blob: 4d538502ebcf3754e7f1704812e92e2b7090f926 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
#include "drm-uapi/drm_fourcc.h"
#include "anv_private.h"
#include "util/u_debug.h"
#include "vk_util.h"
#include "util/u_math.h"
#include "vk_format.h"
#define ANV_OFFSET_IMPLICIT UINT64_MAX
static const enum isl_surf_dim
vk_to_isl_surf_dim[] = {
[VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
[VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
[VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
};
static uint64_t MUST_CHECK UNUSED
memory_range_end(struct anv_image_memory_range memory_range)
{
assert(anv_is_aligned(memory_range.offset, memory_range.alignment));
return memory_range.offset + memory_range.size;
}
/**
* Get binding for VkImagePlaneMemoryRequirementsInfo,
* VkBindImagePlaneMemoryInfo and VkDeviceImageMemoryRequirements.
*/
static struct anv_image_binding *
image_aspect_to_binding(struct anv_image *image, VkImageAspectFlags aspect)
{
uint32_t plane = 0;
assert(image->disjoint);
if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
/* Spec requires special aspects for modifier images. */
assert(aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT ||
aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT ||
aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT ||
aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT);
/* We don't advertise DISJOINT for modifiers with aux, and therefore we
* don't handle queries of the modifier's "aux plane" here.
*/
assert(!isl_drm_modifier_has_aux(image->vk.drm_format_mod));
switch(aspect) {
case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT: plane = 0; break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT: plane = 1; break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT: plane = 2; break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT: plane = 3; break;
}
} else {
plane = anv_image_aspect_to_plane(image, aspect);
}
return &image->bindings[ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane];
}
/**
* Extend the memory binding's range by appending a new memory range with `size`
* and `alignment` at `offset`. Return the appended range.
*
* Offset is ignored if ANV_OFFSET_IMPLICIT.
*
* The given binding must not be ANV_IMAGE_MEMORY_BINDING_MAIN. The function
* converts to MAIN as needed.
*/
static VkResult MUST_CHECK
image_binding_grow(const struct anv_device *device,
struct anv_image *image,
enum anv_image_memory_binding binding,
uint64_t offset,
uint64_t size,
uint32_t alignment,
struct anv_image_memory_range *out_range)
{
/* We overwrite 'offset' but need to remember if it was implicit. */
const bool has_implicit_offset = (offset == ANV_OFFSET_IMPLICIT);
assert(size > 0);
assert(util_is_power_of_two_or_zero(alignment));
switch (binding) {
case ANV_IMAGE_MEMORY_BINDING_MAIN:
/* The caller must not pre-translate BINDING_PLANE_i to BINDING_MAIN. */
unreachable("ANV_IMAGE_MEMORY_BINDING_MAIN");
case ANV_IMAGE_MEMORY_BINDING_PLANE_0:
case ANV_IMAGE_MEMORY_BINDING_PLANE_1:
case ANV_IMAGE_MEMORY_BINDING_PLANE_2:
if (!image->disjoint)
binding = ANV_IMAGE_MEMORY_BINDING_MAIN;
break;
case ANV_IMAGE_MEMORY_BINDING_PRIVATE:
assert(offset == ANV_OFFSET_IMPLICIT);
break;
case ANV_IMAGE_MEMORY_BINDING_END:
unreachable("ANV_IMAGE_MEMORY_BINDING_END");
}
struct anv_image_memory_range *container =
&image->bindings[binding].memory_range;
if (has_implicit_offset) {
offset = align_u64(container->offset + container->size, alignment);
} else {
/* Offset must be validated because it comes from
* VkImageDrmFormatModifierExplicitCreateInfoEXT.
*/
if (unlikely(!anv_is_aligned(offset, alignment))) {
return vk_errorf(device,
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
"VkImageDrmFormatModifierExplicitCreateInfoEXT::"
"pPlaneLayouts[]::offset is misaligned");
}
/* We require that surfaces be added in memory-order. This simplifies the
* layout validation required by
* VkImageDrmFormatModifierExplicitCreateInfoEXT,
*/
if (unlikely(offset < container->size)) {
return vk_errorf(device,
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
"VkImageDrmFormatModifierExplicitCreateInfoEXT::"
"pPlaneLayouts[]::offset is too small");
}
}
if (__builtin_add_overflow(offset, size, &container->size)) {
if (has_implicit_offset) {
assert(!"overflow");
return vk_errorf(device, VK_ERROR_UNKNOWN,
"internal error: overflow in %s", __func__);
} else {
return vk_errorf(device,
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
"VkImageDrmFormatModifierExplicitCreateInfoEXT::"
"pPlaneLayouts[]::offset is too large");
}
}
container->alignment = MAX2(container->alignment, alignment);
*out_range = (struct anv_image_memory_range) {
.binding = binding,
.offset = offset,
.size = size,
.alignment = alignment,
};
return VK_SUCCESS;
}
/**
* Adjust range 'a' to contain range 'b'.
*
* For simplicity's sake, the offset of 'a' must be 0 and remains 0.
* If 'a' and 'b' target different bindings, then no merge occurs.
*/
static void
memory_range_merge(struct anv_image_memory_range *a,
const struct anv_image_memory_range b)
{
if (b.size == 0)
return;
if (a->binding != b.binding)
return;
assert(a->offset == 0);
assert(anv_is_aligned(a->offset, a->alignment));
assert(anv_is_aligned(b.offset, b.alignment));
a->alignment = MAX2(a->alignment, b.alignment);
a->size = MAX2(a->size, b.offset + b.size);
}
isl_surf_usage_flags_t
choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
VkImageUsageFlags vk_usage,
isl_surf_usage_flags_t isl_extra_usage,
VkImageAspectFlagBits aspect)
{
isl_surf_usage_flags_t isl_usage = isl_extra_usage;
if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
if (vk_usage & VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR)
isl_usage |= ISL_SURF_USAGE_CPB_BIT;
if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
/* Even if we're only using it for transfer operations, clears to depth and
* stencil images happen as depth and stencil so they need the right ISL
* usage bits or else things will fall apart.
*/
switch (aspect) {
case VK_IMAGE_ASPECT_DEPTH_BIT:
isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
break;
case VK_IMAGE_ASPECT_STENCIL_BIT:
isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
break;
case VK_IMAGE_ASPECT_COLOR_BIT:
case VK_IMAGE_ASPECT_PLANE_0_BIT:
case VK_IMAGE_ASPECT_PLANE_1_BIT:
case VK_IMAGE_ASPECT_PLANE_2_BIT:
break;
default:
unreachable("bad VkImageAspect");
}
if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
/* blorp implements transfers by sampling from the source image. */
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
}
if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
/* blorp implements transfers by rendering into the destination image.
* Only request this with color images, as we deal with depth/stencil
* formats differently. */
isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
}
return isl_usage;
}
static isl_tiling_flags_t
choose_isl_tiling_flags(const struct intel_device_info *devinfo,
const struct anv_image_create_info *anv_info,
const struct isl_drm_modifier_info *isl_mod_info,
bool legacy_scanout)
{
const VkImageCreateInfo *base_info = anv_info->vk_info;
isl_tiling_flags_t flags = 0;
#if defined(USE_MAGMA)
if (isl_mod_info) {
flags = 1 << isl_mod_info->tiling;
}
#else
assert((isl_mod_info != NULL) ==
(base_info->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT));
#endif
if (!flags) {
switch (base_info->tiling) {
default:
unreachable("bad VkImageTiling");
case VK_IMAGE_TILING_OPTIMAL:
flags = ISL_TILING_ANY_MASK;
break;
case VK_IMAGE_TILING_LINEAR:
flags = ISL_TILING_LINEAR_BIT;
break;
case VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT:
flags = 1 << isl_mod_info->tiling;
}
}
if (anv_info->isl_tiling_flags) {
assert(isl_mod_info == NULL);
flags &= anv_info->isl_tiling_flags;
}
if (legacy_scanout) {
isl_tiling_flags_t legacy_mask = ISL_TILING_LINEAR_BIT;
if (devinfo->has_tiling_uapi)
legacy_mask |= ISL_TILING_X_BIT;
flags &= legacy_mask;
}
assert(flags);
return flags;
}
/**
* Add the surface to the binding at the given offset.
*
* \see image_binding_grow()
*/
static VkResult MUST_CHECK
add_surface(struct anv_device *device,
struct anv_image *image,
struct anv_surface *surf,
enum anv_image_memory_binding binding,
uint64_t offset)
{
/* isl surface must be initialized */
assert(surf->isl.size_B > 0);
return image_binding_grow(device, image, binding, offset,
surf->isl.size_B,
surf->isl.alignment_B,
&surf->memory_range);
}
/**
* Do hardware limitations require the image plane to use a shadow surface?
*
* If hardware limitations force us to use a shadow surface, then the same
* limitations may also constrain the tiling of the primary surface; therefore
* parameter @a inout_primary_tiling_flags.
*
* If the image plane is a separate stencil plane and if the user provided
* VkImageStencilUsageCreateInfo, then @a usage must be stencilUsage.
*
* @see anv_image::planes[]::shadow_surface
*/
static bool
anv_image_plane_needs_shadow_surface(const struct intel_device_info *devinfo,
struct anv_format_plane plane_format,
VkImageTiling vk_tiling,
VkImageUsageFlags vk_plane_usage,
VkImageCreateFlags vk_create_flags,
isl_tiling_flags_t *inout_primary_tiling_flags)
{
if (devinfo->ver <= 8 &&
(vk_create_flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) &&
vk_tiling == VK_IMAGE_TILING_OPTIMAL) {
/* We must fallback to a linear surface because we may not be able to
* correctly handle the offsets if tiled. (On gfx9,
* RENDER_SURFACE_STATE::X/Y Offset are sufficient). To prevent garbage
* performance while texturing, we maintain a tiled shadow surface.
*/
assert(isl_format_is_compressed(plane_format.isl_format));
if (inout_primary_tiling_flags) {
*inout_primary_tiling_flags = ISL_TILING_LINEAR_BIT;
}
return true;
}
return false;
}
static bool
can_fast_clear_with_non_zero_color(const struct intel_device_info *devinfo,
const struct anv_image *image,
uint32_t plane,
const VkImageFormatListCreateInfo *fmt_list)
{
/* If we don't have an AUX surface where fast clears apply, we can return
* early.
*/
if (!isl_aux_usage_has_fast_clears(image->planes[plane].aux_usage))
return false;
/* On TGL, if a block of fragment shader outputs match the surface's clear
* color, the HW may convert them to fast-clears (see HSD 14010672564).
* This can lead to rendering corruptions if not handled properly. We
* restrict the clear color to zero to avoid issues that can occur with:
* - Texture view rendering (including blorp_copy calls)
* - Images with multiple levels or array layers
*/
if (devinfo->ver >= 12 &&
image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E)
return false;
/* Non mutable image, we can fast clear with any color supported by HW.
*/
if (!(image->vk.create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
return true;
/* Mutable image with no format list, we have to assume all formats */
if (!fmt_list || fmt_list->viewFormatCount == 0)
return false;
enum isl_format img_format = image->planes[plane].primary_surface.isl.format;
/* Check bit compatibility for clear color components */
for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
struct anv_format_plane view_format_plane =
anv_get_format_plane(devinfo, fmt_list->pViewFormats[i],
plane, image->vk.tiling);
enum isl_format view_format = view_format_plane.isl_format;
if (!isl_formats_have_same_bits_per_channel(img_format, view_format))
return false;
/* Switching between any of those format types on Gfx7/8 will cause
* problems https://gitlab.freedesktop.org/mesa/mesa/-/issues/1711
*/
if (devinfo->ver <= 8) {
if (isl_format_has_float_channel(img_format) &&
!isl_format_has_float_channel(view_format))
return false;
if (isl_format_has_int_channel(img_format) &&
!isl_format_has_int_channel(view_format))
return false;
if (isl_format_has_unorm_channel(img_format) &&
!isl_format_has_unorm_channel(view_format))
return false;
if (isl_format_has_snorm_channel(img_format) &&
!isl_format_has_snorm_channel(view_format))
return false;
}
}
return true;
}
/**
* Return true if the storage image could be used with atomics.
*
* If the image was created with an explicit format, we check it for typed
* atomic support. If MUTABLE_FORMAT_BIT is set, then we check the optional
* format list, seeing if /any/ of the formats support typed atomics. If no
* list is supplied, we fall back to using the bpb, as the application could
* make an image view with a format that does use atomics.
*/
static bool
storage_image_format_supports_atomic(const struct intel_device_info *devinfo,
VkImageCreateFlags create_flags,
enum isl_format format,
VkImageTiling vk_tiling,
const VkImageFormatListCreateInfo *fmt_list)
{
if (isl_format_supports_typed_atomics(devinfo, format))
return true;
if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
return false;
if (fmt_list) {
for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
enum isl_format view_format =
anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling);
if (isl_format_supports_typed_atomics(devinfo, view_format))
return true;
}
return false;
}
/* No explicit format list. Any 16/32/64bpp format could be used with atomics. */
unsigned bpb = isl_format_get_layout(format)->bpb;
return bpb == 16 || bpb == 32 || bpb == 64;
}
static enum isl_format
anv_get_isl_format_with_usage(const struct intel_device_info *devinfo,
VkFormat vk_format,
VkImageAspectFlagBits vk_aspect,
VkImageUsageFlags vk_usage,
VkImageTiling vk_tiling)
{
assert(util_bitcount(vk_usage) == 1);
struct anv_format_plane format =
anv_get_format_aspect(devinfo, vk_format, vk_aspect,
vk_tiling);
if ((vk_usage == VK_IMAGE_USAGE_STORAGE_BIT) &&
isl_is_storage_image_format(format.isl_format)) {
enum isl_format lowered_format =
isl_lower_storage_image_format(devinfo, format.isl_format);
/* If we lower the format, we should ensure either they both match in
* bits per channel or that there is no swizzle, because we can't use
* the swizzle for a different bit pattern.
*/
assert(isl_formats_have_same_bits_per_channel(lowered_format,
format.isl_format) ||
isl_swizzle_is_identity(format.swizzle));
format.isl_format = lowered_format;
}
return format.isl_format;
}
static bool
formats_ccs_e_compatible(const struct intel_device_info *devinfo,
VkImageCreateFlags create_flags,
enum isl_format format, VkImageTiling vk_tiling,
VkImageUsageFlags vk_usage,
const VkImageFormatListCreateInfo *fmt_list)
{
if (!isl_format_supports_ccs_e(devinfo, format))
return false;
/* For images created without MUTABLE_FORMAT_BIT set, we know that they will
* always be used with the original format. In particular, they will always
* be used with a format that supports color compression.
*/
if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
return true;
if (!fmt_list || fmt_list->viewFormatCount == 0)
return false;
for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
enum isl_format view_format =
anv_get_isl_format_with_usage(devinfo, fmt_list->pViewFormats[i],
VK_IMAGE_ASPECT_COLOR_BIT, vk_usage,
vk_tiling);
if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
return false;
}
return true;
}
bool
anv_formats_ccs_e_compatible(const struct intel_device_info *devinfo,
VkImageCreateFlags create_flags,
VkFormat vk_format, VkImageTiling vk_tiling,
VkImageUsageFlags vk_usage,
const VkImageFormatListCreateInfo *fmt_list)
{
enum isl_format format =
anv_get_isl_format_with_usage(devinfo, vk_format,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_USAGE_SAMPLED_BIT, vk_tiling);
if (!formats_ccs_e_compatible(devinfo, create_flags, format, vk_tiling,
VK_IMAGE_USAGE_SAMPLED_BIT, fmt_list))
return false;
if (vk_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
if (devinfo->verx10 < 125)
return false;
enum isl_format lower_format =
anv_get_isl_format_with_usage(devinfo, vk_format,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_USAGE_STORAGE_BIT, vk_tiling);
if (!isl_formats_are_ccs_e_compatible(devinfo, format, lower_format))
return false;
if (!formats_ccs_e_compatible(devinfo, create_flags, format, vk_tiling,
VK_IMAGE_USAGE_STORAGE_BIT, fmt_list))
return false;
/* Disable compression when surface can be potentially used for atomic
* operation.
*/
if (storage_image_format_supports_atomic(devinfo, create_flags, format,
vk_tiling, fmt_list))
return false;
}
return true;
}
/**
* For color images that have an auxiliary surface, request allocation for an
* additional buffer that mainly stores fast-clear values. Use of this buffer
* allows us to access the image's subresources while being aware of their
* fast-clear values in non-trivial cases (e.g., outside of a render pass in
* which a fast clear has occurred).
*
* In order to avoid having multiple clear colors for a single plane of an
* image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
* the first slice (level 0, layer 0). At the time of our testing (Jan 17,
* 2018), there were no known applications which would benefit from fast-
* clearing more than just the first slice.
*
* The fast clear portion of the image is laid out in the following order:
*
* * 1 or 4 dwords (depending on hardware generation) for the clear color
* * 1 dword for the anv_fast_clear_type of the clear color
* * On gfx9+, 1 dword per level and layer of the image (3D levels count
* multiple layers) in level-major order for compression state.
*
* For the purpose of discoverability, the algorithm used to manage
* compression and fast-clears is described here:
*
* * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
* all of the values in the fast clear portion of the image are initialized
* to default values.
*
* * On fast-clear, the clear value is written into surface state and also
* into the buffer and the fast clear type is set appropriately. Both
* setting the fast-clear value in the buffer and setting the fast-clear
* type happen from the GPU using MI commands.
*
* * Whenever a render or blorp operation is performed with CCS_E, we call
* genX(cmd_buffer_mark_image_written) to set the compression state to
* true (which is represented by UINT32_MAX).
*
* * On pipeline barrier transitions, the worst-case transition is computed
* from the image layouts. The command streamer inspects the fast clear
* type and compression state dwords and constructs a predicate. The
* worst-case resolve is performed with the given predicate and the fast
* clear and compression state is set accordingly.
*
* See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
* details on exactly what is allowed in what layouts.
*
* On gfx7-9, we do not have a concept of indirect clear colors in hardware.
* In order to deal with this, we have to do some clear color management.
*
* * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
* value from the buffer into the surface state with MI commands.
*
* * For any blorp operations, we pass the address to the clear value into
* blorp and it knows to copy the clear color.
*/
static VkResult MUST_CHECK
add_aux_state_tracking_buffer(struct anv_device *device,
struct anv_image *image,
uint32_t plane)
{
assert(image && device);
assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_NONE &&
image->vk.aspects & (VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV |
VK_IMAGE_ASPECT_DEPTH_BIT));
const unsigned clear_color_state_size = device->info->ver >= 10 ?
device->isl_dev.ss.clear_color_state_size :
device->isl_dev.ss.clear_value_size;
/* Clear color and fast clear type */
unsigned state_size = clear_color_state_size + 4;
/* We only need to track compression on CCS_E surfaces. */
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
for (uint32_t l = 0; l < image->vk.mip_levels; l++)
state_size += anv_minify(image->vk.extent.depth, l) * 4;
} else {
state_size += image->vk.mip_levels * image->vk.array_layers * 4;
}
}
enum anv_image_memory_binding binding =
ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane;
/* If an auxiliary surface is used for an externally-shareable image,
* we have to hide this from the memory of the image since other
* processes with access to the memory may not be aware of it or of
* its current state. So put that auxiliary data into a separate
* buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
*/
if (anv_image_is_externally_shared(image)) {
binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
}
/* We believe that 256B alignment may be sufficient, but we choose 4K due to
* lack of testing. And MI_LOAD/STORE operations require dword-alignment.
*/
return image_binding_grow(device, image, binding,
ANV_OFFSET_IMPLICIT, state_size, 4096,
&image->planes[plane].fast_clear_memory_range);
}
/**
* The return code indicates whether creation of the VkImage should continue
* or fail, not whether the creation of the aux surface succeeded. If the aux
* surface is not required (for example, by neither hardware nor DRM format
* modifier), then this may return VK_SUCCESS when creation of the aux surface
* fails.
*
* @param offset See add_surface()
*/
static VkResult
add_aux_surface_if_supported(struct anv_device *device,
struct anv_image *image,
uint32_t plane,
struct anv_format_plane plane_format,
const VkImageFormatListCreateInfo *fmt_list,
uint64_t offset,
uint32_t stride,
isl_surf_usage_flags_t isl_extra_usage_flags)
{
VkImageAspectFlags aspect = plane_format.aspect;
VkResult result;
bool ok;
/* The aux surface must not be already added. */
assert(!anv_surface_is_valid(&image->planes[plane].aux_surface));
if ((isl_extra_usage_flags & ISL_SURF_USAGE_DISABLE_AUX_BIT))
return VK_SUCCESS;
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
/* We don't advertise that depth buffers could be used as storage
* images.
*/
assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT));
/* Allow the user to control HiZ enabling. Disable by default on gfx7
* because resolves are not currently implemented pre-BDW.
*/
if (!(image->vk.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
/* It will never be used as an attachment, HiZ is pointless. */
return VK_SUCCESS;
}
if (image->vk.mip_levels > 1) {
anv_perf_warn(VK_LOG_OBJS(&image->vk.base), "Enable multi-LOD HiZ");
return VK_SUCCESS;
}
if (device->info->ver == 8 && image->vk.samples > 1) {
anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
"Enable gfx8 multisampled HiZ");
return VK_SUCCESS;
}
if (INTEL_DEBUG(DEBUG_NO_HIZ))
return VK_SUCCESS;
ok = isl_surf_get_hiz_surf(&device->isl_dev,
&image->planes[plane].primary_surface.isl,
&image->planes[plane].aux_surface.isl);
if (!ok)
return VK_SUCCESS;
if (!isl_surf_supports_ccs(&device->isl_dev,
&image->planes[plane].primary_surface.isl,
&image->planes[plane].aux_surface.isl)) {
image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
} else if (image->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) &&
image->vk.samples == 1) {
/* If it's used as an input attachment or a texture and it's
* single-sampled (this is a requirement for HiZ+CCS write-through
* mode), use write-through mode so that we don't need to resolve
* before texturing. This will make depth testing a bit slower but
* texturing faster.
*
* TODO: This is a heuristic trade-off; we haven't tuned it at all.
*/
assert(device->info->ver >= 12);
image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS_WT;
} else {
assert(device->info->ver >= 12);
image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS;
}
result = add_surface(device, image, &image->planes[plane].aux_surface,
ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane,
ANV_OFFSET_IMPLICIT);
if (result != VK_SUCCESS)
return result;
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT)
return add_aux_state_tracking_buffer(device, image, plane);
} else if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) {
if (INTEL_DEBUG(DEBUG_NO_CCS))
return VK_SUCCESS;
if (!isl_surf_supports_ccs(&device->isl_dev,
&image->planes[plane].primary_surface.isl,
NULL))
return VK_SUCCESS;
image->planes[plane].aux_usage = ISL_AUX_USAGE_STC_CCS;
} else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples == 1) {
if (image->n_planes != 1) {
/* Multiplanar images seem to hit a sampler bug with CCS and R16G16
* format. (Putting the clear state a page/4096bytes further fixes
* the issue).
*/
return VK_SUCCESS;
}
if ((image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) && !image->from_wsi) {
/* The image may alias a plane of a multiplanar image. Above we ban
* CCS on multiplanar images.
*
* We must also reject aliasing of any image that uses
* ANV_IMAGE_MEMORY_BINDING_PRIVATE. Since we're already rejecting all
* aliasing here, there's no need to further analyze if the image needs
* a private binding.
*/
return VK_SUCCESS;
}
if (INTEL_DEBUG(DEBUG_NO_CCS))
return VK_SUCCESS;
ok = isl_surf_get_ccs_surf(&device->isl_dev,
&image->planes[plane].primary_surface.isl,
NULL,
&image->planes[plane].aux_surface.isl,
stride);
if (!ok)
return VK_SUCCESS;
/* Choose aux usage */
if (anv_formats_ccs_e_compatible(device->info, image->vk.create_flags,
image->vk.format, image->vk.tiling,
image->vk.usage, fmt_list)) {
image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
} else if (device->info->ver >= 12) {
anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
"The CCS_D aux mode is not yet handled on "
"Gfx12+. Not allocating a CCS buffer.");
image->planes[plane].aux_surface.isl.size_B = 0;
return VK_SUCCESS;
} else {
image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_D;
}
if (!device->physical->has_implicit_ccs) {
enum anv_image_memory_binding binding =
ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane;
if (image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID &&
!isl_drm_modifier_has_aux(image->vk.drm_format_mod))
binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
result = add_surface(device, image, &image->planes[plane].aux_surface,
binding, offset);
if (result != VK_SUCCESS)
return result;
}
return add_aux_state_tracking_buffer(device, image, plane);
} else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples > 1) {
assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT));
ok = isl_surf_get_mcs_surf(&device->isl_dev,
&image->planes[plane].primary_surface.isl,
&image->planes[plane].aux_surface.isl);
if (!ok)
return VK_SUCCESS;
image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
result = add_surface(device, image, &image->planes[plane].aux_surface,
ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane,
ANV_OFFSET_IMPLICIT);
if (result != VK_SUCCESS)
return result;
return add_aux_state_tracking_buffer(device, image, plane);
}
return VK_SUCCESS;
}
static VkResult
add_shadow_surface(struct anv_device *device,
struct anv_image *image,
uint32_t plane,
struct anv_format_plane plane_format,
uint32_t stride,
VkImageUsageFlags vk_plane_usage)
{
ASSERTED bool ok;
ok = isl_surf_init(&device->isl_dev,
&image->planes[plane].shadow_surface.isl,
.dim = vk_to_isl_surf_dim[image->vk.image_type],
.format = plane_format.isl_format,
.width = image->vk.extent.width,
.height = image->vk.extent.height,
.depth = image->vk.extent.depth,
.levels = image->vk.mip_levels,
.array_len = image->vk.array_layers,
.samples = image->vk.samples,
.min_alignment_B = 0,
.row_pitch_B = stride,
.usage = ISL_SURF_USAGE_TEXTURE_BIT |
(vk_plane_usage & ISL_SURF_USAGE_CUBE_BIT),
.tiling_flags = ISL_TILING_ANY_MASK);
/* isl_surf_init() will fail only if provided invalid input. Invalid input
* here is illegal in Vulkan.
*/
assert(ok);
return add_surface(device, image, &image->planes[plane].shadow_surface,
ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane,
ANV_OFFSET_IMPLICIT);
}
/**
* Initialize the anv_image::*_surface selected by \a aspect. Then update the
* image's memory requirements (that is, the image's size and alignment).
*
* @param offset See add_surface()
*/
static VkResult
add_primary_surface(struct anv_device *device,
struct anv_image *image,
uint32_t plane,
struct anv_format_plane plane_format,
uint64_t offset,
uint32_t stride,
isl_tiling_flags_t isl_tiling_flags,
isl_surf_usage_flags_t isl_usage)
{
struct anv_surface *anv_surf = &image->planes[plane].primary_surface;
bool ok;
ok = isl_surf_init(&device->isl_dev, &anv_surf->isl,
.dim = vk_to_isl_surf_dim[image->vk.image_type],
.format = plane_format.isl_format,
.width = image->vk.extent.width / plane_format.denominator_scales[0],
.height = image->vk.extent.height / plane_format.denominator_scales[1],
.depth = image->vk.extent.depth,
.levels = image->vk.mip_levels,
.array_len = image->vk.array_layers,
.samples = image->vk.samples,
.min_alignment_B = 0,
.row_pitch_B = stride,
.usage = isl_usage,
.tiling_flags = isl_tiling_flags);
if (!ok) {
/* TODO: Should return
* VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT in come cases.
*/
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
return add_surface(device, image, anv_surf,
ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane, offset);
}
#ifndef NDEBUG
static bool MUST_CHECK
memory_range_is_aligned(struct anv_image_memory_range memory_range)
{
return anv_is_aligned(memory_range.offset, memory_range.alignment);
}
static bool MUST_CHECK
memory_ranges_equal(struct anv_image_memory_range a,
struct anv_image_memory_range b)
{
return a.binding == b.binding &&
a.offset == b.offset &&
a.size == b.size &&
a.alignment == b.alignment;
}
#endif
struct check_memory_range_params {
struct anv_image_memory_range *accum_ranges;
const struct anv_surface *test_surface;
const struct anv_image_memory_range *test_range;
enum anv_image_memory_binding expect_binding;
};
#define check_memory_range(...) \
check_memory_range_s(&(struct check_memory_range_params) { __VA_ARGS__ })
static void UNUSED
check_memory_range_s(const struct check_memory_range_params *p)
{
assert((p->test_surface == NULL) != (p->test_range == NULL));
const struct anv_image_memory_range *test_range =
p->test_range ?: &p->test_surface->memory_range;
struct anv_image_memory_range *accum_range =
&p->accum_ranges[p->expect_binding];
assert(test_range->binding == p->expect_binding);
assert(test_range->offset >= memory_range_end(*accum_range));
assert(memory_range_is_aligned(*test_range));
if (p->test_surface) {
assert(anv_surface_is_valid(p->test_surface));
assert(p->test_surface->memory_range.alignment ==
p->test_surface->isl.alignment_B);
}
memory_range_merge(accum_range, *test_range);
}
/**
* Validate the image's memory bindings *after* all its surfaces and memory
* ranges are final.
*
* For simplicity's sake, we do not validate free-form layout of the image's
* memory bindings. We validate the layout described in the comments of struct
* anv_image.
*/
static void
check_memory_bindings(const struct anv_device *device,
const struct anv_image *image)
{
#ifdef DEBUG
/* As we inspect each part of the image, we merge the part's memory range
* into these accumulation ranges.
*/
struct anv_image_memory_range accum_ranges[ANV_IMAGE_MEMORY_BINDING_END];
for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) {
accum_ranges[i] = (struct anv_image_memory_range) {
.binding = i,
};
}
for (uint32_t p = 0; p < image->n_planes; ++p) {
const struct anv_image_plane *plane = &image->planes[p];
/* The binding that must contain the plane's primary surface. */
const enum anv_image_memory_binding primary_binding = image->disjoint
? ANV_IMAGE_MEMORY_BINDING_PLANE_0 + p
: ANV_IMAGE_MEMORY_BINDING_MAIN;
/* Aliasing is incompatible with the private binding because it does not
* live in a VkDeviceMemory. The one exception is swapchain images.
*/
assert(!(image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) ||
image->from_wsi ||
image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].memory_range.size == 0);
/* Check primary surface */
check_memory_range(accum_ranges,
.test_surface = &plane->primary_surface,
.expect_binding = primary_binding);
/* Check shadow surface */
if (anv_surface_is_valid(&plane->shadow_surface)) {
check_memory_range(accum_ranges,
.test_surface = &plane->shadow_surface,
.expect_binding = primary_binding);
}
/* Check aux_surface */
if (anv_surface_is_valid(&plane->aux_surface)) {
enum anv_image_memory_binding binding = primary_binding;
/* If an auxiliary surface is used for an externally-shareable image,
* we have to hide this from the memory of the image since other
* processes with access to the memory may not be aware of it or of
* its current state. So put that auxiliary data into a separate
* buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
*/
if (anv_image_is_externally_shared(image) &&
!isl_drm_modifier_has_aux(image->vk.drm_format_mod)) {
binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
}
/* Display hardware requires that the aux surface start at
* a higher address than the primary surface. The 3D hardware
* doesn't care, but we enforce the display requirement in case
* the image is sent to display.
*/
check_memory_range(accum_ranges,
.test_surface = &plane->aux_surface,
.expect_binding = binding);
}
/* Check fast clear state */
if (plane->fast_clear_memory_range.size > 0) {
enum anv_image_memory_binding binding = primary_binding;
/* If an auxiliary surface is used for an externally-shareable image,
* we have to hide this from the memory of the image since other
* processes with access to the memory may not be aware of it or of
* its current state. So put that auxiliary data into a separate
* buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
*/
if (anv_image_is_externally_shared(image)) {
binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
}
/* We believe that 256B alignment may be sufficient, but we choose 4K
* due to lack of testing. And MI_LOAD/STORE operations require
* dword-alignment.
*/
assert(plane->fast_clear_memory_range.alignment == 4096);
check_memory_range(accum_ranges,
.test_range = &plane->fast_clear_memory_range,
.expect_binding = binding);
}
}
#endif
}
/**
* Check that the fully-initialized anv_image is compatible with its DRM format
* modifier.
*
* Checking compatibility at the end of image creation is prudent, not
* superfluous, because usage of modifiers triggers numerous special cases
* throughout queries and image creation, and because
* vkGetPhysicalDeviceImageFormatProperties2 has difficulty detecting all
* incompatibilities.
*
* Return VK_ERROR_UNKNOWN if the incompatibility is difficult to detect in
* vkGetPhysicalDeviceImageFormatProperties2. Otherwise, assert fail.
*
* Ideally, if vkGetPhysicalDeviceImageFormatProperties2() succeeds with a given
* modifier, then vkCreateImage() produces an image that is compatible with the
* modifier. However, it is difficult to reconcile the two functions to agree
* due to their complexity. For example, isl_surf_get_ccs_surf() may
* unexpectedly fail in vkCreateImage(), eliminating the image's aux surface
* even when the modifier requires one. (Maybe we should reconcile the two
* functions despite the difficulty).
*/
static VkResult MUST_CHECK
check_drm_format_mod(const struct anv_device *device,
const struct anv_image *image)
{
/* With Magma we may specify modifiers for any tiling */
#if !defined(USE_MAGMA)
/* Image must have a modifier if and only if it has modifier tiling. */
assert((image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID) ==
(image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT));
#endif
if (image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID)
return VK_SUCCESS;
const struct isl_drm_modifier_info *isl_mod_info =
isl_drm_modifier_get_info(image->vk.drm_format_mod);
/* Driver must support the modifier. */
assert(isl_drm_modifier_get_score(device->info, isl_mod_info->modifier));
/* Enforced by us, not the Vulkan spec. */
assert(image->vk.image_type == VK_IMAGE_TYPE_2D);
assert(!(image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT));
assert(!(image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT));
assert(image->vk.mip_levels == 1);
assert(image->vk.array_layers == 1);
assert(image->vk.samples == 1);
for (int i = 0; i < image->n_planes; ++i) {
const struct anv_image_plane *plane = &image->planes[i];
ASSERTED const struct isl_format_layout *isl_layout =
isl_format_get_layout(plane->primary_surface.isl.format);
/* Enforced by us, not the Vulkan spec. */
assert(isl_layout->txc == ISL_TXC_NONE);
assert(isl_layout->colorspace == ISL_COLORSPACE_LINEAR ||
isl_layout->colorspace == ISL_COLORSPACE_SRGB);
assert(!anv_surface_is_valid(&plane->shadow_surface));
if (isl_mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
/* Reject DISJOINT for consistency with the GL driver. */
assert(!image->disjoint);
/* The modifier's required aux usage mandates the image's aux usage.
* The inverse, however, does not hold; if the modifier has no aux
* usage, then we may enable a private aux surface.
*/
if (plane->aux_usage != isl_mod_info->aux_usage) {
return vk_errorf(device, VK_ERROR_UNKNOWN,
"image with modifier unexpectedly has wrong aux "
"usage");
}
}
}
return VK_SUCCESS;
}
/**
* Use when the app does not provide
* VkImageDrmFormatModifierExplicitCreateInfoEXT.
*/
static VkResult MUST_CHECK
add_all_surfaces_implicit_layout(
struct anv_device *device,
struct anv_image *image,
const VkImageFormatListCreateInfo *format_list_info,
uint32_t stride,
isl_tiling_flags_t isl_tiling_flags,
isl_surf_usage_flags_t isl_extra_usage_flags)
{
const struct intel_device_info *devinfo = device->info;
VkResult result;
u_foreach_bit(b, image->vk.aspects) {
VkImageAspectFlagBits aspect = 1 << b;
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
const struct anv_format_plane plane_format =
anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling);
VkImageUsageFlags vk_usage = vk_image_usage(&image->vk, aspect);
isl_surf_usage_flags_t isl_usage =
choose_isl_surf_usage(image->vk.create_flags, vk_usage,
isl_extra_usage_flags, aspect);
/* Must call this before adding any surfaces because it may modify
* isl_tiling_flags.
*/
bool needs_shadow =
anv_image_plane_needs_shadow_surface(devinfo, plane_format,
image->vk.tiling, vk_usage,
image->vk.create_flags,
&isl_tiling_flags);
result = add_primary_surface(device, image, plane, plane_format,
ANV_OFFSET_IMPLICIT, stride,
isl_tiling_flags, isl_usage);
if (result != VK_SUCCESS)
return result;
if (needs_shadow) {
result = add_shadow_surface(device, image, plane, plane_format,
stride, vk_usage);
if (result != VK_SUCCESS)
return result;
}
/* Disable aux if image supports export without modifiers. */
if (image->vk.external_handle_types != 0 &&
image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)
continue;
result = add_aux_surface_if_supported(device, image, plane, plane_format,
format_list_info,
ANV_OFFSET_IMPLICIT, stride,
isl_extra_usage_flags);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
/**
* Use when the app provides VkImageDrmFormatModifierExplicitCreateInfoEXT.
*/
static VkResult
add_all_surfaces_explicit_layout(
struct anv_device *device,
struct anv_image *image,
const VkImageFormatListCreateInfo *format_list_info,
const VkImageDrmFormatModifierExplicitCreateInfoEXT *drm_info,
isl_tiling_flags_t isl_tiling_flags,
isl_surf_usage_flags_t isl_extra_usage_flags)
{
const struct intel_device_info *devinfo = device->info;
const uint32_t mod_plane_count = drm_info->drmFormatModifierPlaneCount;
const bool mod_has_aux =
isl_drm_modifier_has_aux(drm_info->drmFormatModifier);
VkResult result;
/* About valid usage in the Vulkan spec:
*
* Unlike vanilla vkCreateImage, which produces undefined behavior on user
* error, here the spec requires the implementation to return
* VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT if the app provides
* a bad plane layout. However, the spec does require
* drmFormatModifierPlaneCount to be valid.
*
* Most validation of plane layout occurs in add_surface().
*/
/* We support a restricted set of images with modifiers.
*
* With aux usage,
* - Format plane count must be 1.
* - Memory plane count must be 2.
* Without aux usage,
* - Each format plane must map to a distint memory plane.
*
* For the other cases, currently there is no way to properly map memory
* planes to format planes and aux planes due to the lack of defined ABI
* for external multi-planar images.
*/
if (image->n_planes == 1)
assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
else
assert(!(image->vk.aspects & ~VK_IMAGE_ASPECT_PLANES_BITS_ANV));
if (mod_has_aux)
assert(image->n_planes == 1 && mod_plane_count == 2);
else
assert(image->n_planes == mod_plane_count);
/* Reject special values in the app-provided plane layouts. */
for (uint32_t i = 0; i < mod_plane_count; ++i) {
if (drm_info->pPlaneLayouts[i].rowPitch == 0) {
return vk_errorf(device,
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
"VkImageDrmFormatModifierExplicitCreateInfoEXT::"
"pPlaneLayouts[%u]::rowPitch is 0", i);
}
if (drm_info->pPlaneLayouts[i].offset == ANV_OFFSET_IMPLICIT) {
return vk_errorf(device,
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
"VkImageDrmFormatModifierExplicitCreateInfoEXT::"
"pPlaneLayouts[%u]::offset is %" PRIu64,
i, ANV_OFFSET_IMPLICIT);
}
}
u_foreach_bit(b, image->vk.aspects) {
const VkImageAspectFlagBits aspect = 1 << b;
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
const struct anv_format_plane format_plane =
anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling);
const VkSubresourceLayout *primary_layout = &drm_info->pPlaneLayouts[plane];
result = add_primary_surface(device, image, plane,
format_plane,
primary_layout->offset,
primary_layout->rowPitch,
isl_tiling_flags,
isl_extra_usage_flags);
if (result != VK_SUCCESS)
return result;
if (mod_has_aux) {
const VkSubresourceLayout *aux_layout = &drm_info->pPlaneLayouts[1];
result = add_aux_surface_if_supported(device, image, plane,
format_plane,
format_list_info,
aux_layout->offset,
aux_layout->rowPitch,
isl_extra_usage_flags);
if (result != VK_SUCCESS)
return result;
}
}
return VK_SUCCESS;
}
static const struct isl_drm_modifier_info *
choose_drm_format_mod(const struct anv_physical_device *device,
uint32_t modifier_count, const uint64_t *modifiers)
{
uint64_t best_mod = UINT64_MAX;
uint32_t best_score = 0;
for (uint32_t i = 0; i < modifier_count; ++i) {
uint32_t score = isl_drm_modifier_get_score(&device->info, modifiers[i]);
if (score > best_score) {
best_mod = modifiers[i];
best_score = score;
}
}
if (best_score > 0)
return isl_drm_modifier_get_info(best_mod);
else
return NULL;
}
static VkImageUsageFlags
anv_image_create_usage(const VkImageCreateInfo *pCreateInfo,
VkImageUsageFlags usage)
{
/* Add TRANSFER_SRC usage for multisample attachment images. This is
* because we might internally use the TRANSFER_SRC layout on them for
* blorp operations associated with resolving those into other attachments
* at the end of a subpass.
*
* Without this additional usage, we compute an incorrect AUX state in
* anv_layout_to_aux_state().
*/
if (pCreateInfo->samples > VK_SAMPLE_COUNT_1_BIT &&
(usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)))
usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
return usage;
}
static VkResult MUST_CHECK
alloc_private_binding(struct anv_device *device,
struct anv_image *image,
const VkImageCreateInfo *create_info)
{
struct anv_image_binding *binding =
&image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE];
if (binding->memory_range.size == 0)
return VK_SUCCESS;
const VkImageSwapchainCreateInfoKHR *swapchain_info =
vk_find_struct_const(create_info->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) {
/* The image will be bound to swapchain memory. */
return VK_SUCCESS;
}
return anv_device_alloc_bo(device, "image-binding-private",
binding->memory_range.size, 0, 0,
&binding->address.bo);
}
VkResult
anv_image_init(struct anv_device *device, struct anv_image *image,
const struct anv_image_create_info *create_info)
{
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info = NULL;
const struct isl_drm_modifier_info *isl_mod_info = NULL;
VkResult r;
vk_image_init(&device->vk, &image->vk, pCreateInfo);
image->vk.usage = anv_image_create_usage(pCreateInfo, image->vk.usage);
image->vk.stencil_usage =
anv_image_create_usage(pCreateInfo, image->vk.stencil_usage);
#if defined(USE_MAGMA)
mod_explicit_info =
vk_find_struct_const(pCreateInfo->pNext, IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
const struct VkImageDrmFormatModifierListCreateInfoEXT *mod_list_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
if (mod_explicit_info) {
isl_mod_info = isl_drm_modifier_get_info(mod_explicit_info->drmFormatModifier);
} else if (mod_list_info) {
/* We expect only to find the list-of-one that we inserted, never a list
* provided by the user.
*/
assert(mod_list_info->drmFormatModifierCount == 1);
isl_mod_info = isl_drm_modifier_get_info(mod_list_info->pDrmFormatModifiers[0]);
}
// Ensure drm_format_mod is set regardless of tiling.
if (isl_mod_info && pCreateInfo->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
image->vk.drm_format_mod = isl_mod_info->modifier;
}
#endif
if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
assert(!image->vk.wsi_legacy_scanout);
mod_explicit_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
if (mod_explicit_info) {
isl_mod_info = isl_drm_modifier_get_info(mod_explicit_info->drmFormatModifier);
} else {
const struct VkImageDrmFormatModifierListCreateInfoEXT *mod_list_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
isl_mod_info = choose_drm_format_mod(device->physical,
mod_list_info->drmFormatModifierCount,
mod_list_info->pDrmFormatModifiers);
}
assert(isl_mod_info);
assert(image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID);
image->vk.drm_format_mod = isl_mod_info->modifier;
}
for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) {
image->bindings[i] = (struct anv_image_binding) {
.memory_range = { .binding = i },
};
}
/* In case of AHardwareBuffer import, we don't know the layout yet */
if (image->vk.external_handle_types &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) {
image->from_ahb = true;
return VK_SUCCESS;
}
image->n_planes = anv_get_format_planes(image->vk.format);
image->from_wsi =
vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA) != NULL;
/* The Vulkan 1.2.165 glossary says:
*
* A disjoint image consists of multiple disjoint planes, and is created
* with the VK_IMAGE_CREATE_DISJOINT_BIT bit set.
*/
image->disjoint = image->n_planes > 1 &&
(pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT);
const isl_tiling_flags_t isl_tiling_flags =
choose_isl_tiling_flags(device->info, create_info, isl_mod_info,
image->vk.wsi_legacy_scanout);
const VkImageFormatListCreateInfo *fmt_list =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_FORMAT_LIST_CREATE_INFO);
if (mod_explicit_info) {
r = add_all_surfaces_explicit_layout(device, image, fmt_list,
mod_explicit_info, isl_tiling_flags,
create_info->isl_extra_usage_flags);
} else {
r = add_all_surfaces_implicit_layout(device, image, fmt_list, 0,
isl_tiling_flags,
create_info->isl_extra_usage_flags);
}
if (r != VK_SUCCESS)
goto fail;
r = alloc_private_binding(device, image, pCreateInfo);
if (r != VK_SUCCESS)
goto fail;
check_memory_bindings(device, image);
r = check_drm_format_mod(device, image);
if (r != VK_SUCCESS)
goto fail;
/* Once we have all the bindings, determine whether we can do non 0 fast
* clears for each plane.
*/
for (uint32_t p = 0; p < image->n_planes; p++) {
image->planes[p].can_non_zero_fast_clear =
can_fast_clear_with_non_zero_color(device->info, image, p, fmt_list);
}
return VK_SUCCESS;
fail:
vk_image_finish(&image->vk);
return r;
}
void
anv_image_finish(struct anv_image *image)
{
struct anv_device *device =
container_of(image->vk.base.device, struct anv_device, vk);
if (image->from_gralloc) {
assert(!image->disjoint);
assert(image->n_planes == 1);
assert(image->planes[0].primary_surface.memory_range.binding ==
ANV_IMAGE_MEMORY_BINDING_MAIN);
assert(image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo != NULL);
anv_device_release_bo(device, image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo);
}
struct anv_bo *private_bo = image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo;
if (private_bo)
anv_device_release_bo(device, private_bo);
#if defined(__linux__) && defined(USE_MAGMA)
if (image->magma_linux.gem_handle) {
anv_gem_close(device, image->magma_linux.gem_handle);
}
#endif
vk_image_finish(&image->vk);
}
static struct anv_image *
anv_swapchain_get_image(VkSwapchainKHR swapchain,
uint32_t index)
{
VkImage image = wsi_common_get_image(swapchain, index);
return anv_image_from_handle(image);
}
static VkResult
anv_image_init_from_create_info(struct anv_device *device,
struct anv_image *image,
const VkImageCreateInfo *pCreateInfo)
{
const VkNativeBufferANDROID *gralloc_info =
vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
if (gralloc_info)
return anv_image_init_from_gralloc(device, image, pCreateInfo,
gralloc_info);
#if defined(__linux__) && !defined(ANDROID) && defined(USE_MAGMA)
const VkExternalMemoryImageCreateInfo *external_create_info =
vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_IMAGE_CREATE_INFO);
/* For external images:
* - if format modifier is unspecified (should be export only), create a magma
* image to resolve it.
* - if format modifier is specified, defer creating a magma image because
* it's not needed for import.
*/
if (external_create_info) {
uint64_t drm_format = 0;
switch (pCreateInfo->format) {
// TODO(https://fxbug.dev/42151277) - proper SRGB handling
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_SRGB:
drm_format = DRM_FORMAT_ABGR8888;
break;
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_B8G8R8A8_SRGB:
drm_format = DRM_FORMAT_ARGB8888;
break;
}
if (!drm_format) {
/* magma image creation will fail */
mesa_logd("No DRM format for VkFormat 0x%x", pCreateInfo->format);
}
const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = NULL;
const VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info = NULL;
uint64_t drm_format_modifier = DRM_FORMAT_MOD_INVALID;
if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) {
drm_format_modifier = DRM_FORMAT_MOD_LINEAR;
} else if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
mod_info = vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
mod_explicit_info = vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
}
if (mod_explicit_info) {
drm_format_modifier = mod_explicit_info->drmFormatModifier;
} else if (mod_info && mod_info->drmFormatModifierCount == 1) {
drm_format_modifier = mod_info->pDrmFormatModifiers[0];
}
uint32_t gem_handle = 0;
uint32_t bytes_per_row = 0;
bool is_cache_coherent = false;
/* If the modifier is unknown, we create a magma image now to resolve the modifier.
* Otherwise we defer creating the magma image until we know if we're exporting.
*/
if (drm_format_modifier == DRM_FORMAT_MOD_INVALID) {
uint32_t modifier_list_size = mod_info ? mod_info->drmFormatModifierCount + 1 : 2;
uint64_t modifier_list[modifier_list_size];
if (mod_info) {
for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) {
modifier_list[i] = mod_info->pDrmFormatModifiers[i];
}
} else {
modifier_list[0] = DRM_FORMAT_MOD_INVALID;
}
modifier_list[modifier_list_size - 1] = DRM_FORMAT_MOD_INVALID;
const uint64_t kFlags = get_create_image_flags_from_usage(pCreateInfo->usage);
gem_handle = anv_gem_create_image(device,
drm_format,
modifier_list,
pCreateInfo->extent.width,
pCreateInfo->extent.height,
kFlags);
if (!gem_handle) {
mesa_logd("anv_gem_create_image failed");
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
int ret = anv_gem_get_image_info(device,
gem_handle,
&drm_format_modifier,
&bytes_per_row, &is_cache_coherent);
if (ret != 0) {
mesa_logd("anv_gem_get_image_info failed: %d", ret);
anv_gem_close(device, gem_handle);
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
}
assert(drm_format_modifier != DRM_FORMAT_MOD_INVALID);
/* If there is no explicit info, create a list-of-one to convey the modifier.
* Insert at the beginning of the chain to hide any existing list.
*/
VkImageCreateInfo local_create_info = *pCreateInfo;
VkImageDrmFormatModifierListCreateInfoEXT local_mod_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT,
.pNext = local_create_info.pNext,
.pDrmFormatModifiers = &drm_format_modifier,
.drmFormatModifierCount = 1,
};
if (!mod_explicit_info) {
local_create_info.pNext = &local_mod_create_info;
}
VkResult result = anv_image_init(device, image,
&(struct anv_image_create_info){
.vk_info = &local_create_info,
.isl_extra_usage_flags = 0,
});
if (result != VK_SUCCESS) {
if (gem_handle) {
anv_gem_close(device, gem_handle);
}
return result;
}
/* Only handle single plane images for now */
assert(image->n_planes == 1);
if (bytes_per_row) {
assert(image->planes[0].primary_surface.isl.row_pitch_B == bytes_per_row);
}
image->magma_linux.is_external = true;
/* Note: gem_handle is null if we deferred magma image creation */
image->magma_linux.gem_handle = gem_handle;
image->magma_linux.is_cache_coherent = is_cache_coherent;
return VK_SUCCESS;
}
#endif
#if VK_USE_PLATFORM_FUCHSIA
const struct VkBufferCollectionImageCreateInfoFUCHSIA* buffer_collection_fuchsia =
vk_find_struct_const(pCreateInfo->pNext, BUFFER_COLLECTION_IMAGE_CREATE_INFO_FUCHSIA);
if (buffer_collection_fuchsia) {
VkImageDrmFormatModifierExplicitCreateInfoEXT modifier_info;
VkSubresourceLayout subresource_layout[4] = {};
VkResult result = anv_image_params_from_buffer_collection(
device, buffer_collection_fuchsia->collection, &pCreateInfo->extent, &modifier_info,
subresource_layout);
if (result != VK_SUCCESS)
return result;
VkImageCreateInfo local_create_info = *pCreateInfo;
// Add modifier_info to beginning of structure chain.
modifier_info.pNext = pCreateInfo->pNext;
local_create_info.pNext = &modifier_info;
local_create_info.tiling = modifier_info.drmFormatModifier == DRM_FORMAT_MOD_LINEAR
? VK_IMAGE_TILING_LINEAR
: VK_IMAGE_TILING_OPTIMAL;
result = anv_image_init(device, image,
&(struct anv_image_create_info){
.vk_info = &local_create_info,
});
if (result != VK_SUCCESS)
return result;
return VK_SUCCESS;
}
#endif
struct anv_image_create_info create_info = {
.vk_info = pCreateInfo,
};
/* For dmabuf imports, configure the primary surface without support for
* compression if the modifier doesn't specify it. This helps to create
* VkImages with memory requirements that are compatible with the buffers
* apps provide.
*/
const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
if (mod_explicit_info &&
!isl_drm_modifier_has_aux(mod_explicit_info->drmFormatModifier))
create_info.isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
#if defined(ANDROID)
// When the android swapchain defers image allocation, it creates images without
// any indication they will be bound with VkNativeBufferANDROID. Since CCS on
// gralloc images isn't supported, ensure the image is created appropriately.
create_info.isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
#endif
return anv_image_init(device, image, &create_info);
}
VkResult anv_CreateImage(
VkDevice _device,
const VkImageCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkImage* pImage)
{
ANV_FROM_HANDLE(anv_device, device, _device);
#ifndef VK_USE_PLATFORM_ANDROID_KHR
/* Ignore swapchain creation info on Android. Since we don't have an
* implementation in Mesa, we're guaranteed to access an Android object
* incorrectly.
*/
const VkImageSwapchainCreateInfoKHR *swapchain_info =
vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) {
return wsi_common_create_swapchain_image(&device->physical->wsi_device,
pCreateInfo,
swapchain_info->swapchain,
pImage);
}
#endif
struct anv_image *image =
vk_object_zalloc(&device->vk, pAllocator, sizeof(*image),
VK_OBJECT_TYPE_IMAGE);
if (!image)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
VkResult result = anv_image_init_from_create_info(device, image,
pCreateInfo);
if (result != VK_SUCCESS) {
vk_object_free(&device->vk, pAllocator, image);
return result;
}
*pImage = anv_image_to_handle(image);
return result;
}
void
anv_DestroyImage(VkDevice _device, VkImage _image,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, _image);
if (!image)
return;
assert(&device->vk == image->vk.base.device);
anv_image_finish(image);
vk_free2(&device->vk.alloc, pAllocator, image);
}
/* We are binding AHardwareBuffer. Get a description, resolve the
* format and prepare anv_image properly.
*/
static void
resolve_ahw_image(struct anv_device *device,
struct anv_image *image,
struct anv_device_memory *mem)
{
#if defined(ANDROID) && ANDROID_API_LEVEL >= 26
assert(mem->ahw);
AHardwareBuffer_Desc desc;
AHardwareBuffer_describe(mem->ahw, &desc);
VkResult result;
/* Check tiling. */
enum isl_tiling tiling;
result = anv_device_get_bo_tiling(device, mem->bo, &tiling);
assert(result == VK_SUCCESS);
VkImageTiling vk_tiling =
tiling == ISL_TILING_LINEAR ? VK_IMAGE_TILING_LINEAR :
VK_IMAGE_TILING_OPTIMAL;
isl_tiling_flags_t isl_tiling_flags = (1u << tiling);
/* Check format. */
VkFormat vk_format = vk_format_from_android(desc.format, desc.usage);
enum isl_format isl_fmt = anv_get_isl_format(device->info,
vk_format,
VK_IMAGE_ASPECT_COLOR_BIT,
vk_tiling);
assert(isl_fmt != ISL_FORMAT_UNSUPPORTED);
/* Handle RGB(X)->RGBA fallback. */
switch (desc.format) {
case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM:
case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM:
if (isl_format_is_rgb(isl_fmt))
isl_fmt = isl_format_rgb_to_rgba(isl_fmt);
break;
}
/* Now we are able to fill anv_image fields properly and create
* isl_surface for it.
*/
vk_image_set_format(&image->vk, vk_format);
image->n_planes = anv_get_format_planes(image->vk.format);
uint32_t stride = desc.stride *
(isl_format_get_layout(isl_fmt)->bpb / 8);
result = add_all_surfaces_implicit_layout(device, image, NULL, stride,
isl_tiling_flags,
ISL_SURF_USAGE_DISABLE_AUX_BIT);
assert(result == VK_SUCCESS);
#endif
}
void
anv_image_get_memory_requirements(struct anv_device *device,
struct anv_image *image,
VkImageAspectFlags aspects,
VkMemoryRequirements2 *pMemoryRequirements)
{
/* The Vulkan spec (git aaed022) says:
*
* memoryTypeBits is a bitfield and contains one bit set for every
* supported memory type for the resource. The bit `1<<i` is set if and
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
* structure for the physical device is supported.
*
* All types are currently supported for images.
*/
uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *requirements = (void *)ext;
if (image->vk.wsi_legacy_scanout || image->from_ahb
#if defined(__linux__) && defined(USE_MAGMA)
|| image->magma_linux.is_external
#endif
) {
/* If we need to set the tiling for external consumers, we need a
* dedicated allocation.
*
* See also anv_AllocateMemory.
*/
requirements->prefersDedicatedAllocation = true;
requirements->requiresDedicatedAllocation = true;
} else {
requirements->prefersDedicatedAllocation = false;
requirements->requiresDedicatedAllocation = false;
}
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
/* If the image is disjoint, then we must return the memory requirements for
* the single plane specified in VkImagePlaneMemoryRequirementsInfo. If
* non-disjoint, then exactly one set of memory requirements exists for the
* whole image.
*
* This is enforced by the Valid Usage for VkImageMemoryRequirementsInfo2,
* which requires that the app provide VkImagePlaneMemoryRequirementsInfo if
* and only if the image is disjoint (that is, multi-planar format and
* VK_IMAGE_CREATE_DISJOINT_BIT).
*/
const struct anv_image_binding *binding;
if (image->disjoint) {
assert(util_bitcount(aspects) == 1);
assert(aspects & image->vk.aspects);
binding = image_aspect_to_binding(image, aspects);
} else {
assert(aspects == image->vk.aspects);
binding = &image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN];
}
pMemoryRequirements->memoryRequirements = (VkMemoryRequirements) {
.size = binding->memory_range.size,
.alignment = binding->memory_range.alignment,
.memoryTypeBits = memory_types,
};
}
void anv_GetImageMemoryRequirements2(
VkDevice _device,
const VkImageMemoryRequirementsInfo2* pInfo,
VkMemoryRequirements2* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, pInfo->image);
VkImageAspectFlags aspects = image->vk.aspects;
vk_foreach_struct_const(ext, pInfo->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
assert(image->disjoint);
const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
(const VkImagePlaneMemoryRequirementsInfo *) ext;
aspects = plane_reqs->planeAspect;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
anv_image_get_memory_requirements(device, image, aspects,
pMemoryRequirements);
}
void anv_GetDeviceImageMemoryRequirementsKHR(
VkDevice _device,
const VkDeviceImageMemoryRequirements* pInfo,
VkMemoryRequirements2* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_image image = { 0 };
ASSERTED VkResult result =
anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo);
assert(result == VK_SUCCESS);
VkImageAspectFlags aspects =
image.disjoint ? pInfo->planeAspect : image.vk.aspects;
anv_image_get_memory_requirements(device, &image, aspects,
pMemoryRequirements);
}
void anv_GetImageSparseMemoryRequirements(
VkDevice device,
VkImage image,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
{
*pSparseMemoryRequirementCount = 0;
}
void anv_GetImageSparseMemoryRequirements2(
VkDevice device,
const VkImageSparseMemoryRequirementsInfo2* pInfo,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
{
*pSparseMemoryRequirementCount = 0;
}
void anv_GetDeviceImageSparseMemoryRequirementsKHR(
VkDevice device,
const VkDeviceImageMemoryRequirements* pInfo,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
{
*pSparseMemoryRequirementCount = 0;
}
VkResult anv_BindImageMemory2(
VkDevice _device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos)
{
ANV_FROM_HANDLE(anv_device, device, _device);
for (uint32_t i = 0; i < bindInfoCount; i++) {
const VkBindImageMemoryInfo *bind_info = &pBindInfos[i];
ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
ANV_FROM_HANDLE(anv_image, image, bind_info->image);
bool did_bind = false;
#if defined(__linux__) && defined(USE_MAGMA) && !defined(ANDROID)
if (mem->dedicated.image) {
/* If memory was created as dedicated for image, it must be bound
* to that image, and the image can only be bound to one memory.
*/
assert(mem->dedicated.image == image);
assert(image->magma_linux.gem_handle);
assert(!image->disjoint);
const struct anv_image_binding *binding =
&image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN];
VkDeviceSize aligned_alloc_size = align_u64(binding->memory_range.size, 4096);
struct anv_bo* bo = NULL;
VkResult result = anv_device_import_buffer_handle(
device,
image->magma_linux.gem_handle,
aligned_alloc_size,
mem->dedicated.alloc_flags | ANV_BO_EXTERNAL,
0 /* client_address */,
&bo);
/* Image ownership transferred to the device memory */
image->magma_linux.gem_handle = 0;
mem->dedicated.image = NULL;
mem->dedicated.alloc_flags = 0;
if (result != VK_SUCCESS)
return result;
struct anv_memory_heap *mem_heap =
&device->physical->memory.heaps[mem->type->heapIndex];
uint64_t size_delta = bo->size - mem->bo->size;
if (p_atomic_add_return(&mem_heap->used, size_delta) > mem_heap->size) {
p_atomic_add(&mem_heap->used, -size_delta);
anv_device_release_bo(device, bo);
return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
"Out of heap memory");
}
/* Release the placeholder BO */
anv_device_release_bo(device, mem->bo);
mem->bo = bo;
}
#endif
/* Resolve will alter the image's aspects, do this first. */
if (mem && mem->ahw)
resolve_ahw_image(device, image, mem);
vk_foreach_struct_const(s, bind_info->pNext) {
switch (s->sType) {
case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
const VkBindImagePlaneMemoryInfo *plane_info =
(const VkBindImagePlaneMemoryInfo *) s;
/* Workaround for possible spec bug.
*
* Unlike VkImagePlaneMemoryRequirementsInfo, which requires that
* the image be disjoint (that is, multi-planar format and
* VK_IMAGE_CREATE_DISJOINT_BIT), VkBindImagePlaneMemoryInfo allows
* the image to be non-disjoint and requires only that the image
* have the DISJOINT flag. In this case, regardless of the value of
* VkImagePlaneMemoryRequirementsInfo::planeAspect, the behavior is
* the same as if VkImagePlaneMemoryRequirementsInfo were omitted.
*/
if (!image->disjoint)
break;
struct anv_image_binding *binding =
image_aspect_to_binding(image, plane_info->planeAspect);
binding->address = (struct anv_address) {
.bo = mem->bo,
.offset = bind_info->memoryOffset,
};
did_bind = true;
break;
}
case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: {
/* Ignore this struct on Android, we cannot access swapchain
* structures there.
*/
#ifndef VK_USE_PLATFORM_ANDROID_KHR
const VkBindImageMemorySwapchainInfoKHR *swapchain_info =
(const VkBindImageMemorySwapchainInfoKHR *) s;
struct anv_image *swapchain_image =
anv_swapchain_get_image(swapchain_info->swapchain,
swapchain_info->imageIndex);
assert(swapchain_image);
assert(image->vk.aspects == swapchain_image->vk.aspects);
assert(mem == NULL);
for (int j = 0; j < ARRAY_SIZE(image->bindings); ++j) {
assert(memory_ranges_equal(image->bindings[j].memory_range,
swapchain_image->bindings[j].memory_range));
image->bindings[j].address = swapchain_image->bindings[j].address;
}
/* We must bump the private binding's bo's refcount because, unlike the other
* bindings, its lifetime is not application-managed.
*/
struct anv_bo *private_bo =
image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo;
if (private_bo)
anv_bo_ref(private_bo);
did_bind = true;
#endif
break;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch"
case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID: {
const VkNativeBufferANDROID *gralloc_info =
(const VkNativeBufferANDROID *)s;
VkResult result = anv_image_bind_from_gralloc(device, image,
gralloc_info);
if (result != VK_SUCCESS)
return result;
did_bind = true;
break;
}
#pragma GCC diagnostic pop
default:
anv_debug_ignored_stype(s->sType);
break;
}
}
if (!did_bind) {
assert(!image->disjoint);
image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address =
(struct anv_address) {
.bo = mem->bo,
.offset = bind_info->memoryOffset,
};
did_bind = true;
}
/* On platforms that use implicit CCS, if the plane's bo lacks implicit
* CCS then disable compression on the plane.
*/
for (int p = 0; p < image->n_planes; ++p) {
enum anv_image_memory_binding binding =
image->planes[p].primary_surface.memory_range.binding;
const struct anv_bo *bo =
image->bindings[binding].address.bo;
if (!bo || bo->has_implicit_ccs)
continue;
if (!device->physical->has_implicit_ccs)
continue;
if (!isl_aux_usage_has_ccs(image->planes[p].aux_usage))
continue;
anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
"BO lacks implicit CCS. Disabling the CCS aux usage.");
if (image->planes[p].aux_surface.memory_range.size > 0) {
assert(image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS ||
image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT);
image->planes[p].aux_usage = ISL_AUX_USAGE_HIZ;
} else {
assert(image->planes[p].aux_usage == ISL_AUX_USAGE_CCS_E ||
image->planes[p].aux_usage == ISL_AUX_USAGE_STC_CCS);
image->planes[p].aux_usage = ISL_AUX_USAGE_NONE;
}
}
}
return VK_SUCCESS;
}
void anv_GetImageSubresourceLayout(
VkDevice device,
VkImage _image,
const VkImageSubresource* subresource,
VkSubresourceLayout* layout)
{
ANV_FROM_HANDLE(anv_image, image, _image);
const struct anv_surface *surface;
assert(__builtin_popcount(subresource->aspectMask) == 1);
/* The Vulkan spec requires that aspectMask be
* VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT if tiling is
* VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
*
* For swapchain images, the Vulkan spec says that every swapchain image has
* tiling VK_IMAGE_TILING_OPTIMAL, but we may choose
* VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT internally. Vulkan doesn't allow
* vkGetImageSubresourceLayout for images with VK_IMAGE_TILING_OPTIMAL,
* therefore it's invalid for the application to call this on a swapchain
* image. The WSI code, however, knows when it has internally created
* a swapchain image with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT,
* so it _should_ correctly use VK_IMAGE_ASPECT_MEMORY_PLANE_* in that case.
* But it incorrectly uses VK_IMAGE_ASPECT_PLANE_*, so we have a temporary
* workaround.
*/
if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
/* TODO(chadv): Drop this workaround when WSI gets fixed. */
uint32_t mem_plane;
switch (subresource->aspectMask) {
case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT:
case VK_IMAGE_ASPECT_PLANE_0_BIT:
mem_plane = 0;
break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT:
case VK_IMAGE_ASPECT_PLANE_1_BIT:
mem_plane = 1;
break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT:
case VK_IMAGE_ASPECT_PLANE_2_BIT:
mem_plane = 2;
break;
default:
unreachable("bad VkImageAspectFlags");
}
if (mem_plane == 1 && isl_drm_modifier_has_aux(image->vk.drm_format_mod)) {
assert(image->n_planes == 1);
/* If the memory binding differs between primary and aux, then the
* returned offset will be incorrect.
*/
assert(image->planes[0].aux_surface.memory_range.binding ==
image->planes[0].primary_surface.memory_range.binding);
surface = &image->planes[0].aux_surface;
} else {
assert(mem_plane < image->n_planes);
surface = &image->planes[mem_plane].primary_surface;
}
} else {
const uint32_t plane =
anv_image_aspect_to_plane(image, subresource->aspectMask);
surface = &image->planes[plane].primary_surface;
}
layout->offset = surface->memory_range.offset;
layout->rowPitch = surface->isl.row_pitch_B;
layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) {
assert(surface->isl.tiling == ISL_TILING_LINEAR);
uint64_t offset_B;
isl_surf_get_image_offset_B_tile_sa(&surface->isl,
subresource->mipLevel,
subresource->arrayLayer,
0 /* logical_z_offset_px */,
&offset_B, NULL, NULL);
layout->offset += offset_B;
layout->size = layout->rowPitch * anv_minify(image->vk.extent.height,
subresource->mipLevel) *
image->vk.extent.depth;
} else {
layout->size = surface->memory_range.size;
}
}
/**
* This function returns the assumed isl_aux_state for a given VkImageLayout.
* Because Vulkan image layouts don't map directly to isl_aux_state enums, the
* returned enum is the assumed worst case.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspect The aspect of the image to be accessed.
* @param layout The current layout of the image aspect(s).
*
* @return The primary buffer that should be used for the given layout.
*/
enum isl_aux_state ATTRIBUTE_PURE
anv_layout_to_aux_state(const struct intel_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout)
{
/* Validate the inputs. */
/* The devinfo is needed as the optimal buffer varies across generations. */
assert(devinfo != NULL);
/* The layout of a NULL image is not properly defined. */
assert(image != NULL);
/* The aspect must be exactly one of the image aspects. */
assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects));
/* Determine the optimal buffer. */
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
/* If we don't have an aux buffer then aux state makes no sense */
const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
assert(aux_usage != ISL_AUX_USAGE_NONE);
/* All images that use an auxiliary surface are required to be tiled. */
assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR);
/* Handle a few special cases */
switch (layout) {
/* Invalid layouts */
case VK_IMAGE_LAYOUT_MAX_ENUM:
unreachable("Invalid image layout.");
/* Undefined layouts
*
* The pre-initialized layout is equivalent to the undefined layout for
* optimally-tiled images. We can only do color compression (CCS or HiZ)
* on tiled images.
*/
case VK_IMAGE_LAYOUT_UNDEFINED:
case VK_IMAGE_LAYOUT_PREINITIALIZED:
return ISL_AUX_STATE_AUX_INVALID;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
enum isl_aux_state aux_state =
isl_drm_modifier_get_default_aux_state(image->vk.drm_format_mod);
switch (aux_state) {
case ISL_AUX_STATE_AUX_INVALID:
/* The modifier does not support compression. But, if we arrived
* here, then we have enabled compression on it anyway, in which case
* we must resolve the aux surface before we release ownership to the
* presentation engine (because, having no modifier, the presentation
* engine will not be aware of the aux surface). The presentation
* engine will not access the aux surface (because it is unware of
* it), and so the aux surface will still be resolved when we
* re-acquire ownership.
*
* Therefore, at ownership transfers in either direction, there does
* exist an aux surface despite the lack of modifier and its state is
* pass-through.
*/
return ISL_AUX_STATE_PASS_THROUGH;
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
default:
unreachable("unexpected isl_aux_state");
}
}
default:
break;
}
const bool read_only = vk_image_layout_is_read_only(layout, aspect);
const VkImageUsageFlags image_aspect_usage =
vk_image_usage(&image->vk, aspect);
const VkImageUsageFlags usage =
vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage;
bool aux_supported = true;
bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage);
if ((usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) && !read_only) {
/* This image could be used as both an input attachment and a render
* target (depth, stencil, or color) at the same time and this can cause
* corruption.
*
* We currently only disable aux in this way for depth even though we
* disable it for color in GL.
*
* TODO: Should we be disabling this in more cases?
*/
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT && devinfo->ver <= 9) {
aux_supported = false;
clear_supported = false;
}
}
if (usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
switch (aux_usage) {
case ISL_AUX_USAGE_HIZ:
if (!anv_can_sample_with_hiz(devinfo, image)) {
aux_supported = false;
clear_supported = false;
}
break;
case ISL_AUX_USAGE_HIZ_CCS:
aux_supported = false;
clear_supported = false;
break;
case ISL_AUX_USAGE_HIZ_CCS_WT:
break;
case ISL_AUX_USAGE_CCS_D:
aux_supported = false;
clear_supported = false;
break;
case ISL_AUX_USAGE_MCS:
if (!anv_can_sample_mcs_with_clear(devinfo, image))
clear_supported = false;
break;
case ISL_AUX_USAGE_CCS_E:
case ISL_AUX_USAGE_STC_CCS:
break;
default:
unreachable("Unsupported aux usage");
}
}
switch (aux_usage) {
case ISL_AUX_USAGE_HIZ:
case ISL_AUX_USAGE_HIZ_CCS:
case ISL_AUX_USAGE_HIZ_CCS_WT:
if (aux_supported) {
assert(clear_supported);
return ISL_AUX_STATE_COMPRESSED_CLEAR;
} else if (read_only) {
return ISL_AUX_STATE_RESOLVED;
} else {
return ISL_AUX_STATE_AUX_INVALID;
}
case ISL_AUX_USAGE_CCS_D:
/* We only support clear in exactly one state */
if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL ||
layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL) {
assert(aux_supported);
assert(clear_supported);
return ISL_AUX_STATE_PARTIAL_CLEAR;
} else {
return ISL_AUX_STATE_PASS_THROUGH;
}
case ISL_AUX_USAGE_CCS_E:
if (aux_supported) {
assert(clear_supported);
return ISL_AUX_STATE_COMPRESSED_CLEAR;
} else {
return ISL_AUX_STATE_PASS_THROUGH;
}
case ISL_AUX_USAGE_MCS:
assert(aux_supported);
if (clear_supported) {
return ISL_AUX_STATE_COMPRESSED_CLEAR;
} else {
return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
}
case ISL_AUX_USAGE_STC_CCS:
assert(aux_supported);
assert(!clear_supported);
return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
default:
unreachable("Unsupported aux usage");
}
}
/**
* This function determines the optimal buffer to use for a given
* VkImageLayout and other pieces of information needed to make that
* determination. This does not determine the optimal buffer to use
* during a resolve operation.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspect The aspect of the image to be accessed.
* @param usage The usage which describes how the image will be accessed.
* @param layout The current layout of the image aspect(s).
*
* @return The primary buffer that should be used for the given layout.
*/
enum isl_aux_usage ATTRIBUTE_PURE
anv_layout_to_aux_usage(const struct intel_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageUsageFlagBits usage,
const VkImageLayout layout)
{
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
/* If there is no auxiliary surface allocated, we must use the one and only
* main buffer.
*/
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
return ISL_AUX_USAGE_NONE;
enum isl_aux_state aux_state =
anv_layout_to_aux_state(devinfo, image, aspect, layout);
switch (aux_state) {
case ISL_AUX_STATE_CLEAR:
unreachable("We never use this state");
case ISL_AUX_STATE_PARTIAL_CLEAR:
assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D);
assert(image->vk.samples == 1);
return ISL_AUX_USAGE_CCS_D;
case ISL_AUX_STATE_COMPRESSED_CLEAR:
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
return image->planes[plane].aux_usage;
case ISL_AUX_STATE_RESOLVED:
/* We can only use RESOLVED in read-only layouts because any write will
* either land us in AUX_INVALID or COMPRESSED_NO_CLEAR. We can do
* writes in PASS_THROUGH without destroying it so that is allowed.
*/
assert(vk_image_layout_is_read_only(layout, aspect));
assert(util_is_power_of_two_or_zero(usage));
if (usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
/* If we have valid HiZ data and are using the image as a read-only
* depth/stencil attachment, we should enable HiZ so that we can get
* faster depth testing.
*/
return image->planes[plane].aux_usage;
} else {
return ISL_AUX_USAGE_NONE;
}
case ISL_AUX_STATE_PASS_THROUGH:
case ISL_AUX_STATE_AUX_INVALID:
return ISL_AUX_USAGE_NONE;
}
unreachable("Invalid isl_aux_state");
}
/**
* This function returns the level of unresolved fast-clear support of the
* given image in the given VkImageLayout.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspect The aspect of the image to be accessed.
* @param usage The usage which describes how the image will be accessed.
* @param layout The current layout of the image aspect(s).
*/
enum anv_fast_clear_type ATTRIBUTE_PURE
anv_layout_to_fast_clear_type(const struct intel_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout)
{
if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
return ANV_FAST_CLEAR_NONE;
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
/* If there is no auxiliary surface allocated, there are no fast-clears */
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
return ANV_FAST_CLEAR_NONE;
enum isl_aux_state aux_state =
anv_layout_to_aux_state(devinfo, image, aspect, layout);
const VkImageUsageFlags layout_usage =
vk_image_layout_to_usage_flags(layout, aspect);
switch (aux_state) {
case ISL_AUX_STATE_CLEAR:
unreachable("We never use this state");
case ISL_AUX_STATE_PARTIAL_CLEAR:
case ISL_AUX_STATE_COMPRESSED_CLEAR:
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
return ANV_FAST_CLEAR_DEFAULT_VALUE;
} else if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL ||
layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL) {
/* The image might not support non zero fast clears when mutable. */
if (!image->planes[plane].can_non_zero_fast_clear)
return ANV_FAST_CLEAR_DEFAULT_VALUE;
/* When we're in a render pass we have the clear color data from the
* VkRenderPassBeginInfo and we can use arbitrary clear colors. They
* must get partially resolved before we leave the render pass.
*/
return ANV_FAST_CLEAR_ANY;
} else if (layout_usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
/* Fast clear with non zero color is not supported during transfer
* operations since transfer may do format reinterpretation.
*/
return ANV_FAST_CLEAR_DEFAULT_VALUE;
} else if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS ||
image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
if (devinfo->ver >= 11) {
/* The image might not support non zero fast clears when mutable. */
if (!image->planes[plane].can_non_zero_fast_clear)
return ANV_FAST_CLEAR_DEFAULT_VALUE;
/* On ICL and later, the sampler hardware uses a copy of the clear
* value that is encoded as a pixel value. Therefore, we can use
* any clear color we like for sampling.
*/
return ANV_FAST_CLEAR_ANY;
} else {
/* If the image has MCS or CCS_E enabled all the time then we can
* use fast-clear as long as the clear color is the default value
* of zero since this is the default value we program into every
* surface state used for texturing.
*/
return ANV_FAST_CLEAR_DEFAULT_VALUE;
}
} else {
return ANV_FAST_CLEAR_NONE;
}
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
case ISL_AUX_STATE_RESOLVED:
case ISL_AUX_STATE_PASS_THROUGH:
case ISL_AUX_STATE_AUX_INVALID:
return ANV_FAST_CLEAR_NONE;
}
unreachable("Invalid isl_aux_state");
}
static struct anv_state
alloc_bindless_surface_state(struct anv_device *device)
{
return anv_state_pool_alloc(&device->bindless_surface_state_pool, 64, 64);
}
static enum isl_channel_select
remap_swizzle(VkComponentSwizzle swizzle,
struct isl_swizzle format_swizzle)
{
switch (swizzle) {
case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
default:
unreachable("Invalid swizzle");
}
}
void
anv_image_fill_surface_state(struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const struct isl_view *view_in,
isl_surf_usage_flags_t view_usage,
enum isl_aux_usage aux_usage,
const union isl_color_value *clear_color,
enum anv_image_view_state_flags flags,
struct anv_surface_state *state_inout)
{
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
const struct anv_surface *surface = &image->planes[plane].primary_surface,
*aux_surface = &image->planes[plane].aux_surface;
struct isl_view view = *view_in;
view.usage |= view_usage;
/* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
* compressed surface with a shadow surface, we use the shadow instead of
* the primary surface. The shadow surface will be tiled, unlike the main
* surface, so it should get significantly better performance.
*/
if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
isl_format_is_compressed(view.format) &&
(flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
assert(isl_format_is_compressed(surface->isl.format));
assert(surface->isl.tiling == ISL_TILING_LINEAR);
assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
surface = &image->planes[plane].shadow_surface;
}
if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
view.swizzle = anv_swizzle_for_render(view.swizzle);
/* If this is a HiZ buffer we can sample from with a programmable clear
* value (SKL+), define the clear value to the optimal constant.
*/
union isl_color_value default_clear_color = { .u32 = { 0, } };
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT)
default_clear_color.f32[0] = ANV_HZ_FC_VAL;
if (!clear_color)
clear_color = &default_clear_color;
const struct anv_address address =
anv_image_address(image, &surface->memory_range);
if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
(flags & ANV_IMAGE_VIEW_STATE_STORAGE_LOWERED) &&
!isl_has_matching_typed_storage_image_format(device->info,
view.format)) {
/* In this case, we are a writeable storage buffer which needs to be
* lowered to linear. All tiling and offset calculations will be done in
* the shader.
*/
assert(aux_usage == ISL_AUX_USAGE_NONE);
isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
.address = anv_address_physical(address),
.size_B = surface->isl.size_B,
.format = ISL_FORMAT_RAW,
.swizzle = ISL_SWIZZLE_IDENTITY,
.stride_B = 1,
.mocs = anv_mocs(device, address.bo, view_usage));
state_inout->address = address,
state_inout->aux_address = ANV_NULL_ADDRESS;
state_inout->clear_address = ANV_NULL_ADDRESS;
} else {
if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
(flags & ANV_IMAGE_VIEW_STATE_STORAGE_LOWERED)) {
/* Typed surface reads support a very limited subset of the shader
* image formats. Translate it into the closest format the hardware
* supports.
*/
enum isl_format lower_format =
isl_lower_storage_image_format(device->info, view.format);
if (aux_usage != ISL_AUX_USAGE_NONE) {
assert(device->info->verx10 >= 125);
assert(aux_usage == ISL_AUX_USAGE_CCS_E);
assert(isl_formats_are_ccs_e_compatible(device->info,
view.format,
lower_format));
}
/* If we lower the format, we should ensure either they both match in
* bits per channel or that there is no swizzle, because we can't use
* the swizzle for a different bit pattern.
*/
assert(isl_formats_have_same_bits_per_channel(lower_format,
view.format) ||
isl_swizzle_is_identity_for_format(view.format, view.swizzle));
view.format = lower_format;
}
const struct isl_surf *isl_surf = &surface->isl;
struct isl_surf tmp_surf;
uint64_t offset_B = 0;
uint32_t tile_x_sa = 0, tile_y_sa = 0;
if (isl_format_is_compressed(surface->isl.format) &&
!isl_format_is_compressed(view.format)) {
/* We're creating an uncompressed view of a compressed surface. This
* is allowed but only for a single level/layer.
*/
assert(surface->isl.samples == 1);
assert(view.levels == 1);
assert(surface->isl.dim == ISL_SURF_DIM_3D || view.array_len == 1);
ASSERTED bool ok =
isl_surf_get_uncompressed_surf(&device->isl_dev, isl_surf, &view,
&tmp_surf, &view,
&offset_B, &tile_x_sa, &tile_y_sa);
assert(ok);
isl_surf = &tmp_surf;
if (device->info->ver <= 8) {
assert(surface->isl.tiling == ISL_TILING_LINEAR);
assert(tile_x_sa == 0);
assert(tile_y_sa == 0);
}
}
state_inout->address = anv_address_add(address, offset_B);
struct anv_address aux_address = ANV_NULL_ADDRESS;
if (aux_usage != ISL_AUX_USAGE_NONE)
aux_address = anv_image_address(image, &aux_surface->memory_range);
state_inout->aux_address = aux_address;
struct anv_address clear_address = ANV_NULL_ADDRESS;
if (device->info->ver >= 10 && isl_aux_usage_has_fast_clears(aux_usage)) {
clear_address = anv_image_get_clear_color_addr(device, image, aspect);
}
state_inout->clear_address = clear_address;
isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
.surf = isl_surf,
.view = &view,
.address = anv_address_physical(state_inout->address),
.clear_color = *clear_color,
.aux_surf = &aux_surface->isl,
.aux_usage = aux_usage,
.aux_address = anv_address_physical(aux_address),
.clear_address = anv_address_physical(clear_address),
.use_clear_address = !anv_address_is_null(clear_address),
.mocs = anv_mocs(device, state_inout->address.bo,
view_usage),
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa,
.robust_image_access =
device->vk.enabled_features.robustImageAccess ||
device->vk.enabled_features.robustImageAccess2);
/* With the exception of gfx8, the bottom 12 bits of the MCS base address
* are used to store other information. This should be ok, however,
* because the surface buffer addresses are always 4K page aligned.
*/
if (!anv_address_is_null(aux_address)) {
uint32_t *aux_addr_dw = state_inout->state.map +
device->isl_dev.ss.aux_addr_offset;
assert((aux_address.offset & 0xfff) == 0);
state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
}
if (device->info->ver >= 10 && clear_address.bo) {
uint32_t *clear_addr_dw = state_inout->state.map +
device->isl_dev.ss.clear_color_state_offset;
assert((clear_address.offset & 0x3f) == 0);
state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
}
}
}
static uint32_t
anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
{
anv_assert_valid_aspect_set(aspect_mask);
return util_bitcount(aspect_mask);
}
VkResult
anv_CreateImageView(VkDevice _device,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
struct anv_image_view *iview;
iview = vk_image_view_create(&device->vk, false, pCreateInfo,
pAllocator, sizeof(*iview));
if (iview == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
iview->image = image;
iview->n_planes = anv_image_aspect_get_planes(iview->vk.aspects);
/* Check if a conversion info was passed. */
const struct anv_format *conv_format = NULL;
const VkSamplerYcbcrConversionInfo *conv_info =
vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO);
#ifdef ANDROID
/* If image has an external format, the pNext chain must contain an
* instance of VKSamplerYcbcrConversionInfo with a conversion object
* created with the same external format as image."
*/
assert(!image->vk.android_external_format || conv_info);
#endif
if (conv_info) {
ANV_FROM_HANDLE(anv_ycbcr_conversion, conversion, conv_info->conversion);
conv_format = conversion->format;
}
#ifdef ANDROID
/* "If image has an external format, format must be VK_FORMAT_UNDEFINED." */
assert(!image->vk.android_external_format ||
pCreateInfo->format == VK_FORMAT_UNDEFINED);
#endif
/* Format is undefined, this can happen when using external formats. Set
* view format from the passed conversion info.
*/
if (iview->vk.view_format == VK_FORMAT_UNDEFINED && conv_format)
iview->vk.view_format = conv_format->vk_format;
/* Now go through the underlying image selected planes and map them to
* planes in the image view.
*/
anv_foreach_image_aspect_bit(iaspect_bit, image, iview->vk.aspects) {
const uint32_t iplane =
anv_aspect_to_plane(image->vk.aspects, 1UL << iaspect_bit);
const uint32_t vplane =
anv_aspect_to_plane(iview->vk.aspects, 1UL << iaspect_bit);
struct anv_format_plane format;
format = anv_get_format_plane(device->info, iview->vk.view_format,
vplane, image->vk.tiling);
iview->planes[vplane].image_plane = iplane;
iview->planes[vplane].isl = (struct isl_view) {
.format = format.isl_format,
.base_level = iview->vk.base_mip_level,
.levels = iview->vk.level_count,
.base_array_layer = iview->vk.base_array_layer,
.array_len = iview->vk.layer_count,
.min_lod_clamp = iview->vk.min_lod,
.swizzle = {
.r = remap_swizzle(iview->vk.swizzle.r, format.swizzle),
.g = remap_swizzle(iview->vk.swizzle.g, format.swizzle),
.b = remap_swizzle(iview->vk.swizzle.b, format.swizzle),
.a = remap_swizzle(iview->vk.swizzle.a, format.swizzle),
},
};
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
iview->planes[vplane].isl.base_array_layer = 0;
iview->planes[vplane].isl.array_len = iview->vk.extent.depth;
}
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
} else {
iview->planes[vplane].isl.usage = 0;
}
if (iview->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
iview->planes[vplane].optimal_sampler_surface_state.state =
alloc_bindless_surface_state(device);
iview->planes[vplane].general_sampler_surface_state.state =
alloc_bindless_surface_state(device);
enum isl_aux_usage general_aux_usage =
anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_IMAGE_LAYOUT_GENERAL);
enum isl_aux_usage optimal_aux_usage =
anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_TEXTURE_BIT,
optimal_aux_usage, NULL,
ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
&iview->planes[vplane].optimal_sampler_surface_state);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_TEXTURE_BIT,
general_aux_usage, NULL,
0,
&iview->planes[vplane].general_sampler_surface_state);
}
/* NOTE: This one needs to go last since it may stomp isl_view.format */
if (iview->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT) {
enum isl_aux_usage general_aux_usage =
anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_LAYOUT_GENERAL);
iview->planes[vplane].storage_surface_state.state =
alloc_bindless_surface_state(device);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_STORAGE_BIT,
general_aux_usage, NULL,
0,
&iview->planes[vplane].storage_surface_state);
iview->planes[vplane].lowered_storage_surface_state.state =
alloc_bindless_surface_state(device);
if (isl_is_storage_image_format(format.isl_format)) {
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_STORAGE_BIT,
general_aux_usage, NULL,
ANV_IMAGE_VIEW_STATE_STORAGE_LOWERED,
&iview->planes[vplane].lowered_storage_surface_state);