blob: 681864eb7d17f743204827a60012b20984e589aa [file] [log] [blame]
/*
* Copyright © 2000 SuSE, Inc.
* Copyright © 2007 Red Hat, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of SuSE not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. SuSE makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without express or implied warranty.
*
* SuSE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE
* BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "pixman-private.h"
static const pixman_color_t transparent_black = { 0, 0, 0, 0 };
static void
gradient_property_changed (pixman_image_t *image)
{
gradient_t *gradient = &image->gradient;
int n = gradient->n_stops;
pixman_gradient_stop_t *stops = gradient->stops;
pixman_gradient_stop_t *begin = &(gradient->stops[-1]);
pixman_gradient_stop_t *end = &(gradient->stops[n]);
switch (gradient->common.repeat)
{
default:
case PIXMAN_REPEAT_NONE:
begin->x = INT32_MIN;
begin->color = transparent_black;
end->x = INT32_MAX;
end->color = transparent_black;
break;
case PIXMAN_REPEAT_NORMAL:
begin->x = stops[n - 1].x - pixman_fixed_1;
begin->color = stops[n - 1].color;
end->x = stops[0].x + pixman_fixed_1;
end->color = stops[0].color;
break;
case PIXMAN_REPEAT_REFLECT:
begin->x = - stops[0].x;
begin->color = stops[0].color;
end->x = pixman_int_to_fixed (2) - stops[n - 1].x;
end->color = stops[n - 1].color;
break;
case PIXMAN_REPEAT_PAD:
begin->x = INT32_MIN;
begin->color = stops[0].color;
end->x = INT32_MAX;
end->color = stops[n - 1].color;
break;
}
}
pixman_bool_t
_pixman_init_gradient (gradient_t * gradient,
const pixman_gradient_stop_t *stops,
int n_stops)
{
return_val_if_fail (n_stops > 0, FALSE);
/* We allocate two extra stops, one before the beginning of the stop list,
* and one after the end. These stops are initialized to whatever color
* would be used for positions outside the range of the stop list.
*
* This saves a bit of computation in the gradient walker.
*
* The pointer we store in the gradient_t struct still points to the
* first user-supplied struct, so when freeing, we will have to
* subtract one.
*/
gradient->stops =
pixman_malloc_ab (n_stops + 2, sizeof (pixman_gradient_stop_t));
if (!gradient->stops)
return FALSE;
gradient->stops += 1;
memcpy (gradient->stops, stops, n_stops * sizeof (pixman_gradient_stop_t));
gradient->n_stops = n_stops;
gradient->common.property_changed = gradient_property_changed;
return TRUE;
}
void
_pixman_image_init (pixman_image_t *image)
{
image_common_t *common = &image->common;
pixman_region32_init (&common->clip_region);
common->alpha_count = 0;
common->have_clip_region = FALSE;
common->clip_sources = FALSE;
common->transform = NULL;
common->repeat = PIXMAN_REPEAT_NONE;
common->filter = PIXMAN_FILTER_NEAREST;
common->filter_params = NULL;
common->n_filter_params = 0;
common->alpha_map = NULL;
common->component_alpha = FALSE;
common->ref_count = 1;
common->property_changed = NULL;
common->client_clip = FALSE;
common->destroy_func = NULL;
common->destroy_data = NULL;
common->dirty = TRUE;
}
pixman_bool_t
_pixman_image_fini (pixman_image_t *image)
{
image_common_t *common = (image_common_t *)image;
common->ref_count--;
if (common->ref_count == 0)
{
if (image->common.destroy_func)
image->common.destroy_func (image, image->common.destroy_data);
pixman_region32_fini (&common->clip_region);
free (common->transform);
free (common->filter_params);
if (common->alpha_map)
pixman_image_unref ((pixman_image_t *)common->alpha_map);
if (image->type == LINEAR ||
image->type == RADIAL ||
image->type == CONICAL)
{
if (image->gradient.stops)
{
/* See _pixman_init_gradient() for an explanation of the - 1 */
free (image->gradient.stops - 1);
}
/* This will trigger if someone adds a property_changed
* method to the linear/radial/conical gradient overwriting
* the general one.
*/
assert (
image->common.property_changed == gradient_property_changed);
}
if (image->type == BITS && image->bits.free_me)
free (image->bits.free_me);
return TRUE;
}
return FALSE;
}
pixman_image_t *
_pixman_image_allocate (void)
{
pixman_image_t *image = malloc (sizeof (pixman_image_t));
if (image)
_pixman_image_init (image);
return image;
}
static void
image_property_changed (pixman_image_t *image)
{
image->common.dirty = TRUE;
}
/* Ref Counting */
PIXMAN_EXPORT pixman_image_t *
pixman_image_ref (pixman_image_t *image)
{
image->common.ref_count++;
return image;
}
/* returns TRUE when the image is freed */
PIXMAN_EXPORT pixman_bool_t
pixman_image_unref (pixman_image_t *image)
{
if (_pixman_image_fini (image))
{
free (image);
return TRUE;
}
return FALSE;
}
PIXMAN_EXPORT void
pixman_image_set_destroy_function (pixman_image_t * image,
pixman_image_destroy_func_t func,
void * data)
{
image->common.destroy_func = func;
image->common.destroy_data = data;
}
PIXMAN_EXPORT void *
pixman_image_get_destroy_data (pixman_image_t *image)
{
return image->common.destroy_data;
}
void
_pixman_image_reset_clip_region (pixman_image_t *image)
{
image->common.have_clip_region = FALSE;
}
/* Executive Summary: This function is a no-op that only exists
* for historical reasons.
*
* There used to be a bug in the X server where it would rely on
* out-of-bounds accesses when it was asked to composite with a
* window as the source. It would create a pixman image pointing
* to some bogus position in memory, but then set a clip region
* to the position where the actual bits were.
*
* Due to a bug in old versions of pixman, where it would not clip
* against the image bounds when a clip region was set, this would
* actually work. So when the pixman bug was fixed, a workaround was
* added to allow certain out-of-bound accesses. This function disabled
* those workarounds.
*
* Since 0.21.2, pixman doesn't do these workarounds anymore, so now
* this function is a no-op.
*/
PIXMAN_EXPORT void
pixman_disable_out_of_bounds_workaround (void)
{
}
static void
compute_image_info (pixman_image_t *image)
{
pixman_format_code_t code;
uint32_t flags = 0;
/* Transform */
if (!image->common.transform)
{
flags |= (FAST_PATH_ID_TRANSFORM |
FAST_PATH_X_UNIT_POSITIVE |
FAST_PATH_Y_UNIT_ZERO |
FAST_PATH_AFFINE_TRANSFORM);
}
else
{
flags |= FAST_PATH_HAS_TRANSFORM;
if (image->common.transform->matrix[2][0] == 0 &&
image->common.transform->matrix[2][1] == 0 &&
image->common.transform->matrix[2][2] == pixman_fixed_1)
{
flags |= FAST_PATH_AFFINE_TRANSFORM;
if (image->common.transform->matrix[0][1] == 0 &&
image->common.transform->matrix[1][0] == 0)
{
if (image->common.transform->matrix[0][0] == -pixman_fixed_1 &&
image->common.transform->matrix[1][1] == -pixman_fixed_1)
{
flags |= FAST_PATH_ROTATE_180_TRANSFORM;
}
flags |= FAST_PATH_SCALE_TRANSFORM;
}
else if (image->common.transform->matrix[0][0] == 0 &&
image->common.transform->matrix[1][1] == 0)
{
pixman_fixed_t m01 = image->common.transform->matrix[0][1];
pixman_fixed_t m10 = image->common.transform->matrix[1][0];
if (m01 == -pixman_fixed_1 && m10 == pixman_fixed_1)
flags |= FAST_PATH_ROTATE_90_TRANSFORM;
else if (m01 == pixman_fixed_1 && m10 == -pixman_fixed_1)
flags |= FAST_PATH_ROTATE_270_TRANSFORM;
}
}
if (image->common.transform->matrix[0][0] > 0)
flags |= FAST_PATH_X_UNIT_POSITIVE;
if (image->common.transform->matrix[1][0] == 0)
flags |= FAST_PATH_Y_UNIT_ZERO;
}
/* Filter */
switch (image->common.filter)
{
case PIXMAN_FILTER_NEAREST:
case PIXMAN_FILTER_FAST:
flags |= (FAST_PATH_NEAREST_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
break;
case PIXMAN_FILTER_BILINEAR:
case PIXMAN_FILTER_GOOD:
case PIXMAN_FILTER_BEST:
flags |= (FAST_PATH_BILINEAR_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
/* Here we have a chance to optimize BILINEAR filter to NEAREST if
* they are equivalent for the currently used transformation matrix.
*/
if (flags & FAST_PATH_ID_TRANSFORM)
{
flags |= FAST_PATH_NEAREST_FILTER;
}
else if (flags & FAST_PATH_AFFINE_TRANSFORM)
{
/* Suppose the transform is
*
* [ t00, t01, t02 ]
* [ t10, t11, t12 ]
* [ 0, 0, 1 ]
*
* and the destination coordinates are (n + 0.5, m + 0.5). Then
* the transformed x coordinate is:
*
* tx = t00 * (n + 0.5) + t01 * (m + 0.5) + t02
* = t00 * n + t01 * m + t02 + (t00 + t01) * 0.5
*
* which implies that if t00, t01 and t02 are all integers
* and (t00 + t01) is odd, then tx will be an integer plus 0.5,
* which means a BILINEAR filter will reduce to NEAREST. The same
* applies in the y direction
*/
pixman_fixed_t (*t)[3] = image->common.transform->matrix;
if ((pixman_fixed_frac (
t[0][0] | t[0][1] | t[0][2] |
t[1][0] | t[1][1] | t[1][2]) == 0) &&
(pixman_fixed_to_int (
(t[0][0] + t[0][1]) & (t[1][0] + t[1][1])) % 2) == 1)
{
/* FIXME: there are some affine-test failures, showing that
* handling of BILINEAR and NEAREST filter is not quite
* equivalent when getting close to 32K for the translation
* components of the matrix. That's likely some bug, but for
* now just skip BILINEAR->NEAREST optimization in this case.
*/
pixman_fixed_t magic_limit = pixman_int_to_fixed (30000);
if (image->common.transform->matrix[0][2] <= magic_limit &&
image->common.transform->matrix[1][2] <= magic_limit &&
image->common.transform->matrix[0][2] >= -magic_limit &&
image->common.transform->matrix[1][2] >= -magic_limit)
{
flags |= FAST_PATH_NEAREST_FILTER;
}
}
}
break;
case PIXMAN_FILTER_CONVOLUTION:
break;
case PIXMAN_FILTER_SEPARABLE_CONVOLUTION:
flags |= FAST_PATH_SEPARABLE_CONVOLUTION_FILTER;
break;
default:
flags |= FAST_PATH_NO_CONVOLUTION_FILTER;
break;
}
/* Repeat mode */
switch (image->common.repeat)
{
case PIXMAN_REPEAT_NONE:
flags |=
FAST_PATH_NO_REFLECT_REPEAT |
FAST_PATH_NO_PAD_REPEAT |
FAST_PATH_NO_NORMAL_REPEAT;
break;
case PIXMAN_REPEAT_REFLECT:
flags |=
FAST_PATH_NO_PAD_REPEAT |
FAST_PATH_NO_NONE_REPEAT |
FAST_PATH_NO_NORMAL_REPEAT;
break;
case PIXMAN_REPEAT_PAD:
flags |=
FAST_PATH_NO_REFLECT_REPEAT |
FAST_PATH_NO_NONE_REPEAT |
FAST_PATH_NO_NORMAL_REPEAT;
break;
default:
flags |=
FAST_PATH_NO_REFLECT_REPEAT |
FAST_PATH_NO_PAD_REPEAT |
FAST_PATH_NO_NONE_REPEAT;
break;
}
/* Component alpha */
if (image->common.component_alpha)
flags |= FAST_PATH_COMPONENT_ALPHA;
else
flags |= FAST_PATH_UNIFIED_ALPHA;
flags |= (FAST_PATH_NO_ACCESSORS | FAST_PATH_NARROW_FORMAT);
/* Type specific checks */
switch (image->type)
{
case SOLID:
code = PIXMAN_solid;
if (image->solid.color.alpha == 0xffff)
flags |= FAST_PATH_IS_OPAQUE;
break;
case BITS:
if (image->bits.width == 1 &&
image->bits.height == 1 &&
image->common.repeat != PIXMAN_REPEAT_NONE)
{
code = PIXMAN_solid;
}
else
{
code = image->bits.format;
flags |= FAST_PATH_BITS_IMAGE;
}
if (!PIXMAN_FORMAT_A (image->bits.format) &&
PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_GRAY &&
PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_COLOR)
{
flags |= FAST_PATH_SAMPLES_OPAQUE;
if (image->common.repeat != PIXMAN_REPEAT_NONE)
flags |= FAST_PATH_IS_OPAQUE;
}
if (image->bits.read_func || image->bits.write_func)
flags &= ~FAST_PATH_NO_ACCESSORS;
if (PIXMAN_FORMAT_IS_WIDE (image->bits.format))
flags &= ~FAST_PATH_NARROW_FORMAT;
break;
case RADIAL:
code = PIXMAN_unknown;
/*
* As explained in pixman-radial-gradient.c, every point of
* the plane has a valid associated radius (and thus will be
* colored) if and only if a is negative (i.e. one of the two
* circles contains the other one).
*/
if (image->radial.a >= 0)
break;
/* Fall through */
case CONICAL:
case LINEAR:
code = PIXMAN_unknown;
if (image->common.repeat != PIXMAN_REPEAT_NONE)
{
int i;
flags |= FAST_PATH_IS_OPAQUE;
for (i = 0; i < image->gradient.n_stops; ++i)
{
if (image->gradient.stops[i].color.alpha != 0xffff)
{
flags &= ~FAST_PATH_IS_OPAQUE;
break;
}
}
}
break;
default:
code = PIXMAN_unknown;
break;
}
/* Alpha maps are only supported for BITS images, so it's always
* safe to ignore their presense for non-BITS images
*/
if (!image->common.alpha_map || image->type != BITS)
{
flags |= FAST_PATH_NO_ALPHA_MAP;
}
else
{
if (PIXMAN_FORMAT_IS_WIDE (image->common.alpha_map->format))
flags &= ~FAST_PATH_NARROW_FORMAT;
}
/* Both alpha maps and convolution filters can introduce
* non-opaqueness in otherwise opaque images. Also
* an image with component alpha turned on is only opaque
* if all channels are opaque, so we simply turn it off
* unconditionally for those images.
*/
if (image->common.alpha_map ||
image->common.filter == PIXMAN_FILTER_CONVOLUTION ||
image->common.filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION ||
image->common.component_alpha)
{
flags &= ~(FAST_PATH_IS_OPAQUE | FAST_PATH_SAMPLES_OPAQUE);
}
image->common.flags = flags;
image->common.extended_format_code = code;
}
void
_pixman_image_validate (pixman_image_t *image)
{
if (image->common.dirty)
{
compute_image_info (image);
/* It is important that property_changed is
* called *after* compute_image_info() because
* property_changed() can make use of the flags
* to set up accessors etc.
*/
if (image->common.property_changed)
image->common.property_changed (image);
image->common.dirty = FALSE;
}
if (image->common.alpha_map)
_pixman_image_validate ((pixman_image_t *)image->common.alpha_map);
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region32 (pixman_image_t * image,
pixman_region32_t *region)
{
image_common_t *common = (image_common_t *)image;
pixman_bool_t result;
if (region)
{
if ((result = pixman_region32_copy (&common->clip_region, region)))
image->common.have_clip_region = TRUE;
}
else
{
_pixman_image_reset_clip_region (image);
result = TRUE;
}
image_property_changed (image);
return result;
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region (pixman_image_t * image,
pixman_region16_t *region)
{
image_common_t *common = (image_common_t *)image;
pixman_bool_t result;
if (region)
{
if ((result = pixman_region32_copy_from_region16 (&common->clip_region, region)))
image->common.have_clip_region = TRUE;
}
else
{
_pixman_image_reset_clip_region (image);
result = TRUE;
}
image_property_changed (image);
return result;
}
PIXMAN_EXPORT void
pixman_image_set_has_client_clip (pixman_image_t *image,
pixman_bool_t client_clip)
{
image->common.client_clip = client_clip;
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_set_transform (pixman_image_t * image,
const pixman_transform_t *transform)
{
static const pixman_transform_t id =
{
{ { pixman_fixed_1, 0, 0 },
{ 0, pixman_fixed_1, 0 },
{ 0, 0, pixman_fixed_1 } }
};
image_common_t *common = (image_common_t *)image;
pixman_bool_t result;
if (common->transform == transform)
return TRUE;
if (!transform || memcmp (&id, transform, sizeof (pixman_transform_t)) == 0)
{
free (common->transform);
common->transform = NULL;
result = TRUE;
goto out;
}
if (common->transform &&
memcmp (common->transform, transform, sizeof (pixman_transform_t)) == 0)
{
return TRUE;
}
if (common->transform == NULL)
common->transform = malloc (sizeof (pixman_transform_t));
if (common->transform == NULL)
{
result = FALSE;
goto out;
}
memcpy (common->transform, transform, sizeof(pixman_transform_t));
result = TRUE;
out:
image_property_changed (image);
return result;
}
PIXMAN_EXPORT void
pixman_image_set_repeat (pixman_image_t *image,
pixman_repeat_t repeat)
{
if (image->common.repeat == repeat)
return;
image->common.repeat = repeat;
image_property_changed (image);
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_set_filter (pixman_image_t * image,
pixman_filter_t filter,
const pixman_fixed_t *params,
int n_params)
{
image_common_t *common = (image_common_t *)image;
pixman_fixed_t *new_params;
if (params == common->filter_params && filter == common->filter)
return TRUE;
if (filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION)
{
int width = pixman_fixed_to_int (params[0]);
int height = pixman_fixed_to_int (params[1]);
int x_phase_bits = pixman_fixed_to_int (params[2]);
int y_phase_bits = pixman_fixed_to_int (params[3]);
int n_x_phases = (1 << x_phase_bits);
int n_y_phases = (1 << y_phase_bits);
return_val_if_fail (
n_params == 4 + n_x_phases * width + n_y_phases * height, FALSE);
}
new_params = NULL;
if (params)
{
new_params = pixman_malloc_ab (n_params, sizeof (pixman_fixed_t));
if (!new_params)
return FALSE;
memcpy (new_params,
params, n_params * sizeof (pixman_fixed_t));
}
common->filter = filter;
if (common->filter_params)
free (common->filter_params);
common->filter_params = new_params;
common->n_filter_params = n_params;
image_property_changed (image);
return TRUE;
}
PIXMAN_EXPORT void
pixman_image_set_source_clipping (pixman_image_t *image,
pixman_bool_t clip_sources)
{
if (image->common.clip_sources == clip_sources)
return;
image->common.clip_sources = clip_sources;
image_property_changed (image);
}
/* Unlike all the other property setters, this function does not
* copy the content of indexed. Doing this copying is simply
* way, way too expensive.
*/
PIXMAN_EXPORT void
pixman_image_set_indexed (pixman_image_t * image,
const pixman_indexed_t *indexed)
{
bits_image_t *bits = (bits_image_t *)image;
if (bits->indexed == indexed)
return;
bits->indexed = indexed;
image_property_changed (image);
}
PIXMAN_EXPORT void
pixman_image_set_alpha_map (pixman_image_t *image,
pixman_image_t *alpha_map,
int16_t x,
int16_t y)
{
image_common_t *common = (image_common_t *)image;
return_if_fail (!alpha_map || alpha_map->type == BITS);
if (alpha_map && common->alpha_count > 0)
{
/* If this image is being used as an alpha map itself,
* then you can't give it an alpha map of its own.
*/
return;
}
if (alpha_map && alpha_map->common.alpha_map)
{
/* If the image has an alpha map of its own,
* then it can't be used as an alpha map itself
*/
return;
}
if (common->alpha_map != (bits_image_t *)alpha_map)
{
if (common->alpha_map)
{
common->alpha_map->common.alpha_count--;
pixman_image_unref ((pixman_image_t *)common->alpha_map);
}
if (alpha_map)
{
common->alpha_map = (bits_image_t *)pixman_image_ref (alpha_map);
common->alpha_map->common.alpha_count++;
}
else
{
common->alpha_map = NULL;
}
}
common->alpha_origin_x = x;
common->alpha_origin_y = y;
image_property_changed (image);
}
PIXMAN_EXPORT void
pixman_image_set_component_alpha (pixman_image_t *image,
pixman_bool_t component_alpha)
{
if (image->common.component_alpha == component_alpha)
return;
image->common.component_alpha = component_alpha;
image_property_changed (image);
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_get_component_alpha (pixman_image_t *image)
{
return image->common.component_alpha;
}
PIXMAN_EXPORT void
pixman_image_set_accessors (pixman_image_t * image,
pixman_read_memory_func_t read_func,
pixman_write_memory_func_t write_func)
{
return_if_fail (image != NULL);
if (image->type == BITS)
{
image->bits.read_func = read_func;
image->bits.write_func = write_func;
image_property_changed (image);
}
}
PIXMAN_EXPORT uint32_t *
pixman_image_get_data (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.bits;
return NULL;
}
PIXMAN_EXPORT int
pixman_image_get_width (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.width;
return 0;
}
PIXMAN_EXPORT int
pixman_image_get_height (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.height;
return 0;
}
PIXMAN_EXPORT int
pixman_image_get_stride (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.rowstride * (int) sizeof (uint32_t);
return 0;
}
PIXMAN_EXPORT int
pixman_image_get_depth (pixman_image_t *image)
{
if (image->type == BITS)
return PIXMAN_FORMAT_DEPTH (image->bits.format);
return 0;
}
PIXMAN_EXPORT pixman_format_code_t
pixman_image_get_format (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.format;
return PIXMAN_null;
}
uint32_t
_pixman_image_get_solid (pixman_implementation_t *imp,
pixman_image_t * image,
pixman_format_code_t format)
{
uint32_t result;
if (image->type == SOLID)
{
result = image->solid.color_32;
}
else if (image->type == BITS)
{
if (image->bits.format == PIXMAN_a8r8g8b8)
result = image->bits.bits[0];
else if (image->bits.format == PIXMAN_x8r8g8b8)
result = image->bits.bits[0] | 0xff000000;
else if (image->bits.format == PIXMAN_a8)
result = (*(uint8_t *)image->bits.bits) << 24;
else
goto otherwise;
}
else
{
pixman_iter_t iter;
otherwise:
_pixman_implementation_iter_init (
imp, &iter, image, 0, 0, 1, 1,
(uint8_t *)&result,
ITER_NARROW | ITER_SRC, image->common.flags);
result = *iter.get_scanline (&iter, NULL);
if (iter.fini)
iter.fini (&iter);
}
/* If necessary, convert RGB <--> BGR. */
if (PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB
&& PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB_SRGB)
{
result = (((result & 0xff000000) >> 0) |
((result & 0x00ff0000) >> 16) |
((result & 0x0000ff00) >> 0) |
((result & 0x000000ff) << 16));
}
return result;
}