blob: 88db5cd8fef891789fa1cba4496f86241ebfa381 [file] [log] [blame]
/*
* Copyright (C) 2021 Alyssa Rosenzweig <alyssa@rosenzweig.io>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __AGX_MINIFLOAT_H_
#define __AGX_MINIFLOAT_H_
#include <math.h>
#include "util/macros.h"
/* AGX includes an 8-bit floating-point format for small dyadic immediates,
* consisting of 3 bits for the exponent, 4 bits for the mantissa, and 1-bit
* for sign, in the usual order. Zero exponent has special handling. */
static inline float
agx_minifloat_decode(uint8_t imm)
{
float sign = (imm & 0x80) ? -1.0 : 1.0;
signed exp = (imm & 0x70) >> 4;
unsigned mantissa = (imm & 0xF);
if (exp)
return ldexpf(sign * (float) (mantissa | 0x10), exp - 7);
else
return ldexpf(sign * ((float) mantissa), -6);
}
/* Encodes a float. Results are only valid if the float can be represented
* exactly, if not the result of this function is UNDEFINED. signbit() is used
* to ensure -0.0 is handled correctly. */
static inline uint8_t
agx_minifloat_encode(float f)
{
unsigned sign = signbit(f) ? 0x80 : 0;
f = fabsf(f);
/* frac is in [0.5, 1) and f = frac * 2^exp */
int exp = 0;
float frac = frexpf(f, &exp);
if (f >= 0.25) {
unsigned mantissa = (frac * 32.0);
exp -= 5; /* 2^5 = 32 */
exp = CLAMP(exp + 7, 0, 7);
assert(mantissa >= 0x10 && mantissa < 0x20);
assert(exp >= 1);
return sign | (exp << 4) | (mantissa & 0xF);
} else {
unsigned mantissa = (f * 64.0f);
assert(mantissa < 0x10);
return sign | mantissa;
}
}
static inline bool
agx_minifloat_exact(float f)
{
float f_ = agx_minifloat_decode(agx_minifloat_encode(f));
return memcmp(&f, &f_, sizeof(float)) == 0;
}
#endif