blob: 2faaa2f5fb6fe366fad0d3cf3a3a3cf8bcfea459 [file] [log] [blame]
/*
* Copyright (c) 2016-2019, The OpenThread Authors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "platform-simulation.h"
#include <errno.h>
#include <openthread/dataset.h>
#include <openthread/link.h>
#include <openthread/random_noncrypto.h>
#include <openthread/platform/alarm-micro.h>
#include <openthread/platform/alarm-milli.h>
#include <openthread/platform/diag.h>
#include <openthread/platform/radio.h>
#include <openthread/platform/time.h>
#include "utils/code_utils.h"
#include "utils/link_metrics.h"
#include "utils/mac_frame.h"
#include "utils/soft_source_match_table.h"
// The IPv4 group for receiving packets of radio simulation
#define OT_RADIO_GROUP "224.0.0.116"
enum
{
IEEE802154_ACK_LENGTH = 5,
IEEE802154_FRAME_TYPE_ACK = 2 << 0,
IEEE802154_FRAME_PENDING = 1 << 4,
};
enum
{
SIM_RECEIVE_SENSITIVITY = -100, // dBm
SIM_HIGH_RSSI_SAMPLE = -30, // dBm
SIM_LOW_RSSI_SAMPLE = -98, // dBm
SIM_HIGH_RSSI_PROB_INC_PER_CHANNEL = 5,
};
#if OPENTHREAD_SIMULATION_VIRTUAL_TIME
extern int sSockFd;
extern uint16_t sPortOffset;
#else
static int sTxFd = -1;
static int sRxFd = -1;
static uint16_t sPortOffset = 0;
static uint16_t sPort = 0;
#endif
enum
{
SIM_RADIO_CHANNEL_MIN = OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MIN,
SIM_RADIO_CHANNEL_MAX = OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MAX,
};
OT_TOOL_PACKED_BEGIN
struct RadioMessage
{
uint8_t mChannel;
uint8_t mPsdu[OT_RADIO_FRAME_MAX_SIZE];
} OT_TOOL_PACKED_END;
static void radioTransmit(struct RadioMessage *aMessage, const struct otRadioFrame *aFrame);
static void radioSendMessage(otInstance *aInstance);
static void radioSendAck(void);
static void radioProcessFrame(otInstance *aInstance);
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
static uint8_t generateAckIeData(uint8_t *aLinkMetricsIeData, uint8_t aLinkMetricsIeDataLen);
#endif
static otRadioState sState = OT_RADIO_STATE_DISABLED;
static struct RadioMessage sReceiveMessage;
static struct RadioMessage sTransmitMessage;
static struct RadioMessage sAckMessage;
static otRadioFrame sReceiveFrame;
static otRadioFrame sTransmitFrame;
static otRadioFrame sAckFrame;
#if OPENTHREAD_CONFIG_MAC_HEADER_IE_SUPPORT
static otRadioIeInfo sTransmitIeInfo;
#endif
static otExtAddress sExtAddress;
static otShortAddress sShortAddress;
static otPanId sPanid;
static bool sPromiscuous = false;
static bool sTxWait = false;
static int8_t sTxPower = 0;
static int8_t sCcaEdThresh = -74;
static int8_t sLnaGain = 0;
static uint16_t sRegionCode = 0;
enum
{
kMinChannel = 11,
kMaxChannel = 26,
};
static int8_t sChannelMaxTransmitPower[kMaxChannel - kMinChannel + 1];
static uint8_t sCurrentChannel = kMinChannel;
static bool sSrcMatchEnabled = false;
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
static uint8_t sAckIeData[OT_ACK_IE_MAX_SIZE];
static uint8_t sAckIeDataLength = 0;
#endif
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
static uint32_t sCslSampleTime;
static uint32_t sCslPeriod;
#endif
#if OPENTHREAD_CONFIG_PLATFORM_RADIO_COEX_ENABLE
static bool sRadioCoexEnabled = true;
#endif
otRadioCaps gRadioCaps =
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
OT_RADIO_CAPS_TRANSMIT_SEC;
#else
OT_RADIO_CAPS_NONE;
#endif
static uint32_t sMacFrameCounter;
static uint8_t sKeyId;
static otMacKeyMaterial sPrevKey;
static otMacKeyMaterial sCurrKey;
static otMacKeyMaterial sNextKey;
static otRadioKeyType sKeyType;
static void ReverseExtAddress(otExtAddress *aReversed, const otExtAddress *aOrigin)
{
for (size_t i = 0; i < sizeof(*aReversed); i++)
{
aReversed->m8[i] = aOrigin->m8[sizeof(*aOrigin) - 1 - i];
}
}
static bool hasFramePending(const otRadioFrame *aFrame)
{
bool rval = false;
otMacAddress src;
otEXPECT_ACTION(sSrcMatchEnabled, rval = true);
otEXPECT(otMacFrameGetSrcAddr(aFrame, &src) == OT_ERROR_NONE);
switch (src.mType)
{
case OT_MAC_ADDRESS_TYPE_SHORT:
rval = utilsSoftSrcMatchShortFindEntry(src.mAddress.mShortAddress) >= 0;
break;
case OT_MAC_ADDRESS_TYPE_EXTENDED:
{
otExtAddress extAddr;
ReverseExtAddress(&extAddr, &src.mAddress.mExtAddress);
rval = utilsSoftSrcMatchExtFindEntry(&extAddr) >= 0;
break;
}
default:
break;
}
exit:
return rval;
}
static uint16_t crc16_citt(uint16_t aFcs, uint8_t aByte)
{
// CRC-16/CCITT, CRC-16/CCITT-TRUE, CRC-CCITT
// width=16 poly=0x1021 init=0x0000 refin=true refout=true xorout=0x0000 check=0x2189 name="KERMIT"
// http://reveng.sourceforge.net/crc-catalogue/16.htm#crc.cat.kermit
static const uint16_t sFcsTable[256] = {
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5,
0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52,
0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3,
0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9,
0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e,
0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f,
0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862,
0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb,
0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948,
0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226,
0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497,
0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704,
0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb,
0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c,
0x3de3, 0x2c6a, 0x1ef1, 0x0f78};
return (aFcs >> 8) ^ sFcsTable[(aFcs ^ aByte) & 0xff];
}
void otPlatRadioGetIeeeEui64(otInstance *aInstance, uint8_t *aIeeeEui64)
{
OT_UNUSED_VARIABLE(aInstance);
aIeeeEui64[0] = 0x18;
aIeeeEui64[1] = 0xb4;
aIeeeEui64[2] = 0x30;
aIeeeEui64[3] = 0x00;
aIeeeEui64[4] = (gNodeId >> 24) & 0xff;
aIeeeEui64[5] = (gNodeId >> 16) & 0xff;
aIeeeEui64[6] = (gNodeId >> 8) & 0xff;
aIeeeEui64[7] = gNodeId & 0xff;
}
void otPlatRadioSetPanId(otInstance *aInstance, otPanId aPanid)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
sPanid = aPanid;
utilsSoftSrcMatchSetPanId(aPanid);
}
void otPlatRadioSetExtendedAddress(otInstance *aInstance, const otExtAddress *aExtAddress)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
ReverseExtAddress(&sExtAddress, aExtAddress);
}
void otPlatRadioSetShortAddress(otInstance *aInstance, otShortAddress aShortAddress)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
sShortAddress = aShortAddress;
}
void otPlatRadioSetPromiscuous(otInstance *aInstance, bool aEnable)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
sPromiscuous = aEnable;
}
#if OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0
static void initFds(void)
{
int fd;
int one = 1;
struct sockaddr_in sockaddr;
memset(&sockaddr, 0, sizeof(sockaddr));
otEXPECT_ACTION((fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) != -1, perror("socket(sTxFd)"));
sPort = (uint16_t)(9000 + sPortOffset + gNodeId);
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htons(sPort);
sockaddr.sin_addr.s_addr = inet_addr("127.0.0.1");
otEXPECT_ACTION(setsockopt(fd, IPPROTO_IP, IP_MULTICAST_IF, &sockaddr.sin_addr, sizeof(sockaddr.sin_addr)) != -1,
perror("setsockopt(sTxFd, IP_MULTICAST_IF)"));
otEXPECT_ACTION(setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, &one, sizeof(one)) != -1,
perror("setsockopt(sRxFd, IP_MULTICAST_LOOP)"));
otEXPECT_ACTION(bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)) != -1, perror("bind(sTxFd)"));
// Tx fd is successfully initialized.
sTxFd = fd;
otEXPECT_ACTION((fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) != -1, perror("socket(sRxFd)"));
otEXPECT_ACTION(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) != -1,
perror("setsockopt(sRxFd, SO_REUSEADDR)"));
otEXPECT_ACTION(setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one)) != -1,
perror("setsockopt(sRxFd, SO_REUSEPORT)"));
{
struct ip_mreqn mreq;
memset(&mreq, 0, sizeof(mreq));
inet_pton(AF_INET, OT_RADIO_GROUP, &mreq.imr_multiaddr);
// Always use loopback device to send simulation packets.
mreq.imr_address.s_addr = inet_addr("127.0.0.1");
otEXPECT_ACTION(setsockopt(fd, IPPROTO_IP, IP_MULTICAST_IF, &mreq.imr_address, sizeof(mreq.imr_address)) != -1,
perror("setsockopt(sRxFd, IP_MULTICAST_IF)"));
otEXPECT_ACTION(setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq)) != -1,
perror("setsockopt(sRxFd, IP_ADD_MEMBERSHIP)"));
}
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htons((uint16_t)(9000 + sPortOffset));
sockaddr.sin_addr.s_addr = inet_addr(OT_RADIO_GROUP);
otEXPECT_ACTION(bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)) != -1, perror("bind(sRxFd)"));
// Rx fd is successfully initialized.
sRxFd = fd;
exit:
if (sRxFd == -1 || sTxFd == -1)
{
exit(EXIT_FAILURE);
}
}
#endif // OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0
void platformRadioInit(void)
{
#if OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0
char *offset;
offset = getenv("PORT_OFFSET");
if (offset)
{
char *endptr;
sPortOffset = (uint16_t)strtol(offset, &endptr, 0);
if (*endptr != '\0')
{
fprintf(stderr, "Invalid PORT_OFFSET: %s\n", offset);
exit(EXIT_FAILURE);
}
sPortOffset *= (MAX_NETWORK_SIZE + 1);
}
initFds();
#endif // OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0
sReceiveFrame.mPsdu = sReceiveMessage.mPsdu;
sTransmitFrame.mPsdu = sTransmitMessage.mPsdu;
sAckFrame.mPsdu = sAckMessage.mPsdu;
#if OPENTHREAD_CONFIG_MAC_HEADER_IE_SUPPORT
sTransmitFrame.mInfo.mTxInfo.mIeInfo = &sTransmitIeInfo;
#else
sTransmitFrame.mInfo.mTxInfo.mIeInfo = NULL;
#endif
for (size_t i = 0; i <= kMaxChannel - kMinChannel; i++)
{
sChannelMaxTransmitPower[i] = OT_RADIO_POWER_INVALID;
}
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
otLinkMetricsInit(SIM_RECEIVE_SENSITIVITY);
#endif
}
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
static uint16_t getCslPhase(void)
{
uint32_t curTime = otPlatAlarmMicroGetNow();
uint32_t cslPeriodInUs = sCslPeriod * OT_US_PER_TEN_SYMBOLS;
uint32_t diff = ((sCslSampleTime % cslPeriodInUs) - (curTime % cslPeriodInUs) + cslPeriodInUs) % cslPeriodInUs;
return (uint16_t)(diff / OT_US_PER_TEN_SYMBOLS);
}
#endif
bool otPlatRadioIsEnabled(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
return (sState != OT_RADIO_STATE_DISABLED) ? true : false;
}
otError otPlatRadioEnable(otInstance *aInstance)
{
if (!otPlatRadioIsEnabled(aInstance))
{
sState = OT_RADIO_STATE_SLEEP;
}
return OT_ERROR_NONE;
}
otError otPlatRadioDisable(otInstance *aInstance)
{
otError error = OT_ERROR_NONE;
otEXPECT(otPlatRadioIsEnabled(aInstance));
otEXPECT_ACTION(sState == OT_RADIO_STATE_SLEEP, error = OT_ERROR_INVALID_STATE);
sState = OT_RADIO_STATE_DISABLED;
exit:
return error;
}
otError otPlatRadioSleep(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
otError error = OT_ERROR_INVALID_STATE;
if (sState == OT_RADIO_STATE_SLEEP || sState == OT_RADIO_STATE_RECEIVE)
{
error = OT_ERROR_NONE;
sState = OT_RADIO_STATE_SLEEP;
}
return error;
}
otError otPlatRadioReceive(otInstance *aInstance, uint8_t aChannel)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
otError error = OT_ERROR_INVALID_STATE;
if (sState != OT_RADIO_STATE_DISABLED)
{
error = OT_ERROR_NONE;
sState = OT_RADIO_STATE_RECEIVE;
sTxWait = false;
sReceiveFrame.mChannel = aChannel;
sCurrentChannel = aChannel;
}
return error;
}
otError otPlatRadioTransmit(otInstance *aInstance, otRadioFrame *aFrame)
{
OT_UNUSED_VARIABLE(aInstance);
OT_UNUSED_VARIABLE(aFrame);
assert(aInstance != NULL);
assert(aFrame != NULL);
otError error = OT_ERROR_INVALID_STATE;
if (sState == OT_RADIO_STATE_RECEIVE)
{
error = OT_ERROR_NONE;
sState = OT_RADIO_STATE_TRANSMIT;
sCurrentChannel = aFrame->mChannel;
}
return error;
}
otRadioFrame *otPlatRadioGetTransmitBuffer(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
return &sTransmitFrame;
}
int8_t otPlatRadioGetRssi(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
int8_t rssi = SIM_LOW_RSSI_SAMPLE;
uint8_t channel = sReceiveFrame.mChannel;
uint32_t probabilityThreshold;
otEXPECT((SIM_RADIO_CHANNEL_MIN <= channel) && channel <= (SIM_RADIO_CHANNEL_MAX));
// To emulate a simple interference model, we return either a high or
// a low RSSI value with a fixed probability per each channel. The
// probability is increased per channel by a constant.
probabilityThreshold = (channel - SIM_RADIO_CHANNEL_MIN) * SIM_HIGH_RSSI_PROB_INC_PER_CHANNEL;
if (otRandomNonCryptoGetUint16() < (probabilityThreshold * 0xffff / 100))
{
rssi = SIM_HIGH_RSSI_SAMPLE;
}
exit:
return rssi;
}
otRadioCaps otPlatRadioGetCaps(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
return gRadioCaps;
}
bool otPlatRadioGetPromiscuous(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
return sPromiscuous;
}
static void radioReceive(otInstance *aInstance)
{
bool isTxDone = false;
bool isAck = otMacFrameIsAck(&sReceiveFrame);
otEXPECT(sReceiveFrame.mChannel == sReceiveMessage.mChannel);
otEXPECT(sState == OT_RADIO_STATE_RECEIVE || sState == OT_RADIO_STATE_TRANSMIT);
// Unable to simulate SFD, so use the rx done timestamp instead.
sReceiveFrame.mInfo.mRxInfo.mTimestamp = otPlatTimeGet();
if (sTxWait)
{
if (otMacFrameIsAckRequested(&sTransmitFrame))
{
isTxDone = isAck && otMacFrameGetSequence(&sReceiveFrame) == otMacFrameGetSequence(&sTransmitFrame);
}
#if OPENTHREAD_SIMULATION_VIRTUAL_TIME
// Simulate tx done when receiving the echo frame.
else
{
isTxDone = !isAck && sTransmitFrame.mLength == sReceiveFrame.mLength &&
memcmp(sTransmitFrame.mPsdu, sReceiveFrame.mPsdu, sTransmitFrame.mLength) == 0;
}
#endif
}
if (isTxDone)
{
sState = OT_RADIO_STATE_RECEIVE;
sTxWait = false;
#if OPENTHREAD_CONFIG_DIAG_ENABLE
if (otPlatDiagModeGet())
{
otPlatDiagRadioTransmitDone(aInstance, &sTransmitFrame, OT_ERROR_NONE);
}
else
#endif
{
otPlatRadioTxDone(aInstance, &sTransmitFrame, (isAck ? &sReceiveFrame : NULL), OT_ERROR_NONE);
}
}
else if (!isAck || sPromiscuous)
{
radioProcessFrame(aInstance);
}
exit:
return;
}
static void radioComputeCrc(struct RadioMessage *aMessage, uint16_t aLength)
{
uint16_t crc = 0;
uint16_t crc_offset = aLength - sizeof(uint16_t);
for (uint16_t i = 0; i < crc_offset; i++)
{
crc = crc16_citt(crc, aMessage->mPsdu[i]);
}
aMessage->mPsdu[crc_offset] = crc & 0xff;
aMessage->mPsdu[crc_offset + 1] = crc >> 8;
}
static otError radioProcessTransmitSecurity(otRadioFrame *aFrame)
{
otError error = OT_ERROR_NONE;
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
otMacKeyMaterial *key = NULL;
uint8_t keyId;
otEXPECT(otMacFrameIsSecurityEnabled(aFrame) && otMacFrameIsKeyIdMode1(aFrame) &&
!aFrame->mInfo.mTxInfo.mIsSecurityProcessed);
if (otMacFrameIsAck(aFrame))
{
keyId = otMacFrameGetKeyId(aFrame);
otEXPECT_ACTION(keyId != 0, error = OT_ERROR_FAILED);
if (keyId == sKeyId)
{
key = &sCurrKey;
}
else if (keyId == sKeyId - 1)
{
key = &sPrevKey;
}
else if (keyId == sKeyId + 1)
{
key = &sNextKey;
}
else
{
error = OT_ERROR_SECURITY;
otEXPECT(false);
}
}
else
{
key = &sCurrKey;
keyId = sKeyId;
}
aFrame->mInfo.mTxInfo.mAesKey = key;
if (!aFrame->mInfo.mTxInfo.mIsHeaderUpdated)
{
otMacFrameSetKeyId(aFrame, keyId);
otMacFrameSetFrameCounter(aFrame, sMacFrameCounter++);
}
#else
otEXPECT(!aFrame->mInfo.mTxInfo.mIsSecurityProcessed);
#endif // OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
otMacFrameProcessTransmitAesCcm(aFrame, &sExtAddress);
exit:
return error;
}
void radioSendMessage(otInstance *aInstance)
{
#if OPENTHREAD_CONFIG_MAC_HEADER_IE_SUPPORT && OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
if (sTransmitFrame.mInfo.mTxInfo.mIeInfo->mTimeIeOffset != 0)
{
uint8_t *timeIe = sTransmitFrame.mPsdu + sTransmitFrame.mInfo.mTxInfo.mIeInfo->mTimeIeOffset;
uint64_t time = (uint64_t)((int64_t)otPlatTimeGet() + sTransmitFrame.mInfo.mTxInfo.mIeInfo->mNetworkTimeOffset);
*timeIe = sTransmitFrame.mInfo.mTxInfo.mIeInfo->mTimeSyncSeq;
*(++timeIe) = (uint8_t)(time & 0xff);
for (uint8_t i = 1; i < sizeof(uint64_t); i++)
{
time = time >> 8;
*(++timeIe) = (uint8_t)(time & 0xff);
}
}
#endif // OPENTHREAD_CONFIG_MAC_HEADER_IE_SUPPORT && OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
if (sCslPeriod > 0 && !sTransmitFrame.mInfo.mTxInfo.mIsHeaderUpdated)
{
otMacFrameSetCslIe(&sTransmitFrame, (uint16_t)sCslPeriod, getCslPhase());
}
#endif
sTransmitMessage.mChannel = sTransmitFrame.mChannel;
otEXPECT(radioProcessTransmitSecurity(&sTransmitFrame) == OT_ERROR_NONE);
otPlatRadioTxStarted(aInstance, &sTransmitFrame);
radioComputeCrc(&sTransmitMessage, sTransmitFrame.mLength);
radioTransmit(&sTransmitMessage, &sTransmitFrame);
#if OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0
sTxWait = otMacFrameIsAckRequested(&sTransmitFrame);
if (!sTxWait)
{
sState = OT_RADIO_STATE_RECEIVE;
#if OPENTHREAD_CONFIG_DIAG_ENABLE
if (otPlatDiagModeGet())
{
otPlatDiagRadioTransmitDone(aInstance, &sTransmitFrame, OT_ERROR_NONE);
}
else
#endif
{
otPlatRadioTxDone(aInstance, &sTransmitFrame, NULL, OT_ERROR_NONE);
}
}
#else
// Wait for echo radio in virtual time mode.
sTxWait = true;
#endif // OPENTHREAD_SIMULATION_VIRTUAL_TIME
exit:
return;
}
bool platformRadioIsTransmitPending(void)
{
return sState == OT_RADIO_STATE_TRANSMIT && !sTxWait;
}
#if OPENTHREAD_SIMULATION_VIRTUAL_TIME
void platformRadioReceive(otInstance *aInstance, uint8_t *aBuf, uint16_t aBufLength)
{
assert(sizeof(sReceiveMessage) >= aBufLength);
memcpy(&sReceiveMessage, aBuf, aBufLength);
sReceiveFrame.mLength = (uint8_t)(aBufLength - 1);
radioReceive(aInstance);
}
#else
void platformRadioUpdateFdSet(fd_set *aReadFdSet, fd_set *aWriteFdSet, int *aMaxFd)
{
if (aReadFdSet != NULL && (sState != OT_RADIO_STATE_TRANSMIT || sTxWait))
{
FD_SET(sRxFd, aReadFdSet);
if (aMaxFd != NULL && *aMaxFd < sRxFd)
{
*aMaxFd = sRxFd;
}
}
if (aWriteFdSet != NULL && platformRadioIsTransmitPending())
{
FD_SET(sTxFd, aWriteFdSet);
if (aMaxFd != NULL && *aMaxFd < sTxFd)
{
*aMaxFd = sTxFd;
}
}
}
// no need to close in virtual time mode.
void platformRadioDeinit(void)
{
if (sRxFd != -1)
{
close(sRxFd);
}
if (sTxFd != -1)
{
close(sTxFd);
}
}
#endif // OPENTHREAD_SIMULATION_VIRTUAL_TIME
void platformRadioProcess(otInstance *aInstance, const fd_set *aReadFdSet, const fd_set *aWriteFdSet)
{
OT_UNUSED_VARIABLE(aReadFdSet);
OT_UNUSED_VARIABLE(aWriteFdSet);
#if OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0
if (FD_ISSET(sRxFd, aReadFdSet))
{
struct sockaddr_in sockaddr;
socklen_t len = sizeof(sockaddr);
ssize_t rval;
memset(&sockaddr, 0, sizeof(sockaddr));
rval =
recvfrom(sRxFd, (char *)&sReceiveMessage, sizeof(sReceiveMessage), 0, (struct sockaddr *)&sockaddr, &len);
if (rval > 0)
{
if (sockaddr.sin_port != htons(sPort))
{
sReceiveFrame.mLength = (uint16_t)(rval - 1);
radioReceive(aInstance);
}
}
else if (rval == 0)
{
// socket is closed, which should not happen
assert(false);
}
else if (errno != EINTR && errno != EAGAIN)
{
perror("recvfrom(sRxFd)");
exit(EXIT_FAILURE);
}
}
#endif
if (platformRadioIsTransmitPending())
{
radioSendMessage(aInstance);
}
}
void radioTransmit(struct RadioMessage *aMessage, const struct otRadioFrame *aFrame)
{
#if OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0
ssize_t rval;
struct sockaddr_in sockaddr;
memset(&sockaddr, 0, sizeof(sockaddr));
sockaddr.sin_family = AF_INET;
inet_pton(AF_INET, OT_RADIO_GROUP, &sockaddr.sin_addr);
sockaddr.sin_port = htons((uint16_t)(9000 + sPortOffset));
rval =
sendto(sTxFd, (const char *)aMessage, 1 + aFrame->mLength, 0, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (rval < 0)
{
perror("sendto(sTxFd)");
exit(EXIT_FAILURE);
}
#else // OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0
struct Event event;
event.mDelay = 1; // 1us for now
event.mEvent = OT_SIM_EVENT_RADIO_RECEIVED;
event.mDataLength = 1 + aFrame->mLength; // include channel in first byte
memcpy(event.mData, aMessage, event.mDataLength);
otSimSendEvent(&event);
#endif // OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0
}
void radioSendAck(void)
{
if (
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
// Determine if frame pending should be set
((otMacFrameIsVersion2015(&sReceiveFrame) && otMacFrameIsCommand(&sReceiveFrame)) ||
otMacFrameIsData(&sReceiveFrame) || otMacFrameIsDataRequest(&sReceiveFrame))
#else
otMacFrameIsDataRequest(&sReceiveFrame)
#endif
&& hasFramePending(&sReceiveFrame))
{
sReceiveFrame.mInfo.mRxInfo.mAckedWithFramePending = true;
}
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
// Use enh-ack for 802.15.4-2015 frames
if (otMacFrameIsVersion2015(&sReceiveFrame))
{
uint8_t linkMetricsDataLen = 0;
uint8_t *dataPtr = NULL;
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
uint8_t linkMetricsData[OT_ENH_PROBING_IE_DATA_MAX_SIZE];
otMacAddress macAddress;
otEXPECT(otMacFrameGetSrcAddr(&sReceiveFrame, &macAddress) == OT_ERROR_NONE);
linkMetricsDataLen = otLinkMetricsEnhAckGenData(&macAddress, sReceiveFrame.mInfo.mRxInfo.mLqi,
sReceiveFrame.mInfo.mRxInfo.mRssi, linkMetricsData);
if (linkMetricsDataLen > 0)
{
dataPtr = linkMetricsData;
}
#endif
sAckIeDataLength = generateAckIeData(dataPtr, linkMetricsDataLen);
otEXPECT(otMacFrameGenerateEnhAck(&sReceiveFrame, sReceiveFrame.mInfo.mRxInfo.mAckedWithFramePending,
sAckIeData, sAckIeDataLength, &sAckFrame) == OT_ERROR_NONE);
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
if (sCslPeriod > 0)
{
otMacFrameSetCslIe(&sAckFrame, (uint16_t)sCslPeriod, getCslPhase());
}
#endif
if (otMacFrameIsSecurityEnabled(&sAckFrame))
{
otEXPECT(radioProcessTransmitSecurity(&sAckFrame) == OT_ERROR_NONE);
}
}
else
#endif
{
otMacFrameGenerateImmAck(&sReceiveFrame, sReceiveFrame.mInfo.mRxInfo.mAckedWithFramePending, &sAckFrame);
}
sAckMessage.mChannel = sReceiveFrame.mChannel;
radioComputeCrc(&sAckMessage, sAckFrame.mLength);
radioTransmit(&sAckMessage, &sAckFrame);
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
exit:
#endif
return;
}
void radioProcessFrame(otInstance *aInstance)
{
otError error = OT_ERROR_NONE;
otMacAddress macAddress;
OT_UNUSED_VARIABLE(macAddress);
sReceiveFrame.mInfo.mRxInfo.mRssi = -20;
sReceiveFrame.mInfo.mRxInfo.mLqi = OT_RADIO_LQI_NONE;
sReceiveFrame.mInfo.mRxInfo.mAckedWithFramePending = false;
sReceiveFrame.mInfo.mRxInfo.mAckedWithSecEnhAck = false;
otEXPECT(sPromiscuous == false);
otEXPECT_ACTION(otMacFrameDoesAddrMatch(&sReceiveFrame, sPanid, sShortAddress, &sExtAddress),
error = OT_ERROR_ABORT);
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
otEXPECT_ACTION(otMacFrameGetSrcAddr(&sReceiveFrame, &macAddress) == OT_ERROR_NONE, error = OT_ERROR_PARSE);
#endif
// generate acknowledgment
if (otMacFrameIsAckRequested(&sReceiveFrame))
{
radioSendAck();
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
if (otMacFrameIsSecurityEnabled(&sAckFrame))
{
sReceiveFrame.mInfo.mRxInfo.mAckedWithSecEnhAck = true;
sReceiveFrame.mInfo.mRxInfo.mAckFrameCounter = otMacFrameGetFrameCounter(&sAckFrame);
}
#endif // OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
}
exit:
if (error != OT_ERROR_ABORT)
{
#if OPENTHREAD_CONFIG_DIAG_ENABLE
if (otPlatDiagModeGet())
{
otPlatDiagRadioReceiveDone(aInstance, error == OT_ERROR_NONE ? &sReceiveFrame : NULL, error);
}
else
#endif
{
otPlatRadioReceiveDone(aInstance, error == OT_ERROR_NONE ? &sReceiveFrame : NULL, error);
}
}
}
void otPlatRadioEnableSrcMatch(otInstance *aInstance, bool aEnable)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
sSrcMatchEnabled = aEnable;
}
otError otPlatRadioEnergyScan(otInstance *aInstance, uint8_t aScanChannel, uint16_t aScanDuration)
{
OT_UNUSED_VARIABLE(aInstance);
OT_UNUSED_VARIABLE(aScanChannel);
OT_UNUSED_VARIABLE(aScanDuration);
assert(aInstance != NULL);
assert(aScanChannel >= SIM_RADIO_CHANNEL_MIN && aScanChannel <= SIM_RADIO_CHANNEL_MAX);
assert(aScanDuration > 0);
return OT_ERROR_NOT_IMPLEMENTED;
}
otError otPlatRadioGetTransmitPower(otInstance *aInstance, int8_t *aPower)
{
OT_UNUSED_VARIABLE(aInstance);
int8_t maxPower = sChannelMaxTransmitPower[sCurrentChannel - kMinChannel];
assert(aInstance != NULL);
*aPower = sTxPower < maxPower ? sTxPower : maxPower;
return OT_ERROR_NONE;
}
otError otPlatRadioSetTransmitPower(otInstance *aInstance, int8_t aPower)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
sTxPower = aPower;
return OT_ERROR_NONE;
}
otError otPlatRadioGetCcaEnergyDetectThreshold(otInstance *aInstance, int8_t *aThreshold)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
*aThreshold = sCcaEdThresh;
return OT_ERROR_NONE;
}
otError otPlatRadioSetCcaEnergyDetectThreshold(otInstance *aInstance, int8_t aThreshold)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
sCcaEdThresh = aThreshold;
return OT_ERROR_NONE;
}
otError otPlatRadioGetFemLnaGain(otInstance *aInstance, int8_t *aGain)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL && aGain != NULL);
*aGain = sLnaGain;
return OT_ERROR_NONE;
}
otError otPlatRadioSetFemLnaGain(otInstance *aInstance, int8_t aGain)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
sLnaGain = aGain;
return OT_ERROR_NONE;
}
int8_t otPlatRadioGetReceiveSensitivity(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
return SIM_RECEIVE_SENSITIVITY;
}
otRadioState otPlatRadioGetState(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
return sState;
}
#if OPENTHREAD_CONFIG_PLATFORM_RADIO_COEX_ENABLE
otError otPlatRadioSetCoexEnabled(otInstance *aInstance, bool aEnabled)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
sRadioCoexEnabled = aEnabled;
return OT_ERROR_NONE;
}
bool otPlatRadioIsCoexEnabled(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
assert(aInstance != NULL);
return sRadioCoexEnabled;
}
otError otPlatRadioGetCoexMetrics(otInstance *aInstance, otRadioCoexMetrics *aCoexMetrics)
{
OT_UNUSED_VARIABLE(aInstance);
otError error = OT_ERROR_NONE;
assert(aInstance != NULL);
otEXPECT_ACTION(aCoexMetrics != NULL, error = OT_ERROR_INVALID_ARGS);
memset(aCoexMetrics, 0, sizeof(otRadioCoexMetrics));
aCoexMetrics->mStopped = false;
aCoexMetrics->mNumGrantGlitch = 1;
aCoexMetrics->mNumTxRequest = 2;
aCoexMetrics->mNumTxGrantImmediate = 3;
aCoexMetrics->mNumTxGrantWait = 4;
aCoexMetrics->mNumTxGrantWaitActivated = 5;
aCoexMetrics->mNumTxGrantWaitTimeout = 6;
aCoexMetrics->mNumTxGrantDeactivatedDuringRequest = 7;
aCoexMetrics->mNumTxDelayedGrant = 8;
aCoexMetrics->mAvgTxRequestToGrantTime = 9;
aCoexMetrics->mNumRxRequest = 10;
aCoexMetrics->mNumRxGrantImmediate = 11;
aCoexMetrics->mNumRxGrantWait = 12;
aCoexMetrics->mNumRxGrantWaitActivated = 13;
aCoexMetrics->mNumRxGrantWaitTimeout = 14;
aCoexMetrics->mNumRxGrantDeactivatedDuringRequest = 15;
aCoexMetrics->mNumRxDelayedGrant = 16;
aCoexMetrics->mAvgRxRequestToGrantTime = 17;
aCoexMetrics->mNumRxGrantNone = 18;
exit:
return error;
}
#endif
uint64_t otPlatRadioGetNow(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
return otPlatTimeGet();
}
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
static uint8_t generateAckIeData(uint8_t *aLinkMetricsIeData, uint8_t aLinkMetricsIeDataLen)
{
OT_UNUSED_VARIABLE(aLinkMetricsIeData);
OT_UNUSED_VARIABLE(aLinkMetricsIeDataLen);
uint8_t offset = 0;
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
if (sCslPeriod > 0)
{
offset += otMacFrameGenerateCslIeTemplate(sAckIeData);
}
#endif
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
if (aLinkMetricsIeData != NULL && aLinkMetricsIeDataLen > 0)
{
offset += otMacFrameGenerateEnhAckProbingIe(sAckIeData, aLinkMetricsIeData, aLinkMetricsIeDataLen);
}
#endif
return offset;
}
#endif
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
otError otPlatRadioEnableCsl(otInstance * aInstance,
uint32_t aCslPeriod,
otShortAddress aShortAddr,
const otExtAddress *aExtAddr)
{
OT_UNUSED_VARIABLE(aInstance);
OT_UNUSED_VARIABLE(aShortAddr);
OT_UNUSED_VARIABLE(aExtAddr);
otError error = OT_ERROR_NONE;
sCslPeriod = aCslPeriod;
return error;
}
void otPlatRadioUpdateCslSampleTime(otInstance *aInstance, uint32_t aCslSampleTime)
{
OT_UNUSED_VARIABLE(aInstance);
sCslSampleTime = aCslSampleTime;
}
uint8_t otPlatRadioGetCslAccuracy(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
return 0;
}
#endif // OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
void otPlatRadioSetMacKey(otInstance * aInstance,
uint8_t aKeyIdMode,
uint8_t aKeyId,
const otMacKeyMaterial *aPrevKey,
const otMacKeyMaterial *aCurrKey,
const otMacKeyMaterial *aNextKey,
otRadioKeyType aKeyType)
{
OT_UNUSED_VARIABLE(aInstance);
OT_UNUSED_VARIABLE(aKeyIdMode);
otEXPECT(aPrevKey != NULL && aCurrKey != NULL && aNextKey != NULL);
sKeyId = aKeyId;
sKeyType = aKeyType;
memcpy(&sPrevKey, aPrevKey, sizeof(otMacKeyMaterial));
memcpy(&sCurrKey, aCurrKey, sizeof(otMacKeyMaterial));
memcpy(&sNextKey, aNextKey, sizeof(otMacKeyMaterial));
exit:
return;
}
void otPlatRadioSetMacFrameCounter(otInstance *aInstance, uint32_t aMacFrameCounter)
{
OT_UNUSED_VARIABLE(aInstance);
sMacFrameCounter = aMacFrameCounter;
}
otError otPlatRadioSetChannelMaxTransmitPower(otInstance *aInstance, uint8_t aChannel, int8_t aMaxPower)
{
OT_UNUSED_VARIABLE(aInstance);
otError error = OT_ERROR_NONE;
otEXPECT_ACTION(aChannel >= kMinChannel && aChannel <= kMaxChannel, error = OT_ERROR_INVALID_ARGS);
sChannelMaxTransmitPower[aChannel - kMinChannel] = aMaxPower;
exit:
return error;
}
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
otError otPlatRadioConfigureEnhAckProbing(otInstance * aInstance,
otLinkMetrics aLinkMetrics,
const otShortAddress aShortAddress,
const otExtAddress * aExtAddress)
{
OT_UNUSED_VARIABLE(aInstance);
return otLinkMetricsConfigureEnhAckProbing(aShortAddress, aExtAddress, aLinkMetrics);
}
#endif
otError otPlatRadioSetRegion(otInstance *aInstance, uint16_t aRegionCode)
{
OT_UNUSED_VARIABLE(aInstance);
sRegionCode = aRegionCode;
return OT_ERROR_NONE;
}
otError otPlatRadioGetRegion(otInstance *aInstance, uint16_t *aRegionCode)
{
OT_UNUSED_VARIABLE(aInstance);
otError error = OT_ERROR_NONE;
otEXPECT_ACTION(aRegionCode != NULL, error = OT_ERROR_INVALID_ARGS);
*aRegionCode = sRegionCode;
exit:
return error;
}