blob: cdb8e0a7b7c22844e1c8a4c2af77ba20912a64e8 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "build.h"
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <functional>
#if defined(__SVR4) && defined(__sun)
#include <sys/termios.h>
#endif
#include "build_log.h"
#include "debug_flags.h"
#include "depfile_parser.h"
#include "deps_log.h"
#include "disk_interface.h"
#include "graph.h"
#include "msvc_helper.h"
#include "state.h"
#include "subprocess.h"
#include "util.h"
namespace {
/// A CommandRunner that doesn't actually run the commands.
struct DryRunCommandRunner : public CommandRunner {
virtual ~DryRunCommandRunner() {}
// Overridden from CommandRunner:
virtual bool CanRunMore();
virtual bool StartCommand(Edge* edge);
virtual bool WaitForCommand(Result* result);
private:
queue<Edge*> finished_;
};
bool DryRunCommandRunner::CanRunMore() {
return true;
}
bool DryRunCommandRunner::StartCommand(Edge* edge) {
finished_.push(edge);
return true;
}
bool DryRunCommandRunner::WaitForCommand(Result* result) {
if (finished_.empty())
return false;
result->status = ExitSuccess;
result->edge = finished_.front();
finished_.pop();
return true;
}
} // namespace
BuildStatus::BuildStatus(const BuildConfig& config)
: config_(config),
start_time_millis_(GetTimeMillis()),
started_edges_(0), finished_edges_(0), total_edges_(0),
progress_status_format_(NULL),
overall_rate_(), current_rate_(config.parallelism) {
// Don't do anything fancy in verbose mode.
if (config_.verbosity != BuildConfig::NORMAL)
printer_.set_smart_terminal(false);
progress_status_format_ = getenv("NINJA_STATUS");
if (!progress_status_format_)
progress_status_format_ = "[%s/%t] ";
}
void BuildStatus::PlanHasTotalEdges(int total) {
total_edges_ = total;
}
void BuildStatus::BuildEdgeStarted(Edge* edge) {
int start_time = (int)(GetTimeMillis() - start_time_millis_);
running_edges_.insert(make_pair(edge, start_time));
++started_edges_;
PrintStatus(edge);
if (edge->use_console())
printer_.SetConsoleLocked(true);
}
void BuildStatus::BuildEdgeFinished(Edge* edge,
bool success,
const string& output,
int* start_time,
int* end_time) {
int64_t now = GetTimeMillis();
++finished_edges_;
RunningEdgeMap::iterator i = running_edges_.find(edge);
*start_time = i->second;
*end_time = (int)(now - start_time_millis_);
running_edges_.erase(i);
if (edge->use_console())
printer_.SetConsoleLocked(false);
if (config_.verbosity == BuildConfig::QUIET)
return;
if (!edge->use_console() && printer_.is_smart_terminal())
PrintStatus(edge);
// Print the command that is spewing before printing its output.
if (!success)
printer_.PrintOnNewLine("FAILED: " + edge->EvaluateCommand() + "\n");
if (!output.empty()) {
// ninja sets stdout and stderr of subprocesses to a pipe, to be able to
// check if the output is empty. Some compilers, e.g. clang, check
// isatty(stderr) to decide if they should print colored output.
// To make it possible to use colored output with ninja, subprocesses should
// be run with a flag that forces them to always print color escape codes.
// To make sure these escape codes don't show up in a file if ninja's output
// is piped to a file, ninja strips ansi escape codes again if it's not
// writing to a |smart_terminal_|.
// (Launching subprocesses in pseudo ttys doesn't work because there are
// only a few hundred available on some systems, and ninja can launch
// thousands of parallel compile commands.)
// TODO: There should be a flag to disable escape code stripping.
string final_output;
if (!printer_.is_smart_terminal())
final_output = StripAnsiEscapeCodes(output);
else
final_output = output;
printer_.PrintOnNewLine(final_output);
}
}
void BuildStatus::BuildFinished() {
printer_.SetConsoleLocked(false);
printer_.PrintOnNewLine("");
}
string BuildStatus::FormatProgressStatus(
const char* progress_status_format) const {
string out;
char buf[32];
int percent;
for (const char* s = progress_status_format; *s != '\0'; ++s) {
if (*s == '%') {
++s;
switch (*s) {
case '%':
out.push_back('%');
break;
// Started edges.
case 's':
snprintf(buf, sizeof(buf), "%d", started_edges_);
out += buf;
break;
// Total edges.
case 't':
snprintf(buf, sizeof(buf), "%d", total_edges_);
out += buf;
break;
// Running edges.
case 'r':
snprintf(buf, sizeof(buf), "%d", started_edges_ - finished_edges_);
out += buf;
break;
// Unstarted edges.
case 'u':
snprintf(buf, sizeof(buf), "%d", total_edges_ - started_edges_);
out += buf;
break;
// Finished edges.
case 'f':
snprintf(buf, sizeof(buf), "%d", finished_edges_);
out += buf;
break;
// Overall finished edges per second.
case 'o':
overall_rate_.UpdateRate(finished_edges_);
snprinfRate(overall_rate_.rate(), buf, "%.1f");
out += buf;
break;
// Current rate, average over the last '-j' jobs.
case 'c':
current_rate_.UpdateRate(finished_edges_);
snprinfRate(current_rate_.rate(), buf, "%.1f");
out += buf;
break;
// Percentage
case 'p':
percent = (100 * started_edges_) / total_edges_;
snprintf(buf, sizeof(buf), "%3i%%", percent);
out += buf;
break;
case 'e': {
double elapsed = overall_rate_.Elapsed();
snprintf(buf, sizeof(buf), "%.3f", elapsed);
out += buf;
break;
}
default:
Fatal("unknown placeholder '%%%c' in $NINJA_STATUS", *s);
return "";
}
} else {
out.push_back(*s);
}
}
return out;
}
void BuildStatus::PrintStatus(Edge* edge) {
if (config_.verbosity == BuildConfig::QUIET)
return;
bool force_full_command = config_.verbosity == BuildConfig::VERBOSE;
string to_print = edge->GetBinding("description");
if (to_print.empty() || force_full_command)
to_print = edge->GetBinding("command");
if (finished_edges_ == 0) {
overall_rate_.Restart();
current_rate_.Restart();
}
to_print = FormatProgressStatus(progress_status_format_) + to_print;
printer_.Print(to_print,
force_full_command ? LinePrinter::FULL : LinePrinter::ELIDE);
}
Plan::Plan() : command_edges_(0), wanted_edges_(0) {}
bool Plan::AddTarget(Node* node, string* err) {
vector<Node*> stack;
return AddSubTarget(node, &stack, err);
}
bool Plan::AddSubTarget(Node* node, vector<Node*>* stack, string* err) {
Edge* edge = node->in_edge();
if (!edge) { // Leaf node.
if (node->dirty()) {
string referenced;
if (!stack->empty())
referenced = ", needed by '" + stack->back()->path() + "',";
*err = "'" + node->path() + "'" + referenced + " missing "
"and no known rule to make it";
}
return false;
}
if (CheckDependencyCycle(node, *stack, err))
return false;
if (edge->outputs_ready())
return false; // Don't need to do anything.
// If an entry in want_ does not already exist for edge, create an entry which
// maps to false, indicating that we do not want to build this entry itself.
pair<map<Edge*, bool>::iterator, bool> want_ins =
want_.insert(make_pair(edge, false));
bool& want = want_ins.first->second;
// If we do need to build edge and we haven't already marked it as wanted,
// mark it now.
if (node->dirty() && !want) {
want = true;
++wanted_edges_;
if (edge->AllInputsReady())
ScheduleWork(edge);
if (!edge->is_phony())
++command_edges_;
}
if (!want_ins.second)
return true; // We've already processed the inputs.
stack->push_back(node);
for (vector<Node*>::iterator i = edge->inputs_.begin();
i != edge->inputs_.end(); ++i) {
if (!AddSubTarget(*i, stack, err) && !err->empty())
return false;
}
assert(stack->back() == node);
stack->pop_back();
return true;
}
bool Plan::CheckDependencyCycle(Node* node, const vector<Node*>& stack,
string* err) {
vector<Node*>::const_iterator start = stack.begin();
while (start != stack.end() && (*start)->in_edge() != node->in_edge())
++start;
if (start == stack.end())
return false;
// Build error string for the cycle.
vector<Node*> cycle(start, stack.end());
cycle.push_back(node);
if (cycle.front() != cycle.back()) {
// Consider
// build a b: cat c
// build c: cat a
// stack will contain [b, c], node will be a. To not print b -> c -> a,
// shift by one to get c -> a -> c which makes the cycle clear.
cycle.erase(cycle.begin());
cycle.push_back(cycle.front());
assert(cycle.front() == cycle.back());
}
*err = "dependency cycle: ";
for (vector<Node*>::const_iterator i = cycle.begin(); i != cycle.end(); ++i) {
if (i != cycle.begin())
err->append(" -> ");
err->append((*i)->path());
}
return true;
}
Edge* Plan::FindWork() {
if (ready_.empty())
return NULL;
set<Edge*>::iterator e = ready_.begin();
Edge* edge = *e;
ready_.erase(e);
return edge;
}
void Plan::ScheduleWork(Edge* edge) {
Pool* pool = edge->pool();
if (pool->ShouldDelayEdge()) {
// The graph is not completely clean. Some Nodes have duplicate Out edges.
// We need to explicitly ignore these here, otherwise their work will get
// scheduled twice (see https://github.com/martine/ninja/pull/519)
if (ready_.count(edge)) {
return;
}
pool->DelayEdge(edge);
pool->RetrieveReadyEdges(&ready_);
} else {
pool->EdgeScheduled(*edge);
ready_.insert(edge);
}
}
void Plan::EdgeFinished(Edge* edge) {
map<Edge*, bool>::iterator e = want_.find(edge);
assert(e != want_.end());
bool directly_wanted = e->second;
if (directly_wanted)
--wanted_edges_;
want_.erase(e);
edge->outputs_ready_ = true;
// See if this job frees up any delayed jobs.
if (directly_wanted)
edge->pool()->EdgeFinished(*edge);
edge->pool()->RetrieveReadyEdges(&ready_);
// Check off any nodes we were waiting for with this edge.
for (vector<Node*>::iterator o = edge->outputs_.begin();
o != edge->outputs_.end(); ++o) {
NodeFinished(*o);
}
}
void Plan::NodeFinished(Node* node) {
// See if we we want any edges from this node.
for (vector<Edge*>::const_iterator oe = node->out_edges().begin();
oe != node->out_edges().end(); ++oe) {
map<Edge*, bool>::iterator want_e = want_.find(*oe);
if (want_e == want_.end())
continue;
// See if the edge is now ready.
if ((*oe)->AllInputsReady()) {
if (want_e->second) {
ScheduleWork(*oe);
} else {
// We do not need to build this edge, but we might need to build one of
// its dependents.
EdgeFinished(*oe);
}
}
}
}
bool Plan::CleanNode(DependencyScan* scan, Node* node, string* err) {
node->set_dirty(false);
for (vector<Edge*>::const_iterator oe = node->out_edges().begin();
oe != node->out_edges().end(); ++oe) {
// Don't process edges that we don't actually want.
map<Edge*, bool>::iterator want_e = want_.find(*oe);
if (want_e == want_.end() || !want_e->second)
continue;
// Don't attempt to clean an edge if it failed to load deps.
if ((*oe)->deps_missing_)
continue;
// If all non-order-only inputs for this edge are now clean,
// we might have changed the dirty state of the outputs.
vector<Node*>::iterator
begin = (*oe)->inputs_.begin(),
end = (*oe)->inputs_.end() - (*oe)->order_only_deps_;
if (find_if(begin, end, mem_fun(&Node::dirty)) == end) {
// Recompute most_recent_input.
Node* most_recent_input = NULL;
for (vector<Node*>::iterator i = begin; i != end; ++i) {
if (!most_recent_input || (*i)->mtime() > most_recent_input->mtime())
most_recent_input = *i;
}
// Now, this edge is dirty if any of the outputs are dirty.
// If the edge isn't dirty, clean the outputs and mark the edge as not
// wanted.
bool outputs_dirty = false;
if (!scan->RecomputeOutputsDirty(*oe, most_recent_input,
&outputs_dirty, err)) {
return false;
}
if (!outputs_dirty) {
for (vector<Node*>::iterator o = (*oe)->outputs_.begin();
o != (*oe)->outputs_.end(); ++o) {
if (!CleanNode(scan, *o, err))
return false;
}
want_e->second = false;
--wanted_edges_;
if (!(*oe)->is_phony())
--command_edges_;
}
}
}
return true;
}
void Plan::Dump() {
printf("pending: %d\n", (int)want_.size());
for (map<Edge*, bool>::iterator e = want_.begin(); e != want_.end(); ++e) {
if (e->second)
printf("want ");
e->first->Dump();
}
printf("ready: %d\n", (int)ready_.size());
}
struct RealCommandRunner : public CommandRunner {
explicit RealCommandRunner(const BuildConfig& config) : config_(config) {}
virtual ~RealCommandRunner() {}
virtual bool CanRunMore();
virtual bool StartCommand(Edge* edge);
virtual bool WaitForCommand(Result* result);
virtual vector<Edge*> GetActiveEdges();
virtual void Abort();
const BuildConfig& config_;
SubprocessSet subprocs_;
map<Subprocess*, Edge*> subproc_to_edge_;
};
vector<Edge*> RealCommandRunner::GetActiveEdges() {
vector<Edge*> edges;
for (map<Subprocess*, Edge*>::iterator e = subproc_to_edge_.begin();
e != subproc_to_edge_.end(); ++e)
edges.push_back(e->second);
return edges;
}
void RealCommandRunner::Abort() {
subprocs_.Clear();
}
bool RealCommandRunner::CanRunMore() {
size_t subproc_number =
subprocs_.running_.size() + subprocs_.finished_.size();
return (int)subproc_number < config_.parallelism
&& ((subprocs_.running_.empty() || config_.max_load_average <= 0.0f)
|| GetLoadAverage() < config_.max_load_average);
}
bool RealCommandRunner::StartCommand(Edge* edge) {
string command = edge->EvaluateCommand();
Subprocess* subproc = subprocs_.Add(command, edge->use_console());
if (!subproc)
return false;
subproc_to_edge_.insert(make_pair(subproc, edge));
return true;
}
bool RealCommandRunner::WaitForCommand(Result* result) {
Subprocess* subproc;
while ((subproc = subprocs_.NextFinished()) == NULL) {
bool interrupted = subprocs_.DoWork();
if (interrupted)
return false;
}
result->status = subproc->Finish();
result->output = subproc->GetOutput();
map<Subprocess*, Edge*>::iterator e = subproc_to_edge_.find(subproc);
result->edge = e->second;
subproc_to_edge_.erase(e);
delete subproc;
return true;
}
Builder::Builder(State* state, const BuildConfig& config,
BuildLog* build_log, DepsLog* deps_log,
DiskInterface* disk_interface)
: state_(state), config_(config), disk_interface_(disk_interface),
scan_(state, build_log, deps_log, disk_interface) {
status_ = new BuildStatus(config);
}
Builder::~Builder() {
Cleanup();
}
void Builder::Cleanup() {
if (command_runner_.get()) {
vector<Edge*> active_edges = command_runner_->GetActiveEdges();
command_runner_->Abort();
for (vector<Edge*>::iterator e = active_edges.begin();
e != active_edges.end(); ++e) {
string depfile = (*e)->GetUnescapedDepfile();
for (vector<Node*>::iterator o = (*e)->outputs_.begin();
o != (*e)->outputs_.end(); ++o) {
// Only delete this output if it was actually modified. This is
// important for things like the generator where we don't want to
// delete the manifest file if we can avoid it. But if the rule
// uses a depfile, always delete. (Consider the case where we
// need to rebuild an output because of a modified header file
// mentioned in a depfile, and the command touches its depfile
// but is interrupted before it touches its output file.)
string err;
TimeStamp new_mtime = disk_interface_->Stat((*o)->path(), &err);
if (new_mtime == -1) // Log and ignore Stat() errors.
Error("%s", err.c_str());
if (!depfile.empty() || (*o)->mtime() != new_mtime)
disk_interface_->RemoveFile((*o)->path());
}
if (!depfile.empty())
disk_interface_->RemoveFile(depfile);
}
}
}
Node* Builder::AddTarget(const string& name, string* err) {
Node* node = state_->LookupNode(name);
if (!node) {
*err = "unknown target: '" + name + "'";
return NULL;
}
if (!AddTarget(node, err))
return NULL;
return node;
}
bool Builder::AddTarget(Node* node, string* err) {
if (Edge* in_edge = node->in_edge()) {
if (!scan_.RecomputeDirty(in_edge, err))
return false;
if (in_edge->outputs_ready())
return true; // Nothing to do.
}
if (!plan_.AddTarget(node, err))
return false;
return true;
}
bool Builder::AlreadyUpToDate() const {
return !plan_.more_to_do();
}
bool Builder::Build(string* err) {
assert(!AlreadyUpToDate());
status_->PlanHasTotalEdges(plan_.command_edge_count());
int pending_commands = 0;
int failures_allowed = config_.failures_allowed;
// Set up the command runner if we haven't done so already.
if (!command_runner_.get()) {
if (config_.dry_run)
command_runner_.reset(new DryRunCommandRunner);
else
command_runner_.reset(new RealCommandRunner(config_));
}
// This main loop runs the entire build process.
// It is structured like this:
// First, we attempt to start as many commands as allowed by the
// command runner.
// Second, we attempt to wait for / reap the next finished command.
while (plan_.more_to_do()) {
// See if we can start any more commands.
if (failures_allowed && command_runner_->CanRunMore()) {
if (Edge* edge = plan_.FindWork()) {
if (!StartEdge(edge, err)) {
Cleanup();
status_->BuildFinished();
return false;
}
if (edge->is_phony()) {
plan_.EdgeFinished(edge);
} else {
++pending_commands;
}
// We made some progress; go back to the main loop.
continue;
}
}
// See if we can reap any finished commands.
if (pending_commands) {
CommandRunner::Result result;
if (!command_runner_->WaitForCommand(&result) ||
result.status == ExitInterrupted) {
Cleanup();
status_->BuildFinished();
*err = "interrupted by user";
return false;
}
--pending_commands;
if (!FinishCommand(&result, err)) {
Cleanup();
status_->BuildFinished();
return false;
}
if (!result.success()) {
if (failures_allowed)
failures_allowed--;
}
// We made some progress; start the main loop over.
continue;
}
// If we get here, we cannot make any more progress.
status_->BuildFinished();
if (failures_allowed == 0) {
if (config_.failures_allowed > 1)
*err = "subcommands failed";
else
*err = "subcommand failed";
} else if (failures_allowed < config_.failures_allowed)
*err = "cannot make progress due to previous errors";
else
*err = "stuck [this is a bug]";
return false;
}
status_->BuildFinished();
return true;
}
bool Builder::StartEdge(Edge* edge, string* err) {
METRIC_RECORD("StartEdge");
if (edge->is_phony())
return true;
status_->BuildEdgeStarted(edge);
// Create directories necessary for outputs.
// XXX: this will block; do we care?
for (vector<Node*>::iterator o = edge->outputs_.begin();
o != edge->outputs_.end(); ++o) {
if (!disk_interface_->MakeDirs((*o)->path()))
return false;
}
// Create response file, if needed
// XXX: this may also block; do we care?
string rspfile = edge->GetUnescapedRspfile();
if (!rspfile.empty()) {
string content = edge->GetBinding("rspfile_content");
if (!disk_interface_->WriteFile(rspfile, content))
return false;
}
// start command computing and run it
if (!command_runner_->StartCommand(edge)) {
err->assign("command '" + edge->EvaluateCommand() + "' failed.");
return false;
}
return true;
}
bool Builder::FinishCommand(CommandRunner::Result* result, string* err) {
METRIC_RECORD("FinishCommand");
Edge* edge = result->edge;
// First try to extract dependencies from the result, if any.
// This must happen first as it filters the command output (we want
// to filter /showIncludes output, even on compile failure) and
// extraction itself can fail, which makes the command fail from a
// build perspective.
vector<Node*> deps_nodes;
string deps_type = edge->GetBinding("deps");
const string deps_prefix = edge->GetBinding("msvc_deps_prefix");
if (!deps_type.empty()) {
string extract_err;
if (!ExtractDeps(result, deps_type, deps_prefix, &deps_nodes,
&extract_err) &&
result->success()) {
if (!result->output.empty())
result->output.append("\n");
result->output.append(extract_err);
result->status = ExitFailure;
}
}
int start_time, end_time;
status_->BuildEdgeFinished(edge, result->success(), result->output,
&start_time, &end_time);
// The rest of this function only applies to successful commands.
if (!result->success())
return true;
// Restat the edge outputs, if necessary.
TimeStamp restat_mtime = 0;
if (edge->GetBindingBool("restat") && !config_.dry_run) {
bool node_cleaned = false;
for (vector<Node*>::iterator o = edge->outputs_.begin();
o != edge->outputs_.end(); ++o) {
TimeStamp new_mtime = disk_interface_->Stat((*o)->path(), err);
if (new_mtime == -1)
return false;
if ((*o)->mtime() == new_mtime) {
// The rule command did not change the output. Propagate the clean
// state through the build graph.
// Note that this also applies to nonexistent outputs (mtime == 0).
if (!plan_.CleanNode(&scan_, *o, err))
return false;
node_cleaned = true;
}
}
if (node_cleaned) {
// If any output was cleaned, find the most recent mtime of any
// (existing) non-order-only input or the depfile.
for (vector<Node*>::iterator i = edge->inputs_.begin();
i != edge->inputs_.end() - edge->order_only_deps_; ++i) {
TimeStamp input_mtime = disk_interface_->Stat((*i)->path(), err);
if (input_mtime == -1)
return false;
if (input_mtime > restat_mtime)
restat_mtime = input_mtime;
}
string depfile = edge->GetUnescapedDepfile();
if (restat_mtime != 0 && deps_type.empty() && !depfile.empty()) {
TimeStamp depfile_mtime = disk_interface_->Stat(depfile, err);
if (depfile_mtime == -1)
return false;
if (depfile_mtime > restat_mtime)
restat_mtime = depfile_mtime;
}
// The total number of edges in the plan may have changed as a result
// of a restat.
status_->PlanHasTotalEdges(plan_.command_edge_count());
}
}
plan_.EdgeFinished(edge);
// Delete any left over response file.
string rspfile = edge->GetUnescapedRspfile();
if (!rspfile.empty() && !g_keep_rsp)
disk_interface_->RemoveFile(rspfile);
if (scan_.build_log()) {
if (!scan_.build_log()->RecordCommand(edge, start_time, end_time,
restat_mtime)) {
*err = string("Error writing to build log: ") + strerror(errno);
return false;
}
}
if (!deps_type.empty() && !config_.dry_run) {
assert(edge->outputs_.size() == 1 && "should have been rejected by parser");
Node* out = edge->outputs_[0];
TimeStamp deps_mtime = disk_interface_->Stat(out->path(), err);
if (deps_mtime == -1)
return false;
if (!scan_.deps_log()->RecordDeps(out, deps_mtime, deps_nodes)) {
*err = string("Error writing to deps log: ") + strerror(errno);
return false;
}
}
return true;
}
bool Builder::ExtractDeps(CommandRunner::Result* result,
const string& deps_type,
const string& deps_prefix,
vector<Node*>* deps_nodes,
string* err) {
#ifdef _WIN32
if (deps_type == "msvc") {
CLParser parser;
result->output = parser.Parse(result->output, deps_prefix);
for (set<string>::iterator i = parser.includes_.begin();
i != parser.includes_.end(); ++i) {
// ~0 is assuming that with MSVC-parsed headers, it's ok to always make
// all backslashes (as some of the slashes will certainly be backslashes
// anyway). This could be fixed if necessary with some additional
// complexity in IncludesNormalize::Relativize.
deps_nodes->push_back(state_->GetNode(*i, ~0u));
}
} else
#endif
if (deps_type == "gcc") {
string depfile = result->edge->GetUnescapedDepfile();
if (depfile.empty()) {
*err = string("edge with deps=gcc but no depfile makes no sense");
return false;
}
string content = disk_interface_->ReadFile(depfile, err);
if (!err->empty())
return false;
if (content.empty())
return true;
DepfileParser deps;
if (!deps.Parse(&content, err))
return false;
// XXX check depfile matches expected output.
deps_nodes->reserve(deps.ins_.size());
for (vector<StringPiece>::iterator i = deps.ins_.begin();
i != deps.ins_.end(); ++i) {
unsigned int slash_bits;
if (!CanonicalizePath(const_cast<char*>(i->str_), &i->len_, &slash_bits,
err))
return false;
deps_nodes->push_back(state_->GetNode(*i, slash_bits));
}
if (disk_interface_->RemoveFile(depfile) < 0) {
*err = string("deleting depfile: ") + strerror(errno) + string("\n");
return false;
}
} else {
Fatal("unknown deps type '%s'", deps_type.c_str());
}
return true;
}