blob: 4c484d3e38cc1dedbc62cc10c6ec3389626d14a4 [file] [log] [blame]
/*
* Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
* 2005 Lars Knoll & Zack Rusin, Trolltech
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Keith Packard not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Keith Packard makes no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
* SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <math.h>
#include <string.h>
#include "pixman-private.h"
#include "pixman-combine32.h"
/* component alpha helper functions */
static void
combine_mask_ca (uint32_t *src, uint32_t *mask)
{
uint32_t a = *mask;
uint32_t x;
uint16_t xa;
if (!a)
{
*(src) = 0;
return;
}
x = *(src);
if (a == ~0)
{
x = x >> A_SHIFT;
x |= x << G_SHIFT;
x |= x << R_SHIFT;
*(mask) = x;
return;
}
xa = x >> A_SHIFT;
UN8x4_MUL_UN8x4 (x, a);
*(src) = x;
UN8x4_MUL_UN8 (a, xa);
*(mask) = a;
}
static void
combine_mask_value_ca (uint32_t *src, const uint32_t *mask)
{
uint32_t a = *mask;
uint32_t x;
if (!a)
{
*(src) = 0;
return;
}
if (a == ~0)
return;
x = *(src);
UN8x4_MUL_UN8x4 (x, a);
*(src) = x;
}
static void
combine_mask_alpha_ca (const uint32_t *src, uint32_t *mask)
{
uint32_t a = *(mask);
uint32_t x;
if (!a)
return;
x = *(src) >> A_SHIFT;
if (x == MASK)
return;
if (a == ~0)
{
x |= x << G_SHIFT;
x |= x << R_SHIFT;
*(mask) = x;
return;
}
UN8x4_MUL_UN8 (a, x);
*(mask) = a;
}
/*
* There are two ways of handling alpha -- either as a single unified value or
* a separate value for each component, hence each macro must have two
* versions. The unified alpha version has a 'u' at the end of the name,
* the component version has a 'ca'. Similarly, functions which deal with
* this difference will have two versions using the same convention.
*/
static force_inline uint32_t
combine_mask (const uint32_t *src, const uint32_t *mask, int i)
{
uint32_t s, m;
if (mask)
{
m = *(mask + i) >> A_SHIFT;
if (!m)
return 0;
}
s = *(src + i);
if (mask)
UN8x4_MUL_UN8 (s, m);
return s;
}
static void
combine_clear (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
memset (dest, 0, width * sizeof (uint32_t));
}
static void
combine_dst (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
return;
}
static void
combine_src_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
if (!mask)
{
memcpy (dest, src, width * sizeof (uint32_t));
}
else
{
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
*(dest + i) = s;
}
}
}
static void
combine_over_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
if (!mask)
{
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t a = ALPHA_8 (s);
if (a == 0xFF)
{
*(dest + i) = s;
}
else if (s)
{
uint32_t d = *(dest + i);
uint32_t ia = a ^ 0xFF;
UN8x4_MUL_UN8_ADD_UN8x4 (d, ia, s);
*(dest + i) = d;
}
}
}
else
{
for (i = 0; i < width; ++i)
{
uint32_t m = ALPHA_8 (*(mask + i));
if (m == 0xFF)
{
uint32_t s = *(src + i);
uint32_t a = ALPHA_8 (s);
if (a == 0xFF)
{
*(dest + i) = s;
}
else if (s)
{
uint32_t d = *(dest + i);
uint32_t ia = a ^ 0xFF;
UN8x4_MUL_UN8_ADD_UN8x4 (d, ia, s);
*(dest + i) = d;
}
}
else if (m)
{
uint32_t s = *(src + i);
if (s)
{
uint32_t d = *(dest + i);
UN8x4_MUL_UN8 (s, m);
UN8x4_MUL_UN8_ADD_UN8x4 (d, ALPHA_8 (~s), s);
*(dest + i) = d;
}
}
}
}
}
static void
combine_over_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t ia = ALPHA_8 (~*(dest + i));
UN8x4_MUL_UN8_ADD_UN8x4 (s, ia, d);
*(dest + i) = s;
}
}
static void
combine_in_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t a = ALPHA_8 (*(dest + i));
UN8x4_MUL_UN8 (s, a);
*(dest + i) = s;
}
}
static void
combine_in_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t a = ALPHA_8 (s);
UN8x4_MUL_UN8 (d, a);
*(dest + i) = d;
}
}
static void
combine_out_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t a = ALPHA_8 (~*(dest + i));
UN8x4_MUL_UN8 (s, a);
*(dest + i) = s;
}
}
static void
combine_out_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t a = ALPHA_8 (~s);
UN8x4_MUL_UN8 (d, a);
*(dest + i) = d;
}
}
static void
combine_atop_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t dest_a = ALPHA_8 (d);
uint32_t src_ia = ALPHA_8 (~s);
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (s, dest_a, d, src_ia);
*(dest + i) = s;
}
}
static void
combine_atop_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t src_a = ALPHA_8 (s);
uint32_t dest_ia = ALPHA_8 (~d);
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (s, dest_ia, d, src_a);
*(dest + i) = s;
}
}
static void
combine_xor_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t src_ia = ALPHA_8 (~s);
uint32_t dest_ia = ALPHA_8 (~d);
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (s, dest_ia, d, src_ia);
*(dest + i) = s;
}
}
static void
combine_add_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
UN8x4_ADD_UN8x4 (d, s);
*(dest + i) = d;
}
}
/*
* PDF blend modes:
*
* The following blend modes have been taken from the PDF ISO 32000
* specification, which at this point in time is available from
*
* http://www.adobe.com/devnet/pdf/pdf_reference.html
*
* The specific documents of interest are the PDF spec itself:
*
* http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf
*
* chapters 11.3.5 and 11.3.6 and a later supplement for Adobe Acrobat
* 9.1 and Reader 9.1:
*
* http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/adobe_supplement_iso32000_1.pdf
*
* that clarifies the specifications for blend modes ColorDodge and
* ColorBurn.
*
* The formula for computing the final pixel color given in 11.3.6 is:
*
* αr × Cr = (1 – αs) × αb × Cb + (1 – αb) × αs × Cs + αb × αs × B(Cb, Cs)
*
* with B() is the blend function. When B(Cb, Cs) = Cs, this formula
* reduces to the regular OVER operator.
*
* Cs and Cb are not premultiplied, so in our implementation we instead
* use:
*
* cr = (1 – αs) × cb + (1 – αb) × cs + αb × αs × B (cb/αb, cs/αs)
*
* where cr, cs, and cb are premultiplied colors, and where the
*
* αb × αs × B(cb/αb, cs/αs)
*
* part is first arithmetically simplified under the assumption that αb
* and αs are not 0, and then updated to produce a meaningful result when
* they are.
*
* For all the blend mode operators, the alpha channel is given by
*
* αr = αs + αb + αb × αs
*/
/*
* Multiply
*
* ad * as * B(d / ad, s / as)
* = ad * as * d/ad * s/as
* = d * s
*
*/
static void
combine_multiply_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t ss = s;
uint32_t src_ia = ALPHA_8 (~s);
uint32_t dest_ia = ALPHA_8 (~d);
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (ss, dest_ia, d, src_ia);
UN8x4_MUL_UN8x4 (d, s);
UN8x4_ADD_UN8x4 (d, ss);
*(dest + i) = d;
}
}
static void
combine_multiply_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t m = *(mask + i);
uint32_t s = *(src + i);
uint32_t d = *(dest + i);
uint32_t r = d;
uint32_t dest_ia = ALPHA_8 (~d);
combine_mask_ca (&s, &m);
UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8 (r, ~m, s, dest_ia);
UN8x4_MUL_UN8x4 (d, s);
UN8x4_ADD_UN8x4 (r, d);
*(dest + i) = r;
}
}
#define CLAMP(v, low, high) \
do \
{ \
if (v < (low)) \
v = (low); \
if (v > (high)) \
v = (high); \
} while (0)
#define PDF_SEPARABLE_BLEND_MODE(name) \
static void \
combine_ ## name ## _u (pixman_implementation_t *imp, \
pixman_op_t op, \
uint32_t * dest, \
const uint32_t * src, \
const uint32_t * mask, \
int width) \
{ \
int i; \
for (i = 0; i < width; ++i) \
{ \
uint32_t s = combine_mask (src, mask, i); \
uint32_t d = *(dest + i); \
uint8_t sa = ALPHA_8 (s); \
uint8_t isa = ~sa; \
uint8_t da = ALPHA_8 (d); \
uint8_t ida = ~da; \
int32_t ra, rr, rg, rb; \
\
ra = da * 0xff + sa * 0xff - sa * da; \
rr = isa * RED_8 (d) + ida * RED_8 (s); \
rg = isa * GREEN_8 (d) + ida * GREEN_8 (s); \
rb = isa * BLUE_8 (d) + ida * BLUE_8 (s); \
\
rr += blend_ ## name (RED_8 (d), da, RED_8 (s), sa); \
rg += blend_ ## name (GREEN_8 (d), da, GREEN_8 (s), sa); \
rb += blend_ ## name (BLUE_8 (d), da, BLUE_8 (s), sa); \
\
CLAMP (ra, 0, 255 * 255); \
CLAMP (rr, 0, 255 * 255); \
CLAMP (rg, 0, 255 * 255); \
CLAMP (rb, 0, 255 * 255); \
\
ra = DIV_ONE_UN8 (ra); \
rr = DIV_ONE_UN8 (rr); \
rg = DIV_ONE_UN8 (rg); \
rb = DIV_ONE_UN8 (rb); \
\
*(dest + i) = ra << 24 | rr << 16 | rg << 8 | rb; \
} \
} \
\
static void \
combine_ ## name ## _ca (pixman_implementation_t *imp, \
pixman_op_t op, \
uint32_t * dest, \
const uint32_t * src, \
const uint32_t * mask, \
int width) \
{ \
int i; \
for (i = 0; i < width; ++i) \
{ \
uint32_t m = *(mask + i); \
uint32_t s = *(src + i); \
uint32_t d = *(dest + i); \
uint8_t da = ALPHA_8 (d); \
uint8_t ida = ~da; \
int32_t ra, rr, rg, rb; \
uint8_t ira, iga, iba; \
\
combine_mask_ca (&s, &m); \
\
ira = ~RED_8 (m); \
iga = ~GREEN_8 (m); \
iba = ~BLUE_8 (m); \
\
ra = da * 0xff + ALPHA_8 (s) * 0xff - ALPHA_8 (s) * da; \
rr = ira * RED_8 (d) + ida * RED_8 (s); \
rg = iga * GREEN_8 (d) + ida * GREEN_8 (s); \
rb = iba * BLUE_8 (d) + ida * BLUE_8 (s); \
\
rr += blend_ ## name (RED_8 (d), da, RED_8 (s), RED_8 (m)); \
rg += blend_ ## name (GREEN_8 (d), da, GREEN_8 (s), GREEN_8 (m)); \
rb += blend_ ## name (BLUE_8 (d), da, BLUE_8 (s), BLUE_8 (m)); \
\
CLAMP (ra, 0, 255 * 255); \
CLAMP (rr, 0, 255 * 255); \
CLAMP (rg, 0, 255 * 255); \
CLAMP (rb, 0, 255 * 255); \
\
ra = DIV_ONE_UN8 (ra); \
rr = DIV_ONE_UN8 (rr); \
rg = DIV_ONE_UN8 (rg); \
rb = DIV_ONE_UN8 (rb); \
\
*(dest + i) = ra << 24 | rr << 16 | rg << 8 | rb; \
} \
}
/*
* Screen
*
* ad * as * B(d/ad, s/as)
* = ad * as * (d/ad + s/as - s/as * d/ad)
* = ad * s + as * d - s * d
*/
static inline int32_t
blend_screen (int32_t d, int32_t ad, int32_t s, int32_t as)
{
return s * ad + d * as - s * d;
}
PDF_SEPARABLE_BLEND_MODE (screen)
/*
* Overlay
*
* ad * as * B(d/ad, s/as)
* = ad * as * Hardlight (s, d)
* = if (d / ad < 0.5)
* as * ad * Multiply (s/as, 2 * d/ad)
* else
* as * ad * Screen (s/as, 2 * d / ad - 1)
* = if (d < 0.5 * ad)
* as * ad * s/as * 2 * d /ad
* else
* as * ad * (s/as + 2 * d / ad - 1 - s / as * (2 * d / ad - 1))
* = if (2 * d < ad)
* 2 * s * d
* else
* ad * s + 2 * as * d - as * ad - ad * s * (2 * d / ad - 1)
* = if (2 * d < ad)
* 2 * s * d
* else
* as * ad - 2 * (ad - d) * (as - s)
*/
static inline int32_t
blend_overlay (int32_t d, int32_t ad, int32_t s, int32_t as)
{
uint32_t r;
if (2 * d < ad)
r = 2 * s * d;
else
r = as * ad - 2 * (ad - d) * (as - s);
return r;
}
PDF_SEPARABLE_BLEND_MODE (overlay)
/*
* Darken
*
* ad * as * B(d/ad, s/as)
* = ad * as * MIN(d/ad, s/as)
* = MIN (as * d, ad * s)
*/
static inline int32_t
blend_darken (int32_t d, int32_t ad, int32_t s, int32_t as)
{
s = ad * s;
d = as * d;
return s > d ? d : s;
}
PDF_SEPARABLE_BLEND_MODE (darken)
/*
* Lighten
*
* ad * as * B(d/ad, s/as)
* = ad * as * MAX(d/ad, s/as)
* = MAX (as * d, ad * s)
*/
static inline int32_t
blend_lighten (int32_t d, int32_t ad, int32_t s, int32_t as)
{
s = ad * s;
d = as * d;
return s > d ? s : d;
}
PDF_SEPARABLE_BLEND_MODE (lighten)
/*
* Hard light
*
* ad * as * B(d/ad, s/as)
* = if (s/as <= 0.5)
* ad * as * Multiply (d/ad, 2 * s/as)
* else
* ad * as * Screen (d/ad, 2 * s/as - 1)
* = if 2 * s <= as
* ad * as * d/ad * 2 * s / as
* else
* ad * as * (d/ad + (2 * s/as - 1) + d/ad * (2 * s/as - 1))
* = if 2 * s <= as
* 2 * s * d
* else
* as * ad - 2 * (ad - d) * (as - s)
*/
static inline int32_t
blend_hard_light (int32_t d, int32_t ad, int32_t s, int32_t as)
{
if (2 * s < as)
return 2 * s * d;
else
return as * ad - 2 * (ad - d) * (as - s);
}
PDF_SEPARABLE_BLEND_MODE (hard_light)
/*
* Difference
*
* ad * as * B(s/as, d/ad)
* = ad * as * abs (s/as - d/ad)
* = if (s/as <= d/ad)
* ad * as * (d/ad - s/as)
* else
* ad * as * (s/as - d/ad)
* = if (ad * s <= as * d)
* as * d - ad * s
* else
* ad * s - as * d
*/
static inline int32_t
blend_difference (int32_t d, int32_t ad, int32_t s, int32_t as)
{
int32_t das = d * as;
int32_t sad = s * ad;
if (sad < das)
return das - sad;
else
return sad - das;
}
PDF_SEPARABLE_BLEND_MODE (difference)
/*
* Exclusion
*
* ad * as * B(s/as, d/ad)
* = ad * as * (d/ad + s/as - 2 * d/ad * s/as)
* = as * d + ad * s - 2 * s * d
*/
/* This can be made faster by writing it directly and not using
* PDF_SEPARABLE_BLEND_MODE, but that's a performance optimization */
static inline int32_t
blend_exclusion (int32_t d, int32_t ad, int32_t s, int32_t as)
{
return s * ad + d * as - 2 * d * s;
}
PDF_SEPARABLE_BLEND_MODE (exclusion)
#undef PDF_SEPARABLE_BLEND_MODE
/* Component alpha combiners */
static void
combine_clear_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
memset (dest, 0, width * sizeof(uint32_t));
}
static void
combine_src_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
combine_mask_value_ca (&s, &m);
*(dest + i) = s;
}
}
static void
combine_over_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t a;
combine_mask_ca (&s, &m);
a = ~m;
if (a)
{
uint32_t d = *(dest + i);
UN8x4_MUL_UN8x4_ADD_UN8x4 (d, a, s);
s = d;
}
*(dest + i) = s;
}
}
static void
combine_over_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint32_t a = ~d >> A_SHIFT;
if (a)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
UN8x4_MUL_UN8x4 (s, m);
UN8x4_MUL_UN8_ADD_UN8x4 (s, a, d);
*(dest + i) = s;
}
}
}
static void
combine_in_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint16_t a = d >> A_SHIFT;
uint32_t s = 0;
if (a)
{
uint32_t m = *(mask + i);
s = *(src + i);
combine_mask_value_ca (&s, &m);
if (a != MASK)
UN8x4_MUL_UN8 (s, a);
}
*(dest + i) = s;
}
}
static void
combine_in_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t a;
combine_mask_alpha_ca (&s, &m);
a = m;
if (a != ~0)
{
uint32_t d = 0;
if (a)
{
d = *(dest + i);
UN8x4_MUL_UN8x4 (d, a);
}
*(dest + i) = d;
}
}
}
static void
combine_out_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint16_t a = ~d >> A_SHIFT;
uint32_t s = 0;
if (a)
{
uint32_t m = *(mask + i);
s = *(src + i);
combine_mask_value_ca (&s, &m);
if (a != MASK)
UN8x4_MUL_UN8 (s, a);
}
*(dest + i) = s;
}
}
static void
combine_out_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t a;
combine_mask_alpha_ca (&s, &m);
a = ~m;
if (a != ~0)
{
uint32_t d = 0;
if (a)
{
d = *(dest + i);
UN8x4_MUL_UN8x4 (d, a);
}
*(dest + i) = d;
}
}
}
static void
combine_atop_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t ad;
uint16_t as = d >> A_SHIFT;
combine_mask_ca (&s, &m);
ad = ~m;
UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8 (d, ad, s, as);
*(dest + i) = d;
}
}
static void
combine_atop_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t ad;
uint16_t as = ~d >> A_SHIFT;
combine_mask_ca (&s, &m);
ad = m;
UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8 (d, ad, s, as);
*(dest + i) = d;
}
}
static void
combine_xor_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t ad;
uint16_t as = ~d >> A_SHIFT;
combine_mask_ca (&s, &m);
ad = ~m;
UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8 (d, ad, s, as);
*(dest + i) = d;
}
}
static void
combine_add_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t d = *(dest + i);
combine_mask_value_ca (&s, &m);
UN8x4_ADD_UN8x4 (d, s);
*(dest + i) = d;
}
}
void
_pixman_setup_combiner_functions_32 (pixman_implementation_t *imp)
{
/* Unified alpha */
imp->combine_32[PIXMAN_OP_CLEAR] = combine_clear;
imp->combine_32[PIXMAN_OP_SRC] = combine_src_u;
imp->combine_32[PIXMAN_OP_DST] = combine_dst;
imp->combine_32[PIXMAN_OP_OVER] = combine_over_u;
imp->combine_32[PIXMAN_OP_OVER_REVERSE] = combine_over_reverse_u;
imp->combine_32[PIXMAN_OP_IN] = combine_in_u;
imp->combine_32[PIXMAN_OP_IN_REVERSE] = combine_in_reverse_u;
imp->combine_32[PIXMAN_OP_OUT] = combine_out_u;
imp->combine_32[PIXMAN_OP_OUT_REVERSE] = combine_out_reverse_u;
imp->combine_32[PIXMAN_OP_ATOP] = combine_atop_u;
imp->combine_32[PIXMAN_OP_ATOP_REVERSE] = combine_atop_reverse_u;
imp->combine_32[PIXMAN_OP_XOR] = combine_xor_u;
imp->combine_32[PIXMAN_OP_ADD] = combine_add_u;
imp->combine_32[PIXMAN_OP_MULTIPLY] = combine_multiply_u;
imp->combine_32[PIXMAN_OP_SCREEN] = combine_screen_u;
imp->combine_32[PIXMAN_OP_OVERLAY] = combine_overlay_u;
imp->combine_32[PIXMAN_OP_DARKEN] = combine_darken_u;
imp->combine_32[PIXMAN_OP_LIGHTEN] = combine_lighten_u;
imp->combine_32[PIXMAN_OP_HARD_LIGHT] = combine_hard_light_u;
imp->combine_32[PIXMAN_OP_DIFFERENCE] = combine_difference_u;
imp->combine_32[PIXMAN_OP_EXCLUSION] = combine_exclusion_u;
/* Component alpha combiners */
imp->combine_32_ca[PIXMAN_OP_CLEAR] = combine_clear_ca;
imp->combine_32_ca[PIXMAN_OP_SRC] = combine_src_ca;
/* dest */
imp->combine_32_ca[PIXMAN_OP_OVER] = combine_over_ca;
imp->combine_32_ca[PIXMAN_OP_OVER_REVERSE] = combine_over_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_IN] = combine_in_ca;
imp->combine_32_ca[PIXMAN_OP_IN_REVERSE] = combine_in_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_OUT] = combine_out_ca;
imp->combine_32_ca[PIXMAN_OP_OUT_REVERSE] = combine_out_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_ATOP] = combine_atop_ca;
imp->combine_32_ca[PIXMAN_OP_ATOP_REVERSE] = combine_atop_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_XOR] = combine_xor_ca;
imp->combine_32_ca[PIXMAN_OP_ADD] = combine_add_ca;
imp->combine_32_ca[PIXMAN_OP_MULTIPLY] = combine_multiply_ca;
imp->combine_32_ca[PIXMAN_OP_SCREEN] = combine_screen_ca;
imp->combine_32_ca[PIXMAN_OP_OVERLAY] = combine_overlay_ca;
imp->combine_32_ca[PIXMAN_OP_DARKEN] = combine_darken_ca;
imp->combine_32_ca[PIXMAN_OP_LIGHTEN] = combine_lighten_ca;
imp->combine_32_ca[PIXMAN_OP_HARD_LIGHT] = combine_hard_light_ca;
imp->combine_32_ca[PIXMAN_OP_DIFFERENCE] = combine_difference_ca;
imp->combine_32_ca[PIXMAN_OP_EXCLUSION] = combine_exclusion_ca;
}