_channels == 3 && in->mAB->num_out_channels == 3) {
+		struct qcms_modular_transform *mAB_transform;
+		mAB_transform = qcms_modular_transform_create_mAB(in->mAB);
+		if (!mAB_transform)
+			goto fail;
+		append_transform(mAB_transform, &next_transform);
+
+	} else {
+		struct qcms_modular_transform *transform;
+
+		transform = qcms_modular_transform_alloc();
+		if (!transform)
+			goto fail;
+		append_transform(transform, &next_transform);
+		transform->input_clut_table_r = build_input_gamma_table(in->redTRC);
+		transform->input_clut_table_g = build_input_gamma_table(in->greenTRC);
+		transform->input_clut_table_b = build_input_gamma_table(in->blueTRC);
+		transform->transform_module_fn = qcms_transform_module_gamma_table;
+		if (!transform->input_clut_table_r || !transform->input_clut_table_g ||
+				!transform->input_clut_table_b) {
+			goto fail;
+		}
+
+		transform = qcms_modular_transform_alloc();
+		if (!transform) 
+			goto fail;
+		append_transform(transform, &next_transform);
+		transform->matrix.m[0][0] = 1/1.999969482421875f;
+		transform->matrix.m[0][1] = 0.f;
+		transform->matrix.m[0][2] = 0.f;
+		transform->matrix.m[1][0] = 0.f;
+		transform->matrix.m[1][1] = 1/1.999969482421875f;
+		transform->matrix.m[1][2] = 0.f;
+		transform->matrix.m[2][0] = 0.f;
+		transform->matrix.m[2][1] = 0.f;
+		transform->matrix.m[2][2] = 1/1.999969482421875f;
+		transform->matrix.invalid = false;
+		transform->transform_module_fn = qcms_transform_module_matrix;
+
+		transform = qcms_modular_transform_alloc();
+		if (!transform) 
+			goto fail;
+		append_transform(transform, &next_transform);
+		transform->matrix = build_colorant_matrix(in);
+		transform->transform_module_fn = qcms_transform_module_matrix;
+	}
+
+	return first_transform;
+fail:
+	qcms_modular_transform_release(first_transform);
+	return EMPTY_TRANSFORM_LIST;
+}
+static struct qcms_modular_transform* qcms_modular_transform_create_output(qcms_profile *out)
+{
+	struct qcms_modular_transform *first_transform = NULL;
+	struct qcms_modular_transform **next_transform = &first_transform;
+
+	if (out->B2A0) {
+		struct qcms_modular_transform *lut_transform;
+		lut_transform = qcms_modular_transform_create_lut(out->B2A0);
+		if (!lut_transform) 
+			goto fail;
+		append_transform(lut_transform, &next_transform);
+	} else if (out->mBA && out->mBA->num_in_channels == 3 && out->mBA->num_out_channels == 3) {
+		struct qcms_modular_transform *lut_transform;
+		lut_transform = qcms_modular_transform_create_mAB(out->mBA);
+		if (!lut_transform) 
+			goto fail;
+		append_transform(lut_transform, &next_transform);
+	} else if (out->redTRC && out->greenTRC && out->blueTRC) {
+		struct qcms_modular_transform *transform;
+
+		transform = qcms_modular_transform_alloc();
+		if (!transform) 
+			goto fail;
+		append_transform(transform, &next_transform);
+		transform->matrix = matrix_invert(build_colorant_matrix(out));
+		transform->transform_module_fn = qcms_transform_module_matrix;
+
+		transform = qcms_modular_transform_alloc();
+		if (!transform) 
+			goto fail;
+		append_transform(transform, &next_transform);
+		transform->matrix.m[0][0] = 1.999969482421875f;
+		transform->matrix.m[0][1] = 0.f;
+		transform->matrix.m[0][2] = 0.f;
+		transform->matrix.m[1][0] = 0.f;
+		transform->matrix.m[1][1] = 1.999969482421875f;
+		transform->matrix.m[1][2] = 0.f;
+		transform->matrix.m[2][0] = 0.f;
+		transform->matrix.m[2][1] = 0.f;
+		transform->matrix.m[2][2] = 1.999969482421875f;
+		transform->matrix.invalid = false;
+		transform->transform_module_fn = qcms_transform_module_matrix;
+
+		transform = qcms_modular_transform_alloc();
+		if (!transform) 
+			goto fail;
+		append_transform(transform, &next_transform);
+		build_output_lut(out->redTRC, &transform->output_gamma_lut_r,
+			&transform->output_gamma_lut_r_length);
+		build_output_lut(out->greenTRC, &transform->output_gamma_lut_g,
+			&transform->output_gamma_lut_g_length);
+		build_output_lut(out->blueTRC, &transform->output_gamma_lut_b,
+			&transform->output_gamma_lut_b_length);
+		transform->transform_module_fn = qcms_transform_module_gamma_lut;
+
+		if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g ||
+				!transform->output_gamma_lut_b) {
+			goto fail;
+		}
+	} else {
+		assert(0 && "Unsupported output profile workflow.");
+		return NULL;
+	}
+
+	return first_transform;
+fail:
+	qcms_modular_transform_release(first_transform);
+	return EMPTY_TRANSFORM_LIST;
+}
+
+/* Not Completed
+// Simplify the transformation chain to an equivalent transformation chain
+static struct qcms_modular_transform* qcms_modular_transform_reduce(struct qcms_modular_transform *transform)
+{
+	struct qcms_modular_transform *first_transform = NULL;
+	struct qcms_modular_transform *curr_trans = transform;
+	struct qcms_modular_transform *prev_trans = NULL;
+	while (curr_trans) {
+		struct qcms_modular_transform *next_trans = curr_trans->next_transform;
+		if (curr_trans->transform_module_fn == qcms_transform_module_matrix) {
+			if (next_trans && next_trans->transform_module_fn == qcms_transform_module_matrix) {
+				curr_trans->matrix = matrix_multiply(curr_trans->matrix, next_trans->matrix);
+				goto remove_next;	
+			}
+		}
+		if (curr_trans->transform_module_fn == qcms_transform_module_gamma_table) {
+			bool isLinear = true;
+			uint16_t i;
+			for (i = 0; isLinear && i < 256; i++) {
+				isLinear &= (int)(curr_trans->input_clut_table_r[i] * 255) == i;
+				isLinear &= (int)(curr_trans->input_clut_table_g[i] * 255) == i;
+				isLinear &= (int)(curr_trans->input_clut_table_b[i] * 255) == i;
+			}
+			goto remove_current;
+		}
+		
+next_transform:
+		if (!next_trans) break;
+		prev_trans = curr_trans;
+		curr_trans = next_trans;
+		continue;
+remove_current:
+		if (curr_trans == transform) {
+			//Update head
+			transform = next_trans;
+		} else {
+			prev_trans->next_transform = next_trans;
+		}
+		curr_trans->next_transform = NULL;
+		qcms_modular_transform_release(curr_trans);
+		//return transform;
+		return qcms_modular_transform_reduce(transform);
+remove_next:
+		curr_trans->next_transform = next_trans->next_transform;
+		next_trans->next_transform = NULL;
+		qcms_modular_transform_release(next_trans);
+		continue;
+	}
+	return transform;
+}
+*/
+
+static struct qcms_modular_transform* qcms_modular_transform_create(qcms_profile *in, qcms_profile *out)
+{
+	struct qcms_modular_transform *first_transform = NULL;
+	struct qcms_modular_transform **next_transform = &first_transform;
+
+	if (in->color_space == RGB_SIGNATURE) {
+		struct qcms_modular_transform* rgb_to_pcs;
+		rgb_to_pcs = qcms_modular_transform_create_input(in);
+		if (!rgb_to_pcs) 
+			goto fail;
+		append_transform(rgb_to_pcs, &next_transform);
+	} else {
+		assert(0 && "input color space not supported");
+		goto fail;
+	}
+
+	if (in->pcs == LAB_SIGNATURE && out->pcs == XYZ_SIGNATURE) {
+		struct qcms_modular_transform* lab_to_pcs;
+		lab_to_pcs = qcms_modular_transform_alloc();
+		if (!lab_to_pcs) 
+			goto fail;
+		append_transform(lab_to_pcs, &next_transform);
+		lab_to_pcs->transform_module_fn = qcms_transform_module_LAB_to_XYZ;
+	}
+
+	// This does not improve accuracy in practice, something is wrong here.
+	//if (in->chromaticAdaption.invalid == false) {
+	//	struct qcms_modular_transform* chromaticAdaption;
+	//	chromaticAdaption = qcms_modular_transform_alloc();
+	//	if (!chromaticAdaption) 
+	//		goto fail;
+	//	append_transform(chromaticAdaption, &next_transform);
+	//	chromaticAdaption->matrix = matrix_invert(in->chromaticAdaption);
+	//	chromaticAdaption->transform_module_fn = qcms_transform_module_matrix;
+	//}
+
+        if (in->pcs == XYZ_SIGNATURE && out->pcs == LAB_SIGNATURE) {
+		struct qcms_modular_transform* pcs_to_lab;
+		pcs_to_lab = qcms_modular_transform_alloc();
+		if (!pcs_to_lab) 
+			goto fail;
+		append_transform(pcs_to_lab, &next_transform);
+		pcs_to_lab->transform_module_fn = qcms_transform_module_XYZ_to_LAB;
+	}
+
+	if (out->color_space == RGB_SIGNATURE) {
+		struct qcms_modular_transform* pcs_to_rgb;
+		pcs_to_rgb = qcms_modular_transform_create_output(out);
+		if (!pcs_to_rgb) 
+			goto fail;
+		append_transform(pcs_to_rgb, &next_transform);
+	} else {
+		assert(0 && "output color space not supported");
+		goto fail;
+	}
+	// Not Completed
+	//return qcms_modular_transform_reduce(first_transform);
+	return first_transform;
+fail:
+	qcms_modular_transform_release(first_transform);
+	return EMPTY_TRANSFORM_LIST;
+}
+
+static float* qcms_modular_transform_data(struct qcms_modular_transform *transform, float *src, float *dest, size_t len)
+{
+        while (transform != NULL) {
+                // Keep swaping src/dest when performing a transform to use less memory.
+                float *new_src = dest;
+		const void *transform_fn = transform->transform_module_fn;
+		if (transform_fn != qcms_transform_module_gamma_table &&
+		    transform_fn != qcms_transform_module_gamma_lut &&
+		    transform_fn != qcms_transform_module_clut &&
+		    transform_fn != qcms_transform_module_clut_only &&
+		    transform_fn != qcms_transform_module_matrix &&
+		    transform_fn != qcms_transform_module_matrix_translate &&
+		    transform_fn != qcms_transform_module_LAB_to_XYZ &&
+		    transform_fn != qcms_transform_module_XYZ_to_LAB) {
+			assert(0 && "Unsupported transform module");
+			return NULL;
+		}
+                transform->transform_module_fn(transform,src,dest,len);
+                dest = src;
+                src = new_src;
+                transform = transform->next_transform;
+        }
+        // The results end up in the src buffer because of the switching
+        return src;
+}
+
+float* qcms_chain_transform(qcms_profile *in, qcms_profile *out, float *src, float *dest, size_t lutSize)
+{
+	struct qcms_modular_transform *transform_list = qcms_modular_transform_create(in, out);
+	if (transform_list != NULL) {
+		float *lut = qcms_modular_transform_data(transform_list, src, dest, lutSize/3);
+		qcms_modular_transform_release(transform_list);
+		return lut;
+	}
+	return NULL;
+}
diff --git a/chain.h b/chain.h
new file mode 100644
index 0000000..bdc6c88
--- /dev/null
+++ b/chain.h
@@ -0,0 +1,30 @@
+/* vim: set ts=8 sw=8 noexpandtab: */
+//  qcms
+//  Copyright (C) 2009 Mozilla Foundation
+//  Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining 
+// a copy of this software and associated documentation files (the "Software"), 
+// to deal in the Software without restriction, including without limitation 
+// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
+// and/or sell copies of the Software, and to permit persons to whom the Software 
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in 
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef _QCMS_CHAIN_H
+#define _QCMS_CHAIN_H
+
+// Generates and returns a 3D LUT with lutSize^3 samples using the provided src/dest.
+float* qcms_chain_transform(qcms_profile *in, qcms_profile *out, float *src, float *dest, size_t lutSize);
+
+#endif
diff --git a/iccread.c b/iccread.c
index 54e6475..36b7011 100644
--- a/iccread.c
+++ b/iccread.c
@@ -1,3 +1,4 @@
+/* vim: set ts=8 sw=8 noexpandtab: */
 //  qcms
 //  Copyright (C) 2009 Mozilla Foundation
 //  Copyright (C) 1998-2007 Marti Maria
@@ -23,9 +24,13 @@
 #include <math.h>
 #include <assert.h>
 #include <stdlib.h>
-#include <string.h>
+#include <string.h> //memset
 #include "qcmsint.h"
 
+/* It might be worth having a unified limit on content controlled
+ * allocation per profile. This would remove the need for many
+ * of the arbitrary limits that we used */
+
 typedef uint32_t be32;
 typedef uint16_t be16;
 
@@ -120,12 +125,15 @@
 	return read_u32(mem, offset);
 }
 
-#if 0
+static uInt8Number read_uInt8Number(struct mem_source *mem, size_t offset)
+{
+	return read_u8(mem, offset);
+}
+
 static uInt16Number read_uInt16Number(struct mem_source *mem, size_t offset)
 {
 	return read_u16(mem, offset);
 }
-#endif
 
 #define BAD_VALUE_PROFILE NULL
 #define INVALID_PROFILE NULL
@@ -144,16 +152,21 @@
 
 static void check_profile_version(struct mem_source *src)
 {
+
+	/*
 	uint8_t major_revision = read_u8(src, 8 + 0);
 	uint8_t minor_revision = read_u8(src, 8 + 1);
+	*/
 	uint8_t reserved1      = read_u8(src, 8 + 2);
 	uint8_t reserved2      = read_u8(src, 8 + 3);
+	/* Checking the version doesn't buy us anything
 	if (major_revision != 0x4) {
 		if (major_revision > 0x2)
 			invalid_source(src, "Unsupported major revision");
 		if (minor_revision > 0x40)
 			invalid_source(src, "Unsupported minor revision");
 	}
+	*/
 	if (reserved1 != 0 || reserved2 != 0)
 		invalid_source(src, "Invalid reserved bytes");
 }
@@ -172,8 +185,9 @@
 	switch (profile->class) {
 		case DISPLAY_DEVICE_PROFILE:
 		case INPUT_DEVICE_PROFILE:
-			break;
 		case OUTPUT_DEVICE_PROFILE:
+		case COLOR_SPACE_PROFILE:
+			break;
 		default:
 			invalid_source(mem, "Invalid  Profile/Device Class signature");
 	}
@@ -191,6 +205,18 @@
 	}
 }
 
+static void read_pcs(qcms_profile *profile, struct mem_source *mem)
+{
+	profile->pcs = read_u32(mem, 20);
+	switch (profile->pcs) {
+		case XYZ_SIGNATURE:
+		case LAB_SIGNATURE:
+			break;
+		default:
+			invalid_source(mem, "Unsupported pcs");
+	}
+}
+
 struct tag
 {
 	uint32_t signature;
@@ -240,6 +266,9 @@
        if (profile->color_space != RGB_SIGNATURE)
 	       return false;
 
+       if (profile->A2B0 || profile->B2A0)
+               return false;
+
        rX = s15Fixed16Number_to_float(profile->redColorant.X);
        rY = s15Fixed16Number_to_float(profile->redColorant.Y);
        rZ = s15Fixed16Number_to_float(profile->redColorant.Z);
@@ -300,6 +329,8 @@
 #define TAG_gTRC 0x67545243
 #define TAG_kTRC 0x6b545243
 #define TAG_A2B0 0x41324230
+#define TAG_B2A0 0x42324130
+#define TAG_CHAD 0x63686164
 
 static struct tag *find_tag(struct tag_index index, uint32_t tag_id)
 {
@@ -313,10 +344,39 @@
 	return tag;
 }
 
-#define XYZ_TYPE   0x58595a20 // 'XYZ '
-#define CURVE_TYPE 0x63757276 // 'curv'
-#define LUT16_TYPE 0x6d667432 // 'mft2'
-#define LUT8_TYPE  0x6d667431 // 'mft1'
+#define XYZ_TYPE		0x58595a20 // 'XYZ '
+#define CURVE_TYPE		0x63757276 // 'curv'
+#define PARAMETRIC_CURVE_TYPE	0x70617261 // 'para'
+#define LUT16_TYPE		0x6d667432 // 'mft2'
+#define LUT8_TYPE		0x6d667431 // 'mft1'
+#define LUT_MAB_TYPE		0x6d414220 // 'mAB '
+#define LUT_MBA_TYPE		0x6d424120 // 'mBA '
+#define CHROMATIC_TYPE		0x73663332 // 'sf32'
+
+static struct matrix read_tag_s15Fixed16ArrayType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
+{
+	struct tag *tag = find_tag(index, tag_id);
+	struct matrix matrix;
+	if (tag) {
+		uint8_t i;
+		uint32_t offset = tag->offset;
+		uint32_t type = read_u32(src, offset);
+
+		// Check mandatory type signature for s16Fixed16ArrayType
+		if (type != CHROMATIC_TYPE) {
+			invalid_source(src, "unexpected type, expected 'sf32'");
+		}
+
+		for (i = 0; i < 9; i++) {
+			matrix.m[i/3][i%3] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset+8+i*4));
+		}
+		matrix.invalid = false;
+	} else {
+		matrix.invalid = true;
+		invalid_source(src, "missing sf32tag");
+	}
+	return matrix;
+}
 
 static struct XYZNumber read_tag_XYZType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
 {
@@ -337,20 +397,24 @@
 	return num;
 }
 
-static struct curveType *read_tag_curveType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
+// Read the tag at a given offset rather then the tag_index. 
+// This method is used when reading mAB tags where nested curveType are
+// present that are not part of the tag_index.
+static struct curveType *read_curveType(struct mem_source *src, uint32_t offset, uint32_t *len)
 {
-	struct tag *tag = find_tag(index, tag_id);
+	static const size_t COUNT_TO_LENGTH[5] = {1, 3, 4, 5, 7};
 	struct curveType *curve = NULL;
-	if (tag) {
-		uint32_t offset = tag->offset;
-		uint32_t type = read_u32(src, offset);
-		uint32_t count = read_u32(src, offset+8);
-		unsigned int i;
+	uint32_t type = read_u32(src, offset);
+	uint32_t count;
+	int i;
 
-		if (type != CURVE_TYPE) {
-			invalid_source(src, "unexpected type, expected CURV");
-			return NULL;
-		}
+	if (type != CURVE_TYPE && type != PARAMETRIC_CURVE_TYPE) {
+		invalid_source(src, "unexpected type, expected CURV or PARA");
+		return NULL;
+	}
+
+	if (type == CURVE_TYPE) {
+		count = read_u32(src, offset+8);
 
 #define MAX_CURVE_ENTRIES 40000 //arbitrary
 		if (count > MAX_CURVE_ENTRIES) {
@@ -362,9 +426,50 @@
 			return NULL;
 
 		curve->count = count;
+		curve->type = type;
+
 		for (i=0; i<count; i++) {
-			curve->data[i] = read_u16(src, offset + 12 + i *2);
+			curve->data[i] = read_u16(src, offset + 12 + i*2);
 		}
+		*len = 12 + count * 2;
+	} else { //PARAMETRIC_CURVE_TYPE
+		count = read_u16(src, offset+8);
+
+		if (count > 4) {
+			invalid_source(src, "parametric function type not supported.");
+			return NULL;
+		}
+
+		curve = malloc(sizeof(struct curveType));
+		if (!curve)
+			return NULL;
+
+		curve->count = count;
+		curve->type = type;
+
+		for (i=0; i < COUNT_TO_LENGTH[count]; i++) {
+			curve->parameter[i] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset + 12 + i*4));	
+		}
+		*len = 12 + COUNT_TO_LENGTH[count] * 4;
+
+		if ((count == 1 || count == 2)) {
+			/* we have a type 1 or type 2 function that has a division by 'a' */
+			float a = curve->parameter[1];
+			if (a == 0.f)
+				invalid_source(src, "parametricCurve definition causes division by zero.");
+		}
+	}
+
+	return curve;
+}
+
+static struct curveType *read_tag_curveType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
+{
+	struct tag *tag = find_tag(index, tag_id);
+	struct curveType *curve = NULL;
+	if (tag) {
+		uint32_t len;
+		return read_curveType(src, tag->offset, &len);
 	} else {
 		invalid_source(src, "missing curvetag");
 	}
@@ -372,7 +477,178 @@
 	return curve;
 }
 
-/* This function's not done yet */
+#define MAX_CLUT_SIZE 500000 // arbitrary
+#define MAX_CHANNELS 10 // arbitrary
+static void read_nested_curveType(struct mem_source *src, struct curveType *(*curveArray)[MAX_CHANNELS], uint8_t num_channels, uint32_t curve_offset)
+{
+	uint32_t channel_offset = 0;
+	int i;
+	for (i = 0; i < num_channels; i++) {
+		uint32_t tag_len;
+
+		(*curveArray)[i] = read_curveType(src, curve_offset + channel_offset, &tag_len);
+		if (!(*curveArray)[i]) {
+			invalid_source(src, "invalid nested curveType curve");
+		}
+
+		channel_offset += tag_len;
+		// 4 byte aligned
+		if ((tag_len % 4) != 0)
+			channel_offset += 4 - (tag_len % 4);
+	}
+
+}
+
+static void mAB_release(struct lutmABType *lut)
+{
+	uint8_t i;
+
+	for (i = 0; i < lut->num_in_channels; i++){
+		free(lut->a_curves[i]);
+	}
+	for (i = 0; i < lut->num_out_channels; i++){
+		free(lut->b_curves[i]);
+		free(lut->m_curves[i]);
+	}
+	free(lut);
+}
+
+/* See section 10.10 for specs */
+static struct lutmABType *read_tag_lutmABType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
+{
+	struct tag *tag = find_tag(index, tag_id);
+	uint32_t offset = tag->offset;
+	uint32_t a_curve_offset, b_curve_offset, m_curve_offset;
+	uint32_t matrix_offset;
+	uint32_t clut_offset;
+	uint32_t clut_size = 1;
+	uint8_t clut_precision;
+	uint32_t type = read_u32(src, offset);
+	uint8_t num_in_channels, num_out_channels;
+	struct lutmABType *lut;
+	int i;
+
+	if (type != LUT_MAB_TYPE && type != LUT_MBA_TYPE) {
+		return NULL;
+	}
+
+	num_in_channels = read_u8(src, offset + 8);
+	num_out_channels = read_u8(src, offset + 8);
+	if (num_in_channels > MAX_CHANNELS || num_out_channels > MAX_CHANNELS)
+		return NULL;
+
+	// We require 3in/out channels since we only support RGB->XYZ (or RGB->LAB)
+	// XXX: If we remove this restriction make sure that the number of channels
+	//      is less or equal to the maximum number of mAB curves in qcmsint.h
+	//      also check for clut_size overflow.
+	if (num_in_channels != 3 || num_out_channels != 3)
+		return NULL;
+
+	// some of this data is optional and is denoted by a zero offset
+	// we also use this to track their existance
+	a_curve_offset = read_u32(src, offset + 28);
+	clut_offset = read_u32(src, offset + 24);
+	m_curve_offset = read_u32(src, offset + 20);
+	matrix_offset = read_u32(src, offset + 16);
+	b_curve_offset = read_u32(src, offset + 12);
+
+	// Convert offsets relative to the tag to relative to the profile
+	// preserve zero for optional fields
+	if (a_curve_offset)
+		a_curve_offset += offset;
+	if (clut_offset)
+		clut_offset += offset;
+	if (m_curve_offset)
+		m_curve_offset += offset;
+	if (matrix_offset)
+		matrix_offset += offset;
+	if (b_curve_offset)
+		b_curve_offset += offset;
+
+	if (clut_offset) {
+		assert (num_in_channels == 3);
+		// clut_size can not overflow since lg(256^num_in_channels) = 24 bits.
+		for (i = 0; i < num_in_channels; i++) {
+			clut_size *= read_u8(src, clut_offset + i);
+		}
+	} else {
+		clut_size = 0;
+	}
+
+	// 24bits * 3 won't overflow either
+	clut_size = clut_size * num_out_channels;
+
+	if (clut_size > MAX_CLUT_SIZE)
+		return NULL;
+
+	lut = malloc(sizeof(struct lutmABType) + (clut_size) * sizeof(float));
+	if (!lut)
+		return NULL;
+	// we'll fill in the rest below
+	memset(lut, 0, sizeof(struct lutmABType));
+	lut->clut_table   = &lut->clut_table_data[0];
+
+	for (i = 0; i < num_in_channels; i++) {
+		lut->num_grid_points[i] = read_u8(src, clut_offset + i);
+	}
+
+	// Reverse the processing of transformation elements for mBA type.
+	lut->reversed = (type == LUT_MBA_TYPE);
+
+	lut->num_in_channels = num_in_channels;
+	lut->num_out_channels = num_out_channels;
+
+	if (matrix_offset) {
+		// read the matrix if we have it
+		lut->e00 = read_s15Fixed16Number(src, matrix_offset+4*0);
+		lut->e01 = read_s15Fixed16Number(src, matrix_offset+4*1);
+		lut->e02 = read_s15Fixed16Number(src, matrix_offset+4*2);
+		lut->e10 = read_s15Fixed16Number(src, matrix_offset+4*3);
+		lut->e11 = read_s15Fixed16Number(src, matrix_offset+4*4);
+		lut->e12 = read_s15Fixed16Number(src, matrix_offset+4*5);
+		lut->e20 = read_s15Fixed16Number(src, matrix_offset+4*6);
+		lut->e21 = read_s15Fixed16Number(src, matrix_offset+4*7);
+		lut->e22 = read_s15Fixed16Number(src, matrix_offset+4*8);
+		lut->e03 = read_s15Fixed16Number(src, matrix_offset+4*9);
+		lut->e13 = read_s15Fixed16Number(src, matrix_offset+4*10);
+		lut->e23 = read_s15Fixed16Number(src, matrix_offset+4*11);
+	}
+
+	if (a_curve_offset) {
+		read_nested_curveType(src, &lut->a_curves, num_in_channels, a_curve_offset);
+	}
+	if (m_curve_offset) {
+		read_nested_curveType(src, &lut->m_curves, num_out_channels, m_curve_offset);
+	}
+	if (b_curve_offset) {
+		read_nested_curveType(src, &lut->b_curves, num_out_channels, b_curve_offset);
+	} else {
+		invalid_source(src, "B curves required");
+	}
+
+	if (clut_offset) {
+		clut_precision = read_u8(src, clut_offset + 16);
+		if (clut_precision == 1) {
+			for (i = 0; i < clut_size; i++) {
+				lut->clut_table[i] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + 20 + i*1));
+			}
+		} else if (clut_precision == 2) {
+			for (i = 0; i < clut_size; i++) {
+				lut->clut_table[i] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + 20 + i*2));
+			}
+		} else {
+			invalid_source(src, "Invalid clut precision");
+		}
+	}
+
+	if (!src->valid) {
+		mAB_release(lut);
+		return NULL;
+	}
+
+	return lut;
+}
+
 static struct lutType *read_tag_lutType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
 {
 	struct tag *tag = find_tag(index, tag_id);
@@ -381,32 +657,53 @@
 	uint16_t num_input_table_entries;
 	uint16_t num_output_table_entries;
 	uint8_t in_chan, grid_points, out_chan;
+	uint32_t clut_offset, output_offset;
 	uint32_t clut_size;
+	size_t entry_size;
 	struct lutType *lut;
 	int i;
 
-	num_input_table_entries  = read_u16(src, offset + 48);
-	num_output_table_entries = read_u16(src, offset + 50);
+	/* I'm not sure why the spec specifies a fixed number of entries for LUT8 tables even though
+	 * they have room for the num_entries fields */
+	if (type == LUT8_TYPE) {
+		num_input_table_entries = 256;
+		num_output_table_entries = 256;
+		entry_size = 1;
+	} else if (type == LUT16_TYPE) {
+		num_input_table_entries  = read_u16(src, offset + 48);
+		num_output_table_entries = read_u16(src, offset + 50);
+		entry_size = 2;
+	} else {
+		assert(0); // the caller checks that this doesn't happen
+		invalid_source(src, "Unexpected lut type");
+		return NULL;
+	}
 
 	in_chan     = read_u8(src, offset + 8);
 	out_chan    = read_u8(src, offset + 9);
 	grid_points = read_u8(src, offset + 10);
 
-	if (!src->valid)
-		return NULL;
-
-	clut_size = in_chan * grid_points * out_chan;
-#define MAX_CLUT_SIZE 10000 // arbitrary
+	clut_size = pow(grid_points, in_chan);
 	if (clut_size > MAX_CLUT_SIZE) {
 		return NULL;
 	}
 
-	if (type != LUT16_TYPE && type != LUT8_TYPE)
+	if (in_chan != 3 || out_chan != 3) {
 		return NULL;
+	}
 
-	lut = malloc(sizeof(struct lutType) + (clut_size + num_input_table_entries + num_output_table_entries)*sizeof(uint8_t));
-	if (!lut)
+	lut = malloc(sizeof(struct lutType) + (num_input_table_entries * in_chan + clut_size*out_chan + num_output_table_entries * out_chan)*sizeof(float));
+	if (!lut) {
 		return NULL;
+	}
+
+	/* compute the offsets of tables */
+	lut->input_table  = &lut->table_data[0];
+	lut->clut_table   = &lut->table_data[in_chan*num_input_table_entries];
+	lut->output_table = &lut->table_data[in_chan*num_input_table_entries + clut_size*out_chan];
+
+	lut->num_input_table_entries  = num_input_table_entries;
+	lut->num_output_table_entries = num_output_table_entries;
 	lut->num_input_channels   = read_u8(src, offset + 8);
 	lut->num_output_channels  = read_u8(src, offset + 9);
 	lut->num_clut_grid_points = read_u8(src, offset + 10);
@@ -420,7 +717,36 @@
 	lut->e21 = read_s15Fixed16Number(src, offset+40);
 	lut->e22 = read_s15Fixed16Number(src, offset+44);
 
-	//TODO: finish up
+	for (i = 0; i < lut->num_input_table_entries * in_chan; i++) {
+		if (type == LUT8_TYPE) {
+			lut->input_table[i] = uInt8Number_to_float(read_uInt8Number(src, offset + 52 + i * entry_size));
+		} else {
+			lut->input_table[i] = uInt16Number_to_float(read_uInt16Number(src, offset + 52 + i * entry_size));
+		}
+	}
+
+	clut_offset = offset + 52 + lut->num_input_table_entries * in_chan * entry_size;
+	for (i = 0; i < clut_size * out_chan; i+=3) {
+		if (type == LUT8_TYPE) {
+			lut->clut_table[i+0] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 0));
+			lut->clut_table[i+1] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 1));
+			lut->clut_table[i+2] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 2));
+		} else {
+			lut->clut_table[i+0] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 0));
+			lut->clut_table[i+1] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 2));
+			lut->clut_table[i+2] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 4));
+		}
+	}
+
+	output_offset = clut_offset + clut_size * out_chan * entry_size;
+	for (i = 0; i < lut->num_output_table_entries * out_chan; i++) {
+		if (type == LUT8_TYPE) {
+			lut->output_table[i] = uInt8Number_to_float(read_uInt8Number(src, output_offset + i*entry_size));
+		} else {
+			lut->output_table[i] = uInt16Number_to_float(read_uInt16Number(src, output_offset + i*entry_size));
+		}
+	}
+
 	return lut;
 }
 
@@ -443,6 +769,8 @@
 	return calloc(sizeof(qcms_profile), 1);
 }
 
+
+
 /* build sRGB gamma table */
 /* based on cmsBuildParametricGamma() */
 static uint16_t *build_sRGB_gamma_table(int num_entries)
@@ -493,6 +821,7 @@
 	curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries);
 	if (!curve)
 		return NULL;
+	curve->type = CURVE_TYPE;
 	curve->count = num_entries;
 	for (i = 0; i < num_entries; i++) {
 		curve->data[i] = table[i];
@@ -522,14 +851,6 @@
 	return curve;
 }
 
-static void qcms_profile_fini(qcms_profile *profile)
-{
-	free(profile->redTRC);
-	free(profile->blueTRC);
-	free(profile->greenTRC);
-	free(profile->grayTRC);
-	free(profile);
-}
 
 //XXX: it would be nice if we had a way of ensuring
 // everything in a profile was initialized regardless of how it was created
@@ -547,7 +868,7 @@
 
 	//XXX: should store the whitepoint
 	if (!set_rgb_colorants(profile, white_point, primaries)) {
-		qcms_profile_fini(profile);
+		qcms_profile_release(profile);
 		return INVALID_PROFILE;
 	}
 
@@ -556,7 +877,7 @@
 	profile->greenTRC = curve_from_gamma(gamma);
 
 	if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
-		qcms_profile_fini(profile);
+		qcms_profile_release(profile);
 		return NO_MEM_PROFILE;
 	}
 	profile->class = DISPLAY_DEVICE_PROFILE;
@@ -576,7 +897,7 @@
 
 	//XXX: should store the whitepoint
 	if (!set_rgb_colorants(profile, white_point, primaries)) {
-		qcms_profile_fini(profile);
+		qcms_profile_release(profile);
 		return INVALID_PROFILE;
 	}
 
@@ -585,7 +906,7 @@
 	profile->greenTRC = curve_from_table(table, num_entries);
 
 	if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
-		qcms_profile_fini(profile);
+		qcms_profile_release(profile);
 		return NO_MEM_PROFILE;
 	}
 	profile->class = DISPLAY_DEVICE_PROFILE;
@@ -697,6 +1018,7 @@
 	read_class_signature(profile, src);
 	read_rendering_intent(profile, src);
 	read_color_space(profile, src);
+	read_pcs(profile, src);
 	//TODO read rest of profile stuff
 
 	if (!src->valid)
@@ -706,23 +1028,48 @@
 	if (!src->valid || !index.tags)
 		goto invalid_tag_table;
 
-	if (profile->class == DISPLAY_DEVICE_PROFILE || profile->class == INPUT_DEVICE_PROFILE) {
-		if (profile->color_space == RGB_SIGNATURE) {
+	if (find_tag(index, TAG_CHAD)) {
+		profile->chromaticAdaption = read_tag_s15Fixed16ArrayType(src, index, TAG_CHAD);
+	} else {
+		profile->chromaticAdaption.invalid = true; //Signal the data is not present
+	}
 
-			profile->redColorant = read_tag_XYZType(src, index, TAG_rXYZ);
-			profile->greenColorant = read_tag_XYZType(src, index, TAG_gXYZ);
-			profile->blueColorant = read_tag_XYZType(src, index, TAG_bXYZ);
+	if (profile->class == DISPLAY_DEVICE_PROFILE || profile->class == INPUT_DEVICE_PROFILE ||
+            profile->class == OUTPUT_DEVICE_PROFILE  || profile->class == COLOR_SPACE_PROFILE) {
+		if (profile->color_space == RGB_SIGNATURE) {
+			if (find_tag(index, TAG_A2B0)) {
+				if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT8_TYPE ||
+				    read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT16_TYPE) {
+					profile->A2B0 = read_tag_lutType(src, index, TAG_A2B0);
+				} else if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT_MAB_TYPE) {
+					profile->mAB = read_tag_lutmABType(src, index, TAG_A2B0);
+				}
+			}
+			if (find_tag(index, TAG_B2A0)) {
+				if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT8_TYPE ||
+				    read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT16_TYPE) {
+					profile->B2A0 = read_tag_lutType(src, index, TAG_B2A0);
+				} else if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT_MBA_TYPE) {
+					profile->mBA = read_tag_lutmABType(src, index, TAG_B2A0);
+				}
+			}
+			if (find_tag(index, TAG_rXYZ) || !qcms_supports_iccv4) {
+				profile->redColorant = read_tag_XYZType(src, index, TAG_rXYZ);
+				profile->greenColorant = read_tag_XYZType(src, index, TAG_gXYZ);
+				profile->blueColorant = read_tag_XYZType(src, index, TAG_bXYZ);
+			}
 
 			if (!src->valid)
 				goto invalid_tag_table;
 
-			profile->redTRC = read_tag_curveType(src, index, TAG_rTRC);
-			profile->greenTRC = read_tag_curveType(src, index, TAG_gTRC);
-			profile->blueTRC = read_tag_curveType(src, index, TAG_bTRC);
+			if (find_tag(index, TAG_rTRC) || !qcms_supports_iccv4) {
+				profile->redTRC = read_tag_curveType(src, index, TAG_rTRC);
+				profile->greenTRC = read_tag_curveType(src, index, TAG_gTRC);
+				profile->blueTRC = read_tag_curveType(src, index, TAG_bTRC);
 
-			if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC)
-				goto invalid_tag_table;
-
+				if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC)
+					goto invalid_tag_table;
+			}
 		} else if (profile->color_space == GRAY_SIGNATURE) {
 
 			profile->grayTRC = read_tag_curveType(src, index, TAG_kTRC);
@@ -730,10 +1077,9 @@
 				goto invalid_tag_table;
 
 		} else {
+			assert(0 && "read_color_space protects against entering here");
 			goto invalid_tag_table;
 		}
-	} else if (0 && profile->class == OUTPUT_DEVICE_PROFILE) {
-		profile->A2B0 = read_tag_lutType(src, index, TAG_A2B0);
 	} else {
 		goto invalid_tag_table;
 	}
@@ -748,7 +1094,7 @@
 invalid_tag_table:
 	free(index.tags);
 invalid_profile:
-	qcms_profile_fini(profile);
+	qcms_profile_release(profile);
 	return INVALID_PROFILE;
 }
 
@@ -763,6 +1109,11 @@
 	return profile->color_space;
 }
 
+static void lut_release(struct lutType *lut)
+{
+	free(lut);
+}
+
 void qcms_profile_release(qcms_profile *profile)
 {
 	if (profile->output_table_r)
@@ -772,9 +1123,24 @@
 	if (profile->output_table_b)
 		precache_release(profile->output_table_b);
 
-	qcms_profile_fini(profile);
+	if (profile->A2B0)
+		lut_release(profile->A2B0);
+	if (profile->B2A0)
+		lut_release(profile->B2A0);
+
+	if (profile->mAB)
+		mAB_release(profile->mAB);
+	if (profile->mBA)
+		mAB_release(profile->mBA);
+
+	free(profile->redTRC);
+	free(profile->blueTRC);
+	free(profile->greenTRC);
+	free(profile->grayTRC);
+	free(profile);
 }
 
+
 #include <stdio.h>
 qcms_profile* qcms_profile_from_file(FILE *file)
 {
diff --git a/invalid-coverage.c b/invalid-coverage.c
index c402252..b96df73 100644
--- a/invalid-coverage.c
+++ b/invalid-coverage.c
@@ -38,54 +38,66 @@
 {
 	*(uint8_t*)(buf + offset) = value;
 }
+static void write_u16(size_t offset, uint16_t value)
+{
+	*(uint8_t*)(buf + offset + 1) = value & 0xff;
+	*(uint8_t*)(buf + offset) = (value>>8) & 0xff;
+}
 
 
+#define PROFILE_LENGTH 18000
 int main()
 {
 	qcms_profile_release(qcms_profile_sRGB());
 
-	buf = calloc(1500, 1);
-	assert(!qcms_profile_from_memory(buf, 1500));
+	buf = calloc(PROFILE_LENGTH, 1);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 	// invalid size
-	write_u32(0, 2500);
-	assert(!qcms_profile_from_memory(buf, 1500));
+	write_u32(0, PROFILE_LENGTH + 2500);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	// proper size
-	write_u32(0, 1500);
-	assert(!qcms_profile_from_memory(buf, 1500));
+	write_u32(0, PROFILE_LENGTH);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 #define INPUT_DEVICE_PROFILE   0x73636e72 // 'scnr'
 	write_u32(12, INPUT_DEVICE_PROFILE);
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u8(8, 0x3); // invalid major revision
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u8(8, 0x2); // major revision
 	write_u8(9, 0x55); // invalid minor revision
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u8(8, 0x2); // major revision
 	write_u8(9, 0x40); // minor revision
 	write_u8(10, 1); // reserved 1
 	write_u8(11, 0); // reserved 2
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 	write_u8(10, 0); // reserved 1
 
 	write_u8(64, 0x32); // invalid rendering intent
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 	write_u8(64, 0); // invalid rendering intent
 
 #define RGB_SIGNATURE  0x52474220
 #define GRAY_SIGNATURE 0x47524159
+	write_u32(16, 0xdeadbeef);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
 	write_u32(16, RGB_SIGNATURE);
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+#define XYZ_SIGNATURE  0x58595A20
+	write_u32(20, XYZ_SIGNATURE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u32(128, 15000); // tag count
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u32(128, 15); // tag count
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
      #define TAG_bXYZ 0x6258595a
      #define TAG_gXYZ 0x6758595a
@@ -95,67 +107,202 @@
      #define TAG_gTRC 0x67545243
      #define TAG_kTRC 0x6b545243
      #define TAG_A2B0 0x41324230
+     #define TAG_B2A0 0x42324130
+     #define TAG_CHAD 0x63686164
 
 	write_u32(128 + 4, TAG_rXYZ); // tag
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 	write_u32(128 + 4 + 4, 1000); // offset
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u32(128 + 4 + 4*1*3, TAG_gXYZ); // tag
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 	write_u32(128 + 4 + 4*1*3 + 4, 1000); // offset
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u32(128 + 4 + 4*2*3, TAG_bXYZ); // tag
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 	write_u32(128 + 4 + 4*2*3 + 4, 1000); // offset
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 #define XYZ_TYPE   0x58595a20 // 'XYZ '
 #define CURVE_TYPE 0x63757276 // 'curv'
 #define LUT16_TYPE 0x6d667432 // 'mft2'
 #define LUT8_TYPE  0x6d667431 // 'mft1'
-
+#define LUT_MAB_TYPE		0x6d414220 // 'mAB '
+#define LUT_MBA_TYPE		0x6d424120 // 'mBA '
+#define CHROMATIC_TYPE          0x73663332 // 'sf32'
+#define PARAMETRIC_CURVE_TYPE   0x70617261 // 'para'
 	write_u32(1000, XYZ_TYPE);
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u32(128 + 4 + 4*3*3, TAG_rTRC); // tag
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 	write_u32(128 + 4 + 4*3*3 + 4, 1100); // offset
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u32(128 + 4 + 4*4*3, TAG_gTRC); // tag
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 	write_u32(128 + 4 + 4*4*3 + 4, 1100); // offset
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u32(128 + 4 + 4*5*3, TAG_bTRC); // tag
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 	write_u32(128 + 4 + 4*5*3 + 4, 1100); // offset
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(128 + 4 + 4*6*3, TAG_A2B0); // tag
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(128 + 4 + 4*6*3 + 4, 1200); // offset
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(128 + 4 + 4*7*3, TAG_CHAD); // tag
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u32(128 + 4 + 4*7*3 + 4, 5000); // offset
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200, 5); // invalid lut type
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200, LUT8_TYPE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(1200 + 8, 9); // max clut size
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u8(1200 + 10, 9); // max clut size
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(1200 + 8, 3); // in_chan
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(1200 + 9, 3); // proper out_chan
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(1200 + 10, 1); // sane clut size
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200, LUT16_TYPE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u16(1200 + 48, 3); // input_table_entries
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u16(1200 + 50, 3); // output_table_entries
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(128 + 4 + 4*6*3, TAG_A2B0); // tag
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(128 + 4 + 4*6*3, TAG_B2A0); // tag
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200, LUT_MBA_TYPE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200, LUT_MAB_TYPE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(128 + 4 + 4*6*3, TAG_A2B0); // tag
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(1200 + 8, 15); // > max in_chan
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u8(1200 + 9, 15); // > max out_chan
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(1200 + 9, 4); // long out_chan
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u8(1200 + 8, 2); // short in_chan
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(1200 + 9, 3); // proper out_chan
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u8(1200 + 8, 3); // proper out_chan
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 
+	write_u32(1200 + 12, 5); // b curve offset
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200 + 12, 2000); // b curve offset
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200 + 16, 2000); // matrix offset
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200 + 20, 2000); // m curve offset
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200 + 24, 3000); // clut offset
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(4200, 255); // clut channel size
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u8(4201, 255); // clut channel size
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u8(4202, 255); // clut channel size
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(4200, 2); // clut channel size
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u8(4201, 2); // clut channel size
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u8(4202, 2); // clut channel size
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u8(4216, 1); // clut precision
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u8(4216, 2); // clut precision
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(1200 + 28, 2000); // a curve offset
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(3200, PARAMETRIC_CURVE_TYPE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u16(3208, 5);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u16(3208, 4);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u16(3208, 2);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(3200, CURVE_TYPE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	// reset the values
+	write_u16(3208, 0);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+
+	write_u32(3212, CURVE_TYPE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u32(3224, CURVE_TYPE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+
+	write_u32(5000, CHROMATIC_TYPE);
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+#if 1
 	write_u32(1100, CURVE_TYPE);
-	qcms_profile_release(qcms_profile_from_memory(buf, 1500));
+	qcms_profile_release(qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u32(1108, 100000); // curve count
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	write_u32(1108, 1); // curve count
-	qcms_profile_release(qcms_profile_from_memory(buf, 1500));
+	qcms_profile_release(qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	/* test out gray profiles */
 	write_u32(16, GRAY_SIGNATURE);
-	assert(!qcms_profile_from_memory(buf, 1500));
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
-	write_u32(128 + 4 + 4*6*3, TAG_kTRC); // tag
-	assert(!qcms_profile_from_memory(buf, 1500));
-	write_u32(128 + 4 + 4*6*3 + 4, 1100); // offset
-	qcms_profile_release(qcms_profile_from_memory(buf, 1500));
+	write_u32(128 + 4 + 4*8*3, TAG_kTRC); // tag
+	assert(!qcms_profile_from_memory(buf, PROFILE_LENGTH));
+	write_u32(128 + 4 + 4*8*3 + 4, 1100); // offset
+	qcms_profile_release(qcms_profile_from_memory(buf, PROFILE_LENGTH));
 
 	/* test out profiles that are the wrong size */
 	qcms_profile_from_path("sample-trunc.icc");
-
+#endif
 	return 0;
 }
 
diff --git a/malloc-fail.c b/malloc-fail.c
index ed93b1e..9554aa4 100644
--- a/malloc-fail.c
+++ b/malloc-fail.c
@@ -78,9 +78,13 @@
 	unsigned char outt[4];
 	qcms_transform *transform;
 	qcms_profile *input_profile, *output_profile, *rgb;
-	qcms_CIE_xyY white_point = { 0, 0, 1.};
+	qcms_CIE_xyY invalid_white_point = { 0., 0., 1.};
+	qcms_CIE_xyY white_point = { 0.9, 1., 1.};
 	qcms_CIE_xyYTRIPLE primaries = { {.9, .3, 1.}, {.2, .4, 1.}, {.7, .4, 1.}};
 
+	rgb = qcms_profile_create_rgb_with_gamma(invalid_white_point, primaries, 1.8);
+	if (rgb)
+		qcms_profile_release(rgb);
 	rgb = qcms_profile_create_rgb_with_gamma(white_point, primaries, 1.8);
 	input_profile = qcms_profile_sRGB();
 	output_profile = qcms_profile_sRGB();
diff --git a/matrix.c b/matrix.c
new file mode 100644
index 0000000..0ce5bd6
--- /dev/null
+++ b/matrix.c
@@ -0,0 +1,136 @@
+/* vim: set ts=8 sw=8 noexpandtab: */
+//  qcms
+//  Copyright (C) 2009 Mozilla Foundation
+//  Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining 
+// a copy of this software and associated documentation files (the "Software"), 
+// to deal in the Software without restriction, including without limitation 
+// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
+// and/or sell copies of the Software, and to permit persons to whom the Software 
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in 
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#include <stdlib.h>
+#include "qcmsint.h"
+#include "matrix.h"
+
+struct vector matrix_eval(struct matrix mat, struct vector v)
+{
+	struct vector result;
+	result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2];
+	result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2];
+	result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2];
+	return result;
+}
+
+//XXX: should probably pass by reference and we could
+//probably reuse this computation in matrix_invert
+float matrix_det(struct matrix mat)
+{
+	float det;
+	det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] +
+		mat.m[0][1]*mat.m[1][2]*mat.m[2][0] +
+		mat.m[0][2]*mat.m[1][0]*mat.m[2][1] -
+		mat.m[0][0]*mat.m[1][2]*mat.m[2][1] -
+		mat.m[0][1]*mat.m[1][0]*mat.m[2][2] -
+		mat.m[0][2]*mat.m[1][1]*mat.m[2][0];
+	return det;
+}
+
+/* from pixman and cairo and Mathematics for Game Programmers */
+/* lcms uses gauss-jordan elimination with partial pivoting which is
+ * less efficient and not as numerically stable. See Mathematics for
+ * Game Programmers. */
+struct matrix matrix_invert(struct matrix mat)
+{
+	struct matrix dest_mat;
+	int i,j;
+	static int a[3] = { 2, 2, 1 };
+	static int b[3] = { 1, 0, 0 };
+
+	/* inv  (A) = 1/det (A) * adj (A) */
+	float det = matrix_det(mat);
+
+	if (det == 0) {
+		dest_mat.invalid = true;
+	} else {
+		dest_mat.invalid = false;
+	}
+
+	det = 1/det;
+
+	for (j = 0; j < 3; j++) {
+		for (i = 0; i < 3; i++) {
+			double p;
+			int ai = a[i];
+			int aj = a[j];
+			int bi = b[i];
+			int bj = b[j];
+
+			p = mat.m[ai][aj] * mat.m[bi][bj] -
+				mat.m[ai][bj] * mat.m[bi][aj];
+			if (((i + j) & 1) != 0)
+				p = -p;
+
+			dest_mat.m[j][i] = det * p;
+		}
+	}
+	return dest_mat;
+}
+
+struct matrix matrix_identity(void)
+{
+	struct matrix i;
+	i.m[0][0] = 1;
+	i.m[0][1] = 0;
+	i.m[0][2] = 0;
+	i.m[1][0] = 0;
+	i.m[1][1] = 1;
+	i.m[1][2] = 0;
+	i.m[2][0] = 0;
+	i.m[2][1] = 0;
+	i.m[2][2] = 1;
+	i.invalid = false;
+	return i;
+}
+
+struct matrix matrix_invalid(void)
+{
+	struct matrix inv = matrix_identity();
+	inv.invalid = true;
+	return inv;
+}
+
+
+/* from pixman */
+/* MAT3per... */
+struct matrix matrix_multiply(struct matrix a, struct matrix b)
+{
+	struct matrix result;
+	int dx, dy;
+	int o;
+	for (dy = 0; dy < 3; dy++) {
+		for (dx = 0; dx < 3; dx++) {
+			double v = 0;
+			for (o = 0; o < 3; o++) {
+				v += a.m[dy][o] * b.m[o][dx];
+			}
+			result.m[dy][dx] = v;
+		}
+	}
+	result.invalid = a.invalid || b.invalid;
+	return result;
+}
+
+
diff --git a/matrix.h b/matrix.h
new file mode 100644
index 0000000..5011988
--- /dev/null
+++ b/matrix.h
@@ -0,0 +1,39 @@
+/* vim: set ts=8 sw=8 noexpandtab: */
+//  qcms
+//  Copyright (C) 2009 Mozilla Foundation
+//  Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining 
+// a copy of this software and associated documentation files (the "Software"), 
+// to deal in the Software without restriction, including without limitation 
+// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
+// and/or sell copies of the Software, and to permit persons to whom the Software 
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in 
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef _QCMS_MATRIX_H
+#define _QCMS_MATRIX_H
+
+struct vector {
+        float v[3];
+};
+
+struct vector matrix_eval(struct matrix mat, struct vector v);
+float matrix_det(struct matrix mat);
+struct matrix matrix_identity(void);
+struct matrix matrix_multiply(struct matrix a, struct matrix b);
+struct matrix matrix_invert(struct matrix mat);
+
+struct matrix matrix_invalid(void);
+
+#endif
diff --git a/qcms.h b/qcms.h
index 77f8d41..7d83623 100644
--- a/qcms.h
+++ b/qcms.h
@@ -147,7 +147,7 @@
 
 void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length);
 
-
+void qcms_enable_iccv4();
 
 #ifdef  __cplusplus
 }
diff --git a/qcmsint.h b/qcmsint.h
index dd2edf7..02ac5ab 100644
--- a/qcmsint.h
+++ b/qcmsint.h
@@ -1,3 +1,4 @@
+/* vim: set ts=8 sw=8 noexpandtab: */
 #include "qcms.h"
 #include "qcmstypes.h"
 
@@ -29,6 +30,19 @@
 	float *input_gamma_table_g;
 	float *input_gamma_table_b;
 
+	float *input_clut_table_r;
+	float *input_clut_table_g;
+	float *input_clut_table_b;
+	uint16_t input_clut_table_length;
+	float *r_clut;
+	float *g_clut;
+	float *b_clut;
+	uint16_t grid_size;
+	float *output_clut_table_r;
+	float *output_clut_table_g;
+	float *output_clut_table_b;
+	uint16_t output_clut_table_length;
+ 
 	float *input_gamma_table_gray;
 
 	float out_gamma_r;
@@ -56,8 +70,42 @@
 	void (*transform_fn)(struct _qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length);
 };
 
+struct matrix {
+	float m[3][3];
+	bool invalid;
+};
+struct qcms_modular_transform {
+	struct matrix matrix;
+	float tx, ty, tz;
+
+	float *input_clut_table_r;
+	float *input_clut_table_g;
+	float *input_clut_table_b;
+	uint16_t input_clut_table_length;
+	float *r_clut;
+	float *g_clut;
+	float *b_clut;
+	uint16_t grid_size;
+	float *output_clut_table_r;
+	float *output_clut_table_g;
+	float *output_clut_table_b;
+	uint16_t output_clut_table_length;
+ 
+	uint16_t *output_gamma_lut_r;
+	uint16_t *output_gamma_lut_g;
+	uint16_t *output_gamma_lut_b;
+
+	size_t output_gamma_lut_r_length;
+	size_t output_gamma_lut_g_length;
+	size_t output_gamma_lut_b_length;
+
+	void (*transform_module_fn)(struct qcms_modular_transform *transform, float *src, float *dest, size_t length);	
+	struct qcms_modular_transform *next_transform;
+};
+
 typedef int32_t s15Fixed16Number;
 typedef uint16_t uInt16Number;
+typedef uint8_t uInt8Number;
 
 struct XYZNumber {
 	s15Fixed16Number X;
@@ -66,11 +114,43 @@
 };
 
 struct curveType {
+	uint32_t type;
 	uint32_t count;
+	float parameter[7];
 	uInt16Number data[];
 };
 
-struct lutType {
+struct lutmABType {
+	uint8_t num_in_channels;
+	uint8_t num_out_channels;
+	// 16 is the upperbound, actual is 0..num_in_channels.
+	uint8_t num_grid_points[16];
+
+	s15Fixed16Number e00;
+	s15Fixed16Number e01;
+	s15Fixed16Number e02;
+	s15Fixed16Number e03;
+	s15Fixed16Number e10;
+	s15Fixed16Number e11;
+	s15Fixed16Number e12;
+	s15Fixed16Number e13;
+	s15Fixed16Number e20;
+	s15Fixed16Number e21;
+	s15Fixed16Number e22;
+	s15Fixed16Number e23;
+
+	// reversed elements (for mBA)
+	bool reversed;
+
+	float *clut_table;
+	struct curveType *a_curves[10];
+	struct curveType *b_curves[10];
+	struct curveType *m_curves[10];
+	float clut_table_data[];
+};
+
+/* should lut8Type and lut16Type be different types? */
+struct lutType { // used by lut8Type/lut16Type (mft2) only
 	uint8_t num_input_channels;
 	uint8_t num_output_channels;
 	uint8_t num_clut_grid_points;
@@ -88,9 +168,11 @@
 	uint16_t num_input_table_entries;
 	uint16_t num_output_table_entries;
 
-	uint16_t *input_table;
-	uint16_t *clut_table;
-	uint16_t *output_table;
+	float *input_table;
+	float *clut_table;
+	float *output_table;
+
+	float table_data[];
 };
 #if 0
 /* this is from an intial idea of having the struct correspond to the data in
@@ -113,10 +195,13 @@
 
 #define RGB_SIGNATURE  0x52474220
 #define GRAY_SIGNATURE 0x47524159
+#define XYZ_SIGNATURE  0x58595A20
+#define LAB_SIGNATURE  0x4C616220
 
 struct _qcms_profile {
 	uint32_t class;
 	uint32_t color_space;
+	uint32_t pcs;
 	qcms_intent rendering_intent;
 	struct XYZNumber redColorant;
 	struct XYZNumber blueColorant;
@@ -126,6 +211,10 @@
 	struct curveType *greenTRC;
 	struct curveType *grayTRC;
 	struct lutType *A2B0;
+	struct lutType *B2A0;
+	struct lutmABType *mAB;
+	struct lutmABType *mBA;
+	struct matrix chromaticAdaption;
 
 	struct precache_output *output_table_r;
 	struct precache_output *output_table_g;
@@ -148,6 +237,17 @@
 	return (int32_t)(v*65536);
 }
 
+static inline float uInt8Number_to_float(uInt8Number a)
+{
+	return ((int32_t)a)/255.f;
+}
+
+static inline float uInt16Number_to_float(uInt16Number a)
+{
+	return ((int32_t)a)/65535.f;
+}
+
+
 void precache_release(struct precache_output *p);
 qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries);
 
@@ -167,3 +267,5 @@
                                           unsigned char *src,
                                           unsigned char *dest,
                                           size_t length);
+
+extern qcms_bool qcms_supports_iccv4;
diff --git a/transform.c b/transform.c
index 0e7da10..9a6562b 100644
--- a/transform.c
+++ b/transform.c
@@ -1,3 +1,4 @@
+/* vim: set ts=8 sw=8 noexpandtab: */
 //  qcms
 //  Copyright (C) 2009 Mozilla Corporation
 //  Copyright (C) 1998-2007 Marti Maria
@@ -23,382 +24,17 @@
 #include <stdlib.h>
 #include <math.h>
 #include <assert.h>
+#include <string.h> //memcpy
 #include "qcmsint.h"
+#include "chain.h"
+#include "matrix.h"
+#include "transform_util.h"
 
 /* for MSVC, GCC, Intel, and Sun compilers */
 #if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64)
 #define X86
 #endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */
 
-//XXX: could use a bettername
-typedef uint16_t uint16_fract_t;
-
-/* value must be a value between 0 and 1 */
-//XXX: is the above a good restriction to have?
-float lut_interp_linear(double value, uint16_t *table, int length)
-{
-	int upper, lower;
-	value = value * (length - 1); // scale to length of the array
-	upper = ceil(value);
-	lower = floor(value);
-	//XXX: can we be more performant here?
-	value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
-	/* scale the value */
-	return value * (1./65535.);
-}
-
-/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
-uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
-{
-	/* Start scaling input_value to the length of the array: 65535*(length-1).
-	 * We'll divide out the 65535 next */
-	uint32_t value = (input_value * (length - 1));
-	uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */
-	uint32_t lower = value / 65535;           /* equivalent to floor(value/65535) */
-	/* interp is the distance from upper to value scaled to 0..65535 */
-	uint32_t interp = value % 65535;
-
-	value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535
-
-	return value;
-}
-
-/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX
- * and returns a uint8_t value representing a range from 0..1 */
-static
-uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length)
-{
-	/* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1).
-	 * We'll divide out the PRECACHE_OUTPUT_MAX next */
-	uint32_t value = (input_value * (length - 1));
-
-	/* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */
-	uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX;
-	/* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */
-	uint32_t lower = value / PRECACHE_OUTPUT_MAX;
-	/* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */
-	uint32_t interp = value % PRECACHE_OUTPUT_MAX;
-
-	/* the table values range from 0..65535 */
-	value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX)
-
-	/* round and scale */
-	value += (PRECACHE_OUTPUT_MAX*65535/255)/2;
-        value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255
-	return value;
-}
-
-#if 0
-/* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient
- * because we can avoid the divisions and use a shifting instead */
-/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
-uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
-{
-	uint32_t value = (input_value * (length - 1));
-	uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */
-	uint32_t lower = value / 4096;           /* equivalent to floor(value/4096) */
-	uint32_t interp = value % 4096;
-
-	value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096
-
-	return value;
-}
-#endif
-
-void compute_curve_gamma_table_type1(float gamma_table[256], double gamma)
-{
-	unsigned int i;
-	for (i = 0; i < 256; i++) {
-		gamma_table[i] = pow(i/255., gamma);
-	}
-}
-
-void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length)
-{
-	unsigned int i;
-	for (i = 0; i < 256; i++) {
-		gamma_table[i] = lut_interp_linear(i/255., table, length);
-	}
-}
-
-void compute_curve_gamma_table_type0(float gamma_table[256])
-{
-	unsigned int i;
-	for (i = 0; i < 256; i++) {
-		gamma_table[i] = i/255.;
-	}
-}
-
-unsigned char clamp_u8(float v)
-{
-	if (v > 255.)
-		return 255;
-	else if (v < 0)
-		return 0;
-	else
-		return floor(v+.5);
-}
-
-struct vector {
-	float v[3];
-};
-
-struct matrix {
-	float m[3][3];
-	bool invalid;
-};
-
-struct vector matrix_eval(struct matrix mat, struct vector v)
-{
-	struct vector result;
-	result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2];
-	result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2];
-	result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2];
-	return result;
-}
-
-//XXX: should probably pass by reference and we could
-//probably reuse this computation in matrix_invert
-float matrix_det(struct matrix mat)
-{
-	float det;
-	det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] +
-		mat.m[0][1]*mat.m[1][2]*mat.m[2][0] +
-		mat.m[0][2]*mat.m[1][0]*mat.m[2][1] -
-		mat.m[0][0]*mat.m[1][2]*mat.m[2][1] -
-		mat.m[0][1]*mat.m[1][0]*mat.m[2][2] -
-		mat.m[0][2]*mat.m[1][1]*mat.m[2][0];
-	return det;
-}
-
-/* from pixman and cairo and Mathematics for Game Programmers */
-/* lcms uses gauss-jordan elimination with partial pivoting which is
- * less efficient and not as numerically stable. See Mathematics for
- * Game Programmers. */
-struct matrix matrix_invert(struct matrix mat)
-{
-	struct matrix dest_mat;
-	int i,j;
-	static int a[3] = { 2, 2, 1 };
-	static int b[3] = { 1, 0, 0 };
-
-	/* inv  (A) = 1/det (A) * adj (A) */
-	float det = matrix_det(mat);
-
-	if (det == 0) {
-		dest_mat.invalid = true;
-	} else {
-		dest_mat.invalid = false;
-	}
-
-	det = 1/det;
-
-	for (j = 0; j < 3; j++) {
-		for (i = 0; i < 3; i++) {
-			double p;
-			int ai = a[i];
-			int aj = a[j];
-			int bi = b[i];
-			int bj = b[j];
-
-			p = mat.m[ai][aj] * mat.m[bi][bj] -
-				mat.m[ai][bj] * mat.m[bi][aj];
-			if (((i + j) & 1) != 0)
-				p = -p;
-
-			dest_mat.m[j][i] = det * p;
-		}
-	}
-	return dest_mat;
-}
-
-struct matrix matrix_identity(void)
-{
-	struct matrix i;
-	i.m[0][0] = 1;
-	i.m[0][1] = 0;
-	i.m[0][2] = 0;
-	i.m[1][0] = 0;
-	i.m[1][1] = 1;
-	i.m[1][2] = 0;
-	i.m[2][0] = 0;
-	i.m[2][1] = 0;
-	i.m[2][2] = 1;
-	i.invalid = false;
-	return i;
-}
-
-static struct matrix matrix_invalid(void)
-{
-	struct matrix inv = matrix_identity();
-	inv.invalid = true;
-	return inv;
-}
-
-
-/* from pixman */
-/* MAT3per... */
-struct matrix matrix_multiply(struct matrix a, struct matrix b)
-{
-	struct matrix result;
-	int dx, dy;
-	int o;
-	for (dy = 0; dy < 3; dy++) {
-		for (dx = 0; dx < 3; dx++) {
-			double v = 0;
-			for (o = 0; o < 3; o++) {
-				v += a.m[dy][o] * b.m[o][dx];
-			}
-			result.m[dy][dx] = v;
-		}
-	}
-	result.invalid = a.invalid || b.invalid;
-	return result;
-}
-
-float u8Fixed8Number_to_float(uint16_t x)
-{
-	// 0x0000 = 0.
-	// 0x0100 = 1.
-	// 0xffff = 255  + 255/256
-	return x/256.;
-}
-
-float *build_input_gamma_table(struct curveType *TRC)
-{
-	float *gamma_table = malloc(sizeof(float)*256);
-	if (gamma_table) {
-		if (TRC->count == 0) {
-			compute_curve_gamma_table_type0(gamma_table);
-		} else if (TRC->count == 1) {
-			compute_curve_gamma_table_type1(gamma_table, u8Fixed8Number_to_float(TRC->data[0]));
-		} else {
-			compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count);
-		}
-	}
-	return gamma_table;
-}
-
-struct matrix build_colorant_matrix(qcms_profile *p)
-{
-	struct matrix result;
-	result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X);
-	result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X);
-	result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X);
-	result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y);
-	result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y);
-	result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y);
-	result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z);
-	result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z);
-	result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z);
-	result.invalid = false;
-	return result;
-}
-
-/* The following code is copied nearly directly from lcms.
- * I think it could be much better. For example, Argyll seems to have better code in
- * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
- * to a working solution and allows for easy comparing with lcms. */
-uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length)
-{
-        int l = 1;
-        int r = 0x10000;
-        int x = 0, res;       // 'int' Give spacing for negative values
-        int NumZeroes, NumPoles;
-        int cell0, cell1;
-        double val2;
-        double y0, y1, x0, x1;
-        double a, b, f;
-
-        // July/27 2001 - Expanded to handle degenerated curves with an arbitrary
-        // number of elements containing 0 at the begining of the table (Zeroes)
-        // and another arbitrary number of poles (FFFFh) at the end.
-        // First the zero and pole extents are computed, then value is compared.
-
-        NumZeroes = 0;
-        while (LutTable[NumZeroes] == 0 && NumZeroes < length-1)
-                        NumZeroes++;
-
-        // There are no zeros at the beginning and we are trying to find a zero, so
-        // return anything. It seems zero would be the less destructive choice
-	/* I'm not sure that this makes sense, but oh well... */
-        if (NumZeroes == 0 && Value == 0)
-            return 0;
-
-        NumPoles = 0;
-        while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1)
-                        NumPoles++;
-
-        // Does the curve belong to this case?
-        if (NumZeroes > 1 || NumPoles > 1)
-        {               
-                int a, b;
-
-                // Identify if value fall downto 0 or FFFF zone             
-                if (Value == 0) return 0;
-               // if (Value == 0xFFFF) return 0xFFFF;
-
-                // else restrict to valid zone
-
-                a = ((NumZeroes-1) * 0xFFFF) / (length-1);               
-                b = ((length-1 - NumPoles) * 0xFFFF) / (length-1);
-                                                                
-                l = a - 1;
-                r = b + 1;
-        }
-
-
-        // Seems not a degenerated case... apply binary search
-
-        while (r > l) {
-
-                x = (l + r) / 2;
-
-		res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length);
-
-                if (res == Value) {
-
-                    // Found exact match. 
-                    
-                    return (uint16_fract_t) (x - 1);
-                }
-
-                if (res > Value) r = x - 1;
-                else l = x + 1;
-        }
-
-        // Not found, should we interpolate?
-
-                
-        // Get surrounding nodes
-        
-        val2 = (length-1) * ((double) (x - 1) / 65535.0);
-
-        cell0 = (int) floor(val2);
-        cell1 = (int) ceil(val2);
-           
-        if (cell0 == cell1) return (uint16_fract_t) x;
-
-        y0 = LutTable[cell0] ;
-        x0 = (65535.0 * cell0) / (length-1); 
-
-        y1 = LutTable[cell1] ;
-        x1 = (65535.0 * cell1) / (length-1);
-
-        a = (y1 - y0) / (x1 - x0);
-        b = y0 - a * x0;
-
-        if (fabs(a) < 0.01) return (uint16_fract_t) x;
-
-        f = ((Value - b) / a);
-
-        if (f < 0.0) return (uint16_fract_t) 0;
-        if (f >= 65535.0) return (uint16_fract_t) 0xFFFF;
-
-        return (uint16_fract_t) floor(f + 0.5);                        
-        
-}
-
 // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
 // This is just an approximation, I am not handling all the non-linear
 // aspects of the RGB to XYZ process, and assumming that the gamma correction
@@ -593,79 +229,6 @@
 	return true;
 }
 
-/*
- The number of entries needed to invert a lookup table should not
- necessarily be the same as the original number of entries.  This is
- especially true of lookup tables that have a small number of entries.
-
- For example:
- Using a table like:
-    {0, 3104, 14263, 34802, 65535}
- invert_lut will produce an inverse of:
-    {3, 34459, 47529, 56801, 65535}
- which has an maximum error of about 9855 (pixel difference of ~38.346)
-
- For now, we punt the decision of output size to the caller. */
-static uint16_t *invert_lut(uint16_t *table, int length, int out_length)
-{
-	int i;
-	/* for now we invert the lut by creating a lut of size out_length
-	 * and attempting to lookup a value for each entry using lut_inverse_interp16 */
-	uint16_t *output = malloc(sizeof(uint16_t)*out_length);
-	if (!output)
-		return NULL;
-
-	for (i = 0; i < out_length; i++) {
-		double x = ((double) i * 65535.) / (double) (out_length - 1);
-		uint16_fract_t input = floor(x + .5);
-		output[i] = lut_inverse_interp16(input, table, length);
-	}
-	return output;
-}
-
-static uint16_t *build_linear_table(int length)
-{
-	int i;
-	uint16_t *output = malloc(sizeof(uint16_t)*length);
-	if (!output)
-		return NULL;
-
-	for (i = 0; i < length; i++) {
-		double x = ((double) i * 65535.) / (double) (length - 1);
-		uint16_fract_t input = floor(x + .5);
-		output[i] = input;
-	}
-	return output;
-}
-
-static uint16_t *build_pow_table(float gamma, int length)
-{
-	int i;
-	uint16_t *output = malloc(sizeof(uint16_t)*length);
-	if (!output)
-		return NULL;
-
-	for (i = 0; i < length; i++) {
-		uint16_fract_t result;
-		double x = ((double) i) / (double) (length - 1);
-		x = pow(x, gamma);
-                //XXX turn this conversion into a function
-		result = floor(x*65535. + .5);
-		output[i] = result;
-	}
-	return output;
-}
-
-static float clamp_float(float a)
-{
-	if (a > 1.)
-		return 1.;
-	else if (a < 0)
-		return 0;
-	else
-		return a;
-}
-
 #if 0
 static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
 {
@@ -848,6 +411,292 @@
 	}
 }
 
+// Not used
+/* 
+static void qcms_transform_data_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) {
+	unsigned int i;
+	int xy_len = 1;
+	int x_len = transform->grid_size;
+	int len = x_len * x_len;
+	float* r_table = transform->r_clut;
+	float* g_table = transform->g_clut;
+	float* b_table = transform->b_clut;
+  
+	for (i = 0; i < length; i++) {
+		unsigned char in_r = *src++;
+		unsigned char in_g = *src++;
+		unsigned char in_b = *src++;
+		float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
+
+		int x = floor(linear_r * (transform->grid_size-1));
+		int y = floor(linear_g * (transform->grid_size-1));
+		int z = floor(linear_b * (transform->grid_size-1));
+		int x_n = ceil(linear_r * (transform->grid_size-1));
+		int y_n = ceil(linear_g * (transform->grid_size-1));
+		int z_n = ceil(linear_b * (transform->grid_size-1));
+		float x_d = linear_r * (transform->grid_size-1) - x; 
+		float y_d = linear_g * (transform->grid_size-1) - y;
+		float z_d = linear_b * (transform->grid_size-1) - z; 
+
+		float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d);
+		float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d);
+		float r_y1 = lerp(r_x1, r_x2, y_d);
+		float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d);
+		float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d);
+		float r_y2 = lerp(r_x3, r_x4, y_d);
+		float clut_r = lerp(r_y1, r_y2, z_d);
+
+		float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d);
+		float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d);
+		float g_y1 = lerp(g_x1, g_x2, y_d);
+		float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d);
+		float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d);
+		float g_y2 = lerp(g_x3, g_x4, y_d);
+		float clut_g = lerp(g_y1, g_y2, z_d);
+
+		float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d);
+		float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d);
+		float b_y1 = lerp(b_x1, b_x2, y_d);
+		float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d);
+		float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d);
+		float b_y2 = lerp(b_x3, b_x4, y_d);
+		float clut_b = lerp(b_y1, b_y2, z_d);
+
+		*dest++ = clamp_u8(clut_r*255.0f);
+		*dest++ = clamp_u8(clut_g*255.0f);
+		*dest++ = clamp_u8(clut_b*255.0f);
+	}	
+}
+*/
+
+// Using lcms' tetra interpolation algorithm.
+static void qcms_transform_data_tetra_clut_rgba(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) {
+	unsigned int i;
+	int xy_len = 1;
+	int x_len = transform->grid_size;
+	int len = x_len * x_len;
+	float* r_table = transform->r_clut;
+	float* g_table = transform->g_clut;
+	float* b_table = transform->b_clut;
+	float c0_r, c1_r, c2_r, c3_r;
+	float c0_g, c1_g, c2_g, c3_g;
+	float c0_b, c1_b, c2_b, c3_b;
+	float clut_r, clut_g, clut_b;
+	for (i = 0; i < length; i++) {
+		unsigned char in_r = *src++;
+		unsigned char in_g = *src++;
+		unsigned char in_b = *src++;
+		unsigned char in_a = *src++;
+		float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
+
+		int x = floor(linear_r * (transform->grid_size-1));
+		int y = floor(linear_g * (transform->grid_size-1));
+		int z = floor(linear_b * (transform->grid_size-1));
+		int x_n = ceil(linear_r * (transform->grid_size-1));
+		int y_n = ceil(linear_g * (transform->grid_size-1));
+		int z_n = ceil(linear_b * (transform->grid_size-1));
+		float rx = linear_r * (transform->grid_size-1) - x; 
+		float ry = linear_g * (transform->grid_size-1) - y;
+		float rz = linear_b * (transform->grid_size-1) - z; 
+
+		c0_r = CLU(r_table, x, y, z);
+		c0_g = CLU(g_table, x, y, z);
+		c0_b = CLU(b_table, x, y, z);
+
+		if( rx >= ry ) {
+			if (ry >= rz) { //rx >= ry && ry >= rz
+				c1_r = CLU(r_table, x_n, y, z) - c0_r;
+				c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
+				c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+				c1_g = CLU(g_table, x_n, y, z) - c0_g;
+				c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
+				c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+				c1_b = CLU(b_table, x_n, y, z) - c0_b;
+				c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
+				c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+			} else { 
+				if (rx >= rz) { //rx >= rz && rz >= ry
+					c1_r = CLU(r_table, x_n, y, z) - c0_r;
+					c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+					c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
+					c1_g = CLU(g_table, x_n, y, z) - c0_g;
+					c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+					c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
+					c1_b = CLU(b_table, x_n, y, z) - c0_b;
+					c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+					c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
+				} else { //rz > rx && rx >= ry
+					c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
+					c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+					c3_r = CLU(r_table, x, y, z_n) - c0_r;
+					c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
+					c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+					c3_g = CLU(g_table, x, y, z_n) - c0_g;
+					c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
+					c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+					c3_b = CLU(b_table, x, y, z_n) - c0_b;
+				}
+			}
+		} else {
+			if (rx >= rz) { //ry > rx && rx >= rz
+				c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
+				c2_r = CLU(r_table, x, y_n, z) - c0_r;
+				c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+				c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
+				c2_g = CLU(g_table, x, y_n, z) - c0_g;
+				c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+				c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
+				c2_b = CLU(b_table, x, y_n, z) - c0_b;
+				c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+			} else {
+				if (ry >= rz) { //ry >= rz && rz > rx 
+					c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+					c2_r = CLU(r_table, x, y_n, z) - c0_r;
+					c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
+					c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+					c2_g = CLU(g_table, x, y_n, z) - c0_g;
+					c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
+					c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+					c2_b = CLU(b_table, x, y_n, z) - c0_b;
+					c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
+				} else { //rz > ry && ry > rx
+					c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+					c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n);
+					c3_r = CLU(r_table, x, y, z_n) - c0_r;
+					c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+					c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n);
+					c3_g = CLU(g_table, x, y, z_n) - c0_g;
+					c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+					c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n);
+					c3_b = CLU(b_table, x, y, z_n) - c0_b;
+				}
+			}
+		}
+				
+		clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
+		clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
+		clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;
+
+		*dest++ = clamp_u8(clut_r*255.0f);
+		*dest++ = clamp_u8(clut_g*255.0f);
+		*dest++ = clamp_u8(clut_b*255.0f);
+		*dest++ = in_a;
+	}	
+}
+
+// Using lcms' tetra interpolation code.
+static void qcms_transform_data_tetra_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) {
+	unsigned int i;
+	int xy_len = 1;
+	int x_len = transform->grid_size;
+	int len = x_len * x_len;
+	float* r_table = transform->r_clut;
+	float* g_table = transform->g_clut;
+	float* b_table = transform->b_clut;
+	float c0_r, c1_r, c2_r, c3_r;
+	float c0_g, c1_g, c2_g, c3_g;
+	float c0_b, c1_b, c2_b, c3_b;
+	float clut_r, clut_g, clut_b;
+	for (i = 0; i < length; i++) {
+		unsigned char in_r = *src++;
+		unsigned char in_g = *src++;
+		unsigned char in_b = *src++;
+		float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
+
+		int x = floor(linear_r * (transform->grid_size-1));
+		int y = floor(linear_g * (transform->grid_size-1));
+		int z = floor(linear_b * (transform->grid_size-1));
+		int x_n = ceil(linear_r * (transform->grid_size-1));
+		int y_n = ceil(linear_g * (transform->grid_size-1));
+		int z_n = ceil(linear_b * (transform->grid_size-1));
+		float rx = linear_r * (transform->grid_size-1) - x; 
+		float ry = linear_g * (transform->grid_size-1) - y;
+		float rz = linear_b * (transform->grid_size-1) - z; 
+
+		c0_r = CLU(r_table, x, y, z);
+		c0_g = CLU(g_table, x, y, z);
+		c0_b = CLU(b_table, x, y, z);
+
+		if( rx >= ry ) {
+			if (ry >= rz) { //rx >= ry && ry >= rz
+				c1_r = CLU(r_table, x_n, y, z) - c0_r;
+				c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
+				c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+				c1_g = CLU(g_table, x_n, y, z) - c0_g;
+				c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
+				c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+				c1_b = CLU(b_table, x_n, y, z) - c0_b;
+				c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
+				c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+			} else { 
+				if (rx >= rz) { //rx >= rz && rz >= ry
+					c1_r = CLU(r_table, x_n, y, z) - c0_r;
+					c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+					c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
+					c1_g = CLU(g_table, x_n, y, z) - c0_g;
+					c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+					c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
+					c1_b = CLU(b_table, x_n, y, z) - c0_b;
+					c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+					c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
+				} else { //rz > rx && rx >= ry
+					c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
+					c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+					c3_r = CLU(r_table, x, y, z_n) - c0_r;
+					c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
+					c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+					c3_g = CLU(g_table, x, y, z_n) - c0_g;
+					c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
+					c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+					c3_b = CLU(b_table, x, y, z_n) - c0_b;
+				}
+			}
+		} else {
+			if (rx >= rz) { //ry > rx && rx >= rz
+				c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
+				c2_r = CLU(r_table, x, y_n, z) - c0_r;
+				c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+				c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
+				c2_g = CLU(g_table, x, y_n, z) - c0_g;
+				c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+				c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
+				c2_b = CLU(b_table, x, y_n, z) - c0_b;
+				c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+			} else {
+				if (ry >= rz) { //ry >= rz && rz > rx 
+					c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+					c2_r = CLU(r_table, x, y_n, z) - c0_r;
+					c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
+					c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+					c2_g = CLU(g_table, x, y_n, z) - c0_g;
+					c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
+					c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+					c2_b = CLU(b_table, x, y_n, z) - c0_b;
+					c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
+				} else { //rz > ry && ry > rx
+					c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+					c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n);
+					c3_r = CLU(r_table, x, y, z_n) - c0_r;
+					c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+					c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n);
+					c3_g = CLU(g_table, x, y, z_n) - c0_g;
+					c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+					c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n);
+					c3_b = CLU(b_table, x, y, z_n) - c0_b;
+				}
+			}
+		}
+				
+		clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
+		clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
+		clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;
+
+		*dest++ = clamp_u8(clut_r*255.0f);
+		*dest++ = clamp_u8(clut_g*255.0f);
+		*dest++ = clamp_u8(clut_b*255.0f);
+	}	
+}
+
 static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
 {
 	unsigned int i;
@@ -870,9 +719,12 @@
 		out_linear_g = clamp_float(out_linear_g);
 		out_linear_b = clamp_float(out_linear_b);
 
-		out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
-		out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
-		out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
+		out_device_r = lut_interp_linear(out_linear_r, 
+				transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
+		out_device_g = lut_interp_linear(out_linear_g, 
+				transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
+		out_device_b = lut_interp_linear(out_linear_b, 
+				transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
 
 		*dest++ = clamp_u8(out_device_r*255);
 		*dest++ = clamp_u8(out_device_g*255);
@@ -903,9 +755,12 @@
 		out_linear_g = clamp_float(out_linear_g);
 		out_linear_b = clamp_float(out_linear_b);
 
-		out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
-		out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
-		out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
+		out_device_r = lut_interp_linear(out_linear_r, 
+				transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
+		out_device_g = lut_interp_linear(out_linear_g, 
+				transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
+		out_device_b = lut_interp_linear(out_linear_b, 
+				transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
 
 		*dest++ = clamp_u8(out_device_r*255);
 		*dest++ = clamp_u8(out_device_g*255);
@@ -1030,55 +885,6 @@
 	transform_free(t);
 }
 
-static void compute_precache_pow(uint8_t *output, float gamma)
-{
-	uint32_t v = 0;
-	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
-		//XXX: don't do integer/float conversion... and round?
-		output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma);
-	}
-}
-
-void compute_precache_lut(uint8_t *output, uint16_t *table, int length)
-{
-	uint32_t v = 0;
-	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
-		output[v] = lut_interp_linear_precache_output(v, table, length);
-	}
-}
-
-void compute_precache_linear(uint8_t *output)
-{
-	uint32_t v = 0;
-	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
-		//XXX: round?
-		output[v] = v / (PRECACHE_OUTPUT_SIZE/256);
-	}
-}
-
-qcms_bool compute_precache(struct curveType *trc, uint8_t *output)
-{
-	if (trc->count == 0) {
-		compute_precache_linear(output);
-	} else if (trc->count == 1) {
-		compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0]));
-	} else {
-		uint16_t *inverted;
-		int inverted_size = trc->count;
-		//XXX: the choice of a minimum of 256 here is not backed by any theory, measurement or data, however it is what lcms uses.
-		// the maximum number we would need is 65535 because that's the accuracy used for computing the precache table
-		if (inverted_size < 256)
-			inverted_size = 256;
-
-		inverted = invert_lut(trc->data, trc->count, inverted_size);
-		if (!inverted)
-			return false;
-		compute_precache_lut(output, inverted, inverted_size);
-		free(inverted);
-	}
-	return true;
-}
-
 #ifdef X86
 // Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in
 // mozilla/jpeg)
@@ -1160,25 +966,26 @@
 }
 #endif
 
-void build_output_lut(struct curveType *trc,
-		uint16_t **output_gamma_lut, size_t *output_gamma_lut_length)
-{
-	if (trc->count == 0) {
-		*output_gamma_lut = build_linear_table(4096);
-		*output_gamma_lut_length = 4096;
-	} else if (trc->count == 1) {
-		float gamma = 1./u8Fixed8Number_to_float(trc->data[0]);
-		*output_gamma_lut = build_pow_table(gamma, 4096);
-		*output_gamma_lut_length = 4096;
-	} else {
-		//XXX: the choice of a minimum of 256 here is not backed by any theory, measurement or data, however it is what lcms uses.
-		*output_gamma_lut_length = trc->count;
-		if (*output_gamma_lut_length < 256)
-			*output_gamma_lut_length = 256;
+static const struct matrix bradford_matrix = {{	{ 0.8951f, 0.2664f,-0.1614f},
+						{-0.7502f, 1.7135f, 0.0367f},
+						{ 0.0389f,-0.0685f, 1.0296f}}, 
+						false};
 
-		*output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length);
-	}
+static const struct matrix bradford_matrix_inv = {{ { 0.9869929f,-0.1470543f, 0.1599627f},
+						    { 0.4323053f, 0.5183603f, 0.0492912f},
+						    {-0.0085287f, 0.0400428f, 0.9684867f}}, 
+						    false};
 
+// See ICCv4 E.3
+struct matrix compute_whitepoint_adaption(float X, float Y, float Z) {
+	float p = (0.96422f*bradford_matrix.m[0][0] + 1.000f*bradford_matrix.m[1][0] + 0.82521f*bradford_matrix.m[2][0]) /
+		  (X*bradford_matrix.m[0][0]      + Y*bradford_matrix.m[1][0]      + Z*bradford_matrix.m[2][0]     );
+	float y = (0.96422f*bradford_matrix.m[0][1] + 1.000f*bradford_matrix.m[1][1] + 0.82521f*bradford_matrix.m[2][1]) /
+		  (X*bradford_matrix.m[0][1]      + Y*bradford_matrix.m[1][1]      + Z*bradford_matrix.m[2][1]     );
+	float b = (0.96422f*bradford_matrix.m[0][2] + 1.000f*bradford_matrix.m[1][2] + 0.82521f*bradford_matrix.m[2][2]) /
+		  (X*bradford_matrix.m[0][2]      + Y*bradford_matrix.m[1][2]      + Z*bradford_matrix.m[2][2]     );
+	struct matrix white_adaption = {{ {p,0,0}, {0,y,0}, {0,0,b}}, false};
+	return matrix_multiply( bradford_matrix_inv, matrix_multiply(white_adaption, bradford_matrix) );
 }
 
 void qcms_profile_precache_output_transform(qcms_profile *profile)
@@ -1187,6 +994,18 @@
 	if (profile->color_space != RGB_SIGNATURE)
 		return;
 
+	/* don't precache since we will use the B2A LUT */
+	if (profile->B2A0)
+		return;
+
+	/* don't precache since we will use the mBA LUT */
+	if (profile->mBA)
+		return;
+
+	/* don't precache if we do not have the TRC curves */
+	if (!profile->redTRC || !profile->greenTRC || !profile->blueTRC)
+		return;
+
 	if (!profile->output_table_r) {
 		profile->output_table_r = precache_create();
 		if (profile->output_table_r &&
@@ -1213,11 +1032,67 @@
 	}
 }
 
+/* Replace the current transformation with a LUT transformation using a given number of sample points */
+qcms_transform* qcms_transform_precacheLUT_float(qcms_transform *transform, qcms_profile *in, qcms_profile *out, 
+                                                 int samples, qcms_data_type in_type)
+{
+	/* The range between which 2 consecutive sample points can be used to interpolate */
+	uint16_t x,y,z;
+	uint32_t l;
+	uint32_t lutSize = 3 * samples * samples * samples;
+	float* src = NULL;
+	float* dest = NULL;
+	float* lut = NULL;
+
+	src = malloc(lutSize*sizeof(float));
+	dest = malloc(lutSize*sizeof(float));
+
+	if (src && dest) {
+		/* Prepare a list of points we want to sample */
+		l = 0;
+		for (x = 0; x < samples; x++) {
+			for (y = 0; y < samples; y++) {
+				for (z = 0; z < samples; z++) {
+					src[l++] = x / (float)(samples-1);
+					src[l++] = y / (float)(samples-1);
+					src[l++] = z / (float)(samples-1);
+				}
+			}
+		}
+
+		lut = qcms_chain_transform(in, out, src, dest, lutSize);
+		if (lut) {
+			transform->r_clut = &lut[0];
+			transform->g_clut = &lut[1];
+			transform->b_clut = &lut[2];
+			transform->grid_size = samples;
+			if (in_type == QCMS_DATA_RGBA_8) {
+				transform->transform_fn = qcms_transform_data_tetra_clut_rgba;
+			} else {
+				transform->transform_fn = qcms_transform_data_tetra_clut;
+			}
+		}
+	}
+
+
+	//XXX: qcms_modular_transform_data may return either the src or dest buffer. If so it must not be free-ed
+	if (src && lut != src) {
+		free(src);
+	} else if (dest && lut != src) {
+		free(dest);
+	}
+
+	if (lut == NULL) {
+		return NULL;
+	}
+	return transform;
+}
+
 #define NO_MEM_TRANSFORM NULL
 
 qcms_transform* qcms_transform_create(
 		qcms_profile *in, qcms_data_type in_type,
-		qcms_profile* out, qcms_data_type out_type,
+		qcms_profile *out, qcms_data_type out_type,
 		qcms_intent intent)
 {
 	bool precache = false;
@@ -1239,11 +1114,30 @@
 		precache = true;
 	}
 
+	if (qcms_supports_iccv4 && (in->A2B0 || out->B2A0 || in->mAB || out->mAB)) {
+		// Precache the transformation to a CLUT 33x33x33 in size.
+		// 33 is used by many profiles and works well in pratice. 
+		// This evenly divides 256 into blocks of 8x8x8.
+		// TODO For transforming small data sets of about 200x200 or less
+		// precaching should be avoided.
+		qcms_transform *result = qcms_transform_precacheLUT_float(transform, in, out, 33, in_type);
+		if (!result) {
+            		assert(0 && "precacheLUT failed");
+			transform_free(transform);
+			return NULL;
+		}
+		return result;
+	}
+
 	if (precache) {
 		transform->output_table_r = precache_reference(out->output_table_r);
 		transform->output_table_g = precache_reference(out->output_table_g);
 		transform->output_table_b = precache_reference(out->output_table_b);
 	} else {
+		if (!out->redTRC || !out->greenTRC || !out->blueTRC) {
+			qcms_transform_release(transform);
+			return NO_MEM_TRANSFORM;
+		}
 		build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length);
 		build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length);
 		build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length);
@@ -1254,15 +1148,15 @@
 	}
 
         if (in->color_space == RGB_SIGNATURE) {
-            struct matrix in_matrix, out_matrix, result;
+		struct matrix in_matrix, out_matrix, result;
 
-            if (in_type != QCMS_DATA_RGB_8 &&
+		if (in_type != QCMS_DATA_RGB_8 &&
                     in_type != QCMS_DATA_RGBA_8){
-                assert(0 && "input type");
-                transform_free(transform);
-                return NULL;
-            }
-	    if (precache) {
+                	assert(0 && "input type");
+			transform_free(transform);
+                	return NULL;
+            	}
+		if (precache) {
 #ifdef X86
 		    if (sse_version_available() >= 2) {
 			    if (in_type == QCMS_DATA_RGB_8)
@@ -1282,82 +1176,82 @@
 #endif
 		    } else
 #endif
-		    {
-			    if (in_type == QCMS_DATA_RGB_8)
-				    transform->transform_fn = qcms_transform_data_rgb_out_lut_precache;
-			    else
-				    transform->transform_fn = qcms_transform_data_rgba_out_lut_precache;
-		    }
-	    } else {
-		    if (in_type == QCMS_DATA_RGB_8)
-			    transform->transform_fn = qcms_transform_data_rgb_out_lut;
-		    else
-			    transform->transform_fn = qcms_transform_data_rgba_out_lut;
-	    }
+			{
+				if (in_type == QCMS_DATA_RGB_8)
+					transform->transform_fn = qcms_transform_data_rgb_out_lut_precache;
+				else
+					transform->transform_fn = qcms_transform_data_rgba_out_lut_precache;
+			}
+		} else {
+			if (in_type == QCMS_DATA_RGB_8)
+				transform->transform_fn = qcms_transform_data_rgb_out_lut;
+			else
+				transform->transform_fn = qcms_transform_data_rgba_out_lut;
+		}
 
-            //XXX: avoid duplicating tables if we can
-            transform->input_gamma_table_r = build_input_gamma_table(in->redTRC);
-            transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC);
-            transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC);
+		//XXX: avoid duplicating tables if we can
+		transform->input_gamma_table_r = build_input_gamma_table(in->redTRC);
+		transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC);
+		transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC);
+		if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) {
+			qcms_transform_release(transform);
+			return NO_MEM_TRANSFORM;
+		}
 
-	    if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) {
-		    qcms_transform_release(transform);
-		    return NO_MEM_TRANSFORM;
-	    }
 
-            /* build combined colorant matrix */
-            in_matrix = build_colorant_matrix(in);
-            out_matrix = build_colorant_matrix(out);
-            out_matrix = matrix_invert(out_matrix);
-            if (out_matrix.invalid) {
-                qcms_transform_release(transform);
-                return NULL;
-            }
-            result = matrix_multiply(out_matrix, in_matrix);
+		/* build combined colorant matrix */
+		in_matrix = build_colorant_matrix(in);
+		out_matrix = build_colorant_matrix(out);
+		out_matrix = matrix_invert(out_matrix);
+		if (out_matrix.invalid) {
+			qcms_transform_release(transform);
+			return NULL;
+		}
+		result = matrix_multiply(out_matrix, in_matrix);
 
-            /* store the results in column major mode
-             * this makes doing the multiplication with sse easier */
-            transform->matrix[0][0] = result.m[0][0];
-            transform->matrix[1][0] = result.m[0][1];
-            transform->matrix[2][0] = result.m[0][2];
-            transform->matrix[0][1] = result.m[1][0];
-            transform->matrix[1][1] = result.m[1][1];
-            transform->matrix[2][1] = result.m[1][2];
-            transform->matrix[0][2] = result.m[2][0];
-            transform->matrix[1][2] = result.m[2][1];
-            transform->matrix[2][2] = result.m[2][2];
+		/* store the results in column major mode
+		 * this makes doing the multiplication with sse easier */
+		transform->matrix[0][0] = result.m[0][0];
+		transform->matrix[1][0] = result.m[0][1];
+		transform->matrix[2][0] = result.m[0][2];
+		transform->matrix[0][1] = result.m[1][0];
+		transform->matrix[1][1] = result.m[1][1];
+		transform->matrix[2][1] = result.m[1][2];
+		transform->matrix[0][2] = result.m[2][0];
+		transform->matrix[1][2] = result.m[2][1];
+		transform->matrix[2][2] = result.m[2][2];
 
-        } else if (in->color_space == GRAY_SIGNATURE) {
-            if (in_type != QCMS_DATA_GRAY_8 &&
-                    in_type != QCMS_DATA_GRAYA_8){
-                assert(0 && "input type");
-                transform_free(transform);
-                return NULL;
-            }
+	} else if (in->color_space == GRAY_SIGNATURE) {
+		if (in_type != QCMS_DATA_GRAY_8 &&
+				in_type != QCMS_DATA_GRAYA_8){
+			assert(0 && "input type");
+			transform_free(transform);
+			return NULL;
+		}
 
-            transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC);
-	    if (!transform->input_gamma_table_gray) {
-		    qcms_transform_release(transform);
-		    return NO_MEM_TRANSFORM;
-	    }
+		transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC);
+		if (!transform->input_gamma_table_gray) {
+			qcms_transform_release(transform);
+			return NO_MEM_TRANSFORM;
+		}
 
-	    if (precache) {
-		    if (in_type == QCMS_DATA_GRAY_8) {
-			    transform->transform_fn = qcms_transform_data_gray_out_precache;
-		    } else {
-			    transform->transform_fn = qcms_transform_data_graya_out_precache;
-		    }
-	    } else {
-		    if (in_type == QCMS_DATA_GRAY_8) {
-			    transform->transform_fn = qcms_transform_data_gray_out_lut;
-		    } else {
-			    transform->transform_fn = qcms_transform_data_graya_out_lut;
-		    }
-	    }
+		if (precache) {
+			if (in_type == QCMS_DATA_GRAY_8) {
+				transform->transform_fn = qcms_transform_data_gray_out_precache;
+			} else {
+				transform->transform_fn = qcms_transform_data_graya_out_precache;
+			}
+		} else {
+			if (in_type == QCMS_DATA_GRAY_8) {
+				transform->transform_fn = qcms_transform_data_gray_out_lut;
+			} else {
+				transform->transform_fn = qcms_transform_data_graya_out_lut;
+			}
+		}
 	} else {
 		assert(0 && "unexpected colorspace");
-		qcms_transform_release(transform);
-		return NO_MEM_TRANSFORM;
+		transform_free(transform);
+		return NULL;
 	}
 	return transform;
 }
@@ -1370,3 +1264,9 @@
 {
 	transform->transform_fn(transform, src, dest, length);
 }
+
+qcms_bool qcms_supports_iccv4;
+void qcms_enable_iccv4()
+{
+	qcms_supports_iccv4 = true;
+}
diff --git a/transform_util.c b/transform_util.c
new file mode 100644
index 0000000..bcc1a3e
--- /dev/null
+++ b/transform_util.c
@@ -0,0 +1,539 @@
+#define _ISOC99_SOURCE  /* for INFINITY */
+
+#include <math.h>
+#include <assert.h>
+#include <string.h> //memcpy
+#include "qcmsint.h"
+#include "transform_util.h"
+#include "matrix.h"
+
+#if !defined(INFINITY)
+#define INFINITY HUGE_VAL
+#endif
+
+#define PARAMETRIC_CURVE_TYPE 0x70617261 //'para'
+
+/* value must be a value between 0 and 1 */
+//XXX: is the above a good restriction to have?
+float lut_interp_linear(double value, uint16_t *table, int length)
+{
+	int upper, lower;
+	value = value * (length - 1); // scale to length of the array
+	upper = ceil(value);
+	lower = floor(value);
+	//XXX: can we be more performant here?
+	value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
+	/* scale the value */
+	return value * (1./65535.);
+}
+
+/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
+uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
+{
+	/* Start scaling input_value to the length of the array: 65535*(length-1).
+	 * We'll divide out the 65535 next */
+	uint32_t value = (input_value * (length - 1));
+	uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */
+	uint32_t lower = value / 65535;           /* equivalent to floor(value/65535) */
+	/* interp is the distance from upper to value scaled to 0..65535 */
+	uint32_t interp = value % 65535;
+
+	value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535
+
+	return value;
+}
+
+/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX
+ * and returns a uint8_t value representing a range from 0..1 */
+static
+uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length)
+{
+	/* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1).
+	 * We'll divide out the PRECACHE_OUTPUT_MAX next */
+	uint32_t value = (input_value * (length - 1));
+
+	/* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */
+	uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX;
+	/* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */
+	uint32_t lower = value / PRECACHE_OUTPUT_MAX;
+	/* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */
+	uint32_t interp = value % PRECACHE_OUTPUT_MAX;
+
+	/* the table values range from 0..65535 */
+	value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX)
+
+	/* round and scale */
+	value += (PRECACHE_OUTPUT_MAX*65535/255)/2;
+        value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255
+	return value;
+}
+
+/* value must be a value between 0 and 1 */
+//XXX: is the above a good restriction to have?
+float lut_interp_linear_float(float value, float *table, int length)
+{
+        int upper, lower;
+        value = value * (length - 1);
+        upper = ceil(value);
+        lower = floor(value);
+        //XXX: can we be more performant here?
+        value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
+        /* scale the value */
+        return value;
+}
+
+#if 0
+/* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient
+ * because we can avoid the divisions and use a shifting instead */
+/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
+uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
+{
+	uint32_t value = (input_value * (length - 1));
+	uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */
+	uint32_t lower = value / 4096;           /* equivalent to floor(value/4096) */
+	uint32_t interp = value % 4096;
+
+	value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096
+
+	return value;
+}
+#endif
+
+void compute_curve_gamma_table_type1(float gamma_table[256], double gamma)
+{
+	unsigned int i;
+	for (i = 0; i < 256; i++) {
+		gamma_table[i] = pow(i/255., gamma);
+	}
+}
+
+void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length)
+{
+	unsigned int i;
+	for (i = 0; i < 256; i++) {
+		gamma_table[i] = lut_interp_linear(i/255., table, length);
+	}
+}
+
+void compute_curve_gamma_table_type_parametric(float gamma_table[256], float parameter[7], int count)
+{
+        size_t X;
+        float interval;
+        float a, b, c, e, f;
+        float y = parameter[0];
+        if (count == 0) {
+                a = 1;
+                b = 0;
+                c = 0;
+                e = 0;
+                f = 0;
+                interval = -INFINITY;
+        } else if(count == 1) {
+                a = parameter[1];
+                b = parameter[2];
+                c = 0;
+                e = 0;
+                f = 0;
+                interval = -1 * parameter[2] / parameter[1];
+        } else if(count == 2) {
+                a = parameter[1];
+                b = parameter[2];
+                c = 0;
+                e = parameter[3];
+                f = parameter[3];
+                interval = -1 * parameter[2] / parameter[1];
+        } else if(count == 3) {
+                a = parameter[1];
+                b = parameter[2];
+                c = parameter[3];
+                e = -c;
+                f = 0;
+                interval = parameter[4];
+        } else if(count == 4) {
+                a = parameter[1];
+                b = parameter[2];
+                c = parameter[3];
+                e = parameter[5] - c;
+                f = parameter[6];
+                interval = parameter[4];
+        } else {
+                assert(0 && "invalid parametric function type.");
+                a = 1;
+                b = 0;
+                c = 0;
+                e = 0;
+                f = 0;
+                interval = -INFINITY;
+        }       
+        for (X = 0; X < 256; X++) {
+                if (X >= interval) {
+                        // XXX The equations are not exactly as definied in the spec but are
+                        //     algebraic equivilent.
+                        // TODO Should division by 255 be for the whole expression.
+                        gamma_table[X] = pow(a * X / 255. + b, y) + c + e;
+                } else {
+                        gamma_table[X] = c * X / 255. + f;
+                }
+        }
+}
+
+void compute_curve_gamma_table_type0(float gamma_table[256])
+{
+	unsigned int i;
+	for (i = 0; i < 256; i++) {
+		gamma_table[i] = i/255.;
+	}
+}
+
+
+float clamp_float(float a)
+{
+        if (a > 1.)
+                return 1.;
+        else if (a < 0)
+                return 0;
+        else
+                return a;
+}
+
+unsigned char clamp_u8(float v)
+{
+	if (v > 255.)
+		return 255;
+	else if (v < 0)
+		return 0;
+	else
+		return floor(v+.5);
+}
+
+float u8Fixed8Number_to_float(uint16_t x)
+{
+	// 0x0000 = 0.
+	// 0x0100 = 1.
+	// 0xffff = 255  + 255/256
+	return x/256.;
+}
+
+float *build_input_gamma_table(struct curveType *TRC)
+{
+	float *gamma_table;
+
+	if (!TRC) return NULL;
+	gamma_table = malloc(sizeof(float)*256);
+	if (gamma_table) {
+		if (TRC->type == PARAMETRIC_CURVE_TYPE) {
+			compute_curve_gamma_table_type_parametric(gamma_table, TRC->parameter, TRC->count);
+		} else {
+			if (TRC->count == 0) {
+				compute_curve_gamma_table_type0(gamma_table);
+			} else if (TRC->count == 1) {
+				compute_curve_gamma_table_type1(gamma_table, u8Fixed8Number_to_float(TRC->data[0]));
+			} else {
+				compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count);
+			}
+		}
+	}
+        return gamma_table;
+}
+
+struct matrix build_colorant_matrix(qcms_profile *p)
+{
+	struct matrix result;
+	result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X);
+	result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X);
+	result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X);
+	result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y);
+	result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y);
+	result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y);
+	result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z);
+	result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z);
+	result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z);
+	result.invalid = false;
+	return result;
+}
+
+/* The following code is copied nearly directly from lcms.
+ * I think it could be much better. For example, Argyll seems to have better code in
+ * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
+ * to a working solution and allows for easy comparing with lcms. */
+uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length)
+{
+        int l = 1;
+        int r = 0x10000;
+        int x = 0, res;       // 'int' Give spacing for negative values
+        int NumZeroes, NumPoles;
+        int cell0, cell1;
+        double val2;
+        double y0, y1, x0, x1;
+        double a, b, f;
+
+        // July/27 2001 - Expanded to handle degenerated curves with an arbitrary
+        // number of elements containing 0 at the begining of the table (Zeroes)
+        // and another arbitrary number of poles (FFFFh) at the end.
+        // First the zero and pole extents are computed, then value is compared.
+
+        NumZeroes = 0;
+        while (LutTable[NumZeroes] == 0 && NumZeroes < length-1)
+                        NumZeroes++;
+
+        // There are no zeros at the beginning and we are trying to find a zero, so
+        // return anything. It seems zero would be the less destructive choice
+	/* I'm not sure that this makes sense, but oh well... */
+        if (NumZeroes == 0 && Value == 0)
+            return 0;
+
+        NumPoles = 0;
+        while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1)
+                        NumPoles++;
+
+        // Does the curve belong to this case?
+        if (NumZeroes > 1 || NumPoles > 1)
+        {               
+                int a, b;
+
+                // Identify if value fall downto 0 or FFFF zone             
+                if (Value == 0) return 0;
+               // if (Value == 0xFFFF) return 0xFFFF;
+
+                // else restrict to valid zone
+
+                a = ((NumZeroes-1) * 0xFFFF) / (length-1);               
+                b = ((length-1 - NumPoles) * 0xFFFF) / (length-1);
+                                                                
+                l = a - 1;
+                r = b + 1;
+        }
+
+
+        // Seems not a degenerated case... apply binary search
+
+        while (r > l) {
+
+                x = (l + r) / 2;
+
+		res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length);
+
+                if (res == Value) {
+
+                    // Found exact match. 
+                    
+                    return (uint16_fract_t) (x - 1);
+                }
+
+                if (res > Value) r = x - 1;
+                else l = x + 1;
+        }
+
+        // Not found, should we interpolate?
+
+                
+        // Get surrounding nodes
+        
+        val2 = (length-1) * ((double) (x - 1) / 65535.0);
+
+        cell0 = (int) floor(val2);
+        cell1 = (int) ceil(val2);
+           
+        if (cell0 == cell1) return (uint16_fract_t) x;
+
+        y0 = LutTable[cell0] ;
+        x0 = (65535.0 * cell0) / (length-1); 
+
+        y1 = LutTable[cell1] ;
+        x1 = (65535.0 * cell1) / (length-1);
+
+        a = (y1 - y0) / (x1 - x0);
+        b = y0 - a * x0;
+
+        if (fabs(a) < 0.01) return (uint16_fract_t) x;
+
+        f = ((Value - b) / a);
+
+        if (f < 0.0) return (uint16_fract_t) 0;
+        if (f >= 65535.0) return (uint16_fract_t) 0xFFFF;
+
+        return (uint16_fract_t) floor(f + 0.5);                        
+
+}
+
+/*
+ The number of entries needed to invert a lookup table should not
+ necessarily be the same as the original number of entries.  This is
+ especially true of lookup tables that have a small number of entries.
+
+ For example:
+ Using a table like:
+    {0, 3104, 14263, 34802, 65535}
+ invert_lut will produce an inverse of:
+    {3, 34459, 47529, 56801, 65535}
+ which has an maximum error of about 9855 (pixel difference of ~38.346)
+
+ For now, we punt the decision of output size to the caller. */
+static uint16_t *invert_lut(uint16_t *table, int length, int out_length)
+{
+        int i;
+        /* for now we invert the lut by creating a lut of size out_length
+         * and attempting to lookup a value for each entry using lut_inverse_interp16 */
+        uint16_t *output = malloc(sizeof(uint16_t)*out_length);
+        if (!output)
+                return NULL;
+
+        for (i = 0; i < out_length; i++) {
+                double x = ((double) i * 65535.) / (double) (out_length - 1);
+                uint16_fract_t input = floor(x + .5);
+                output[i] = lut_inverse_interp16(input, table, length);
+        }
+        return output;
+}
+
+static void compute_precache_pow(uint8_t *output, float gamma)
+{
+	uint32_t v = 0;
+	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
+		//XXX: don't do integer/float conversion... and round?
+		output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma);
+	}
+}
+
+void compute_precache_lut(uint8_t *output, uint16_t *table, int length)
+{
+	uint32_t v = 0;
+	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
+		output[v] = lut_interp_linear_precache_output(v, table, length);
+	}
+}
+
+void compute_precache_linear(uint8_t *output)
+{
+	uint32_t v = 0;
+	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
+		//XXX: round?
+		output[v] = v / (PRECACHE_OUTPUT_SIZE/256);
+	}
+}
+
+qcms_bool compute_precache(struct curveType *trc, uint8_t *output)
+{
+        
+        if (trc->type == PARAMETRIC_CURVE_TYPE) {
+                        float gamma_table[256];
+                        uint16_t gamma_table_uint[256];
+                        uint16_t i;
+                        uint16_t *inverted;
+                        int inverted_size = 256;
+
+                        compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
+                        for(i = 0; i < 256; i++) {
+                                gamma_table_uint[i] = (uint16_t)(gamma_table[i] * 65535);
+                        }
+
+                        //XXX: the choice of a minimum of 256 here is not backed by any theory, 
+                        //     measurement or data, howeve r it is what lcms uses.
+                        //     the maximum number we would need is 65535 because that's the 
+                        //     accuracy used for computing the pre cache table
+                        if (inverted_size < 256)
+                                inverted_size = 256;
+
+                        inverted = invert_lut(gamma_table_uint, 256, inverted_size);
+                        if (!inverted)
+                                return false;
+                        compute_precache_lut(output, inverted, inverted_size);
+                        free(inverted);
+        } else {
+                if (trc->count == 0) {
+                        compute_precache_linear(output);
+                } else if (trc->count == 1) {
+                        compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0]));
+                } else {
+                        uint16_t *inverted;
+                        int inverted_size = trc->count;
+                        //XXX: the choice of a minimum of 256 here is not backed by any theory, 
+                        //     measurement or data, howeve r it is what lcms uses.
+                        //     the maximum number we would need is 65535 because that's the 
+                        //     accuracy used for computing the pre cache table
+                        if (inverted_size < 256)
+                                inverted_size = 256;
+
+                        inverted = invert_lut(trc->data, trc->count, inverted_size);
+                        if (!inverted)
+                                return false;
+                        compute_precache_lut(output, inverted, inverted_size);
+                        free(inverted);
+                }
+        }
+        return true;
+}
+
+
+static uint16_t *build_linear_table(int length)
+{
+        int i;
+        uint16_t *output = malloc(sizeof(uint16_t)*length);
+        if (!output)
+                return NULL;
+
+        for (i = 0; i < length; i++) {
+                double x = ((double) i * 65535.) / (double) (length - 1);
+                uint16_fract_t input = floor(x + .5);
+                output[i] = input;
+        }
+        return output;
+}
+
+static uint16_t *build_pow_table(float gamma, int length)
+{
+        int i;
+        uint16_t *output = malloc(sizeof(uint16_t)*length);
+        if (!output)
+                return NULL;
+
+        for (i = 0; i < length; i++) {
+                uint16_fract_t result;
+                double x = ((double) i) / (double) (length - 1);
+                x = pow(x, gamma);                //XXX turn this conversion into a function
+                result = floor(x*65535. + .5);
+                output[i] = result;
+        }
+        return output;
+}
+
+void build_output_lut(struct curveType *trc,
+                uint16_t **output_gamma_lut, size_t *output_gamma_lut_length)
+{
+        if (trc->type == PARAMETRIC_CURVE_TYPE) {
+                float gamma_table[256];
+                uint16_t i;
+                uint16_t *output = malloc(sizeof(uint16_t)*256);
+
+                if (!output) {
+                        *output_gamma_lut = NULL;
+                        return;
+                }
+
+                compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
+                *output_gamma_lut_length = 256;
+                for(i = 0; i < 256; i++) {
+                        output[i] = (uint16_t)(gamma_table[i] * 65535);
+                }
+                *output_gamma_lut = output;
+        } else {
+                if (trc->count == 0) {
+                        *output_gamma_lut = build_linear_table(4096);
+                        *output_gamma_lut_length = 4096;
+                } else if (trc->count == 1) {
+                        float gamma = 1./u8Fixed8Number_to_float(trc->data[0]);
+                        *output_gamma_lut = build_pow_table(gamma, 4096);
+                        *output_gamma_lut_length = 4096;
+                } else {
+                        //XXX: the choice of a minimum of 256 here is not backed by any theory, 
+                        //     measurement or data, however it is what lcms uses.
+                        *output_gamma_lut_length = trc->count;
+                        if (*output_gamma_lut_length < 256)
+                                *output_gamma_lut_length = 256;
+
+                        *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length);
+                }
+        }
+
+}
+
diff --git a/transform_util.h b/transform_util.h
new file mode 100644
index 0000000..8f358a8
--- /dev/null
+++ b/transform_util.h
@@ -0,0 +1,59 @@
+/* vim: set ts=8 sw=8 noexpandtab: */
+//  qcms
+//  Copyright (C) 2009 Mozilla Foundation
+//  Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining 
+// a copy of this software and associated documentation files (the "Software"), 
+// to deal in the Software without restriction, including without limitation 
+// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
+// and/or sell copies of the Software, and to permit persons to whom the Software 
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in 
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef _QCMS_TRANSFORM_UTIL_H
+#define _QCMS_TRANSFORM_UTIL_H
+
+#include <stdlib.h>
+
+#define CLU(table,x,y,z) table[(x*len + y*x_len + z*xy_len)*3]
+
+//XXX: could use a bettername
+typedef uint16_t uint16_fract_t;
+
+float lut_interp_linear(double value, uint16_t *table, int length);
+float lut_interp_linear_float(float value, float *table, int length);
+uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length);
+
+
+static inline float lerp(float a, float b, float t)
+{
+        return a*(1.f-t) + b*t;
+}
+
+unsigned char clamp_u8(float v);
+float clamp_float(float a);
+
+float u8Fixed8Number_to_float(uint16_t x);
+
+
+float *build_input_gamma_table(struct curveType *TRC);
+struct matrix build_colorant_matrix(qcms_profile *p);
+void build_output_lut(struct curveType *trc,
+                      uint16_t **output_gamma_lut, size_t *output_gamma_lut_length);
+
+struct matrix matrix_invert(struct matrix mat);
+qcms_bool compute_precache(struct curveType *trc, uint8_t *output);
+
+
+#endif