blob: f04f8f34a10415cf95012cba1e9050dea4eb7de5 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <unistd.h>
#include <limits.h>
#include <assert.h>
#if !defined(__Fuchsia__)
#include <sys/mman.h>
#endif
#include "anv_private.h"
#include "common/intel_aux_map.h"
#include "util/anon_file.h"
#include "util/futex.h"
#ifdef HAVE_VALGRIND
#define VG_NOACCESS_READ(__ptr) ({ \
VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
__typeof(*(__ptr)) __val = *(__ptr); \
VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
__val; \
})
#define VG_NOACCESS_WRITE(__ptr, __val) ({ \
VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
*(__ptr) = (__val); \
VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
})
#else
#define VG_NOACCESS_READ(__ptr) (*(__ptr))
#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
#endif
#ifndef MAP_POPULATE
#define MAP_POPULATE 0
#endif
/* Design goals:
*
* - Lock free (except when resizing underlying bos)
*
* - Constant time allocation with typically only one atomic
*
* - Multiple allocation sizes without fragmentation
*
* - Can grow while keeping addresses and offset of contents stable
*
* - All allocations within one bo so we can point one of the
* STATE_BASE_ADDRESS pointers at it.
*
* The overall design is a two-level allocator: top level is a fixed size, big
* block (8k) allocator, which operates out of a bo. Allocation is done by
* either pulling a block from the free list or growing the used range of the
* bo. Growing the range may run out of space in the bo which we then need to
* grow. Growing the bo is tricky in a multi-threaded, lockless environment:
* we need to keep all pointers and contents in the old map valid. GEM bos in
* general can't grow, but we use a trick: we create a memfd and use ftruncate
* to grow it as necessary. We mmap the new size and then create a gem bo for
* it using the new gem userptr ioctl. Without heavy-handed locking around
* our allocation fast-path, there isn't really a way to munmap the old mmap,
* so we just keep it around until garbage collection time. While the block
* allocator is lockless for normal operations, we block other threads trying
* to allocate while we're growing the map. It shouldn't happen often, and
* growing is fast anyway.
*
* At the next level we can use various sub-allocators. The state pool is a
* pool of smaller, fixed size objects, which operates much like the block
* pool. It uses a free list for freeing objects, but when it runs out of
* space it just allocates a new block from the block pool. This allocator is
* intended for longer lived state objects such as SURFACE_STATE and most
* other persistent state objects in the API. We may need to track more info
* with these object and a pointer back to the CPU object (eg VkImage). In
* those cases we just allocate a slightly bigger object and put the extra
* state after the GPU state object.
*
* The state stream allocator works similar to how the i965 DRI driver streams
* all its state. Even with Vulkan, we need to emit transient state (whether
* surface state base or dynamic state base), and for that we can just get a
* block and fill it up. These cases are local to a command buffer and the
* sub-allocator need not be thread safe. The streaming allocator gets a new
* block when it runs out of space and chains them together so they can be
* easily freed.
*/
/* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
* We use it to indicate the free list is empty. */
#define EMPTY UINT32_MAX
/* On FreeBSD PAGE_SIZE is already defined in
* /usr/include/machine/param.h that is indirectly
* included here.
*/
#ifndef PAGE_SIZE
#define PAGE_SIZE 4096
#endif
struct anv_state_table_cleanup {
void *map;
size_t size;
};
#define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
#define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
static VkResult
anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
VkResult
anv_state_table_init(struct anv_state_table *table,
struct anv_device *device,
uint32_t initial_entries)
{
VkResult result;
table->device = device;
#if defined(__Fuchsia__)
zx_handle_t handle;
zx_status_t status = zx_vmo_create(BLOCK_POOL_MEMFD_SIZE, 0, &handle);
if (status != ZX_OK)
return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
table->fd = handle;
#else
/* Just make it 2GB up-front. The Linux kernel won't actually back it
* with pages until we either map and fault on one of them or we use
* userptr and send a chunk of it off to the GPU.
*/
table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
if (table->fd == -1)
return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
#endif
if (!u_vector_init(&table->cleanups, 8,
sizeof(struct anv_state_table_cleanup))) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_fd;
}
table->state.next = 0;
table->state.end = 0;
table->size = 0;
uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
result = anv_state_table_expand_range(table, initial_size);
if (result != VK_SUCCESS)
goto fail_cleanups;
return VK_SUCCESS;
fail_cleanups:
u_vector_finish(&table->cleanups);
fail_fd:
#if defined(__Fuchsia__)
zx_handle_close(table->fd);
#else
close(table->fd);
#endif
return result;
}
static VkResult
anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
{
void *map;
struct anv_state_table_cleanup *cleanup;
/* Assert that we only ever grow the pool */
assert(size >= table->state.end);
/* Make sure that we don't go outside the bounds of the memfd */
if (size > BLOCK_POOL_MEMFD_SIZE)
return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
cleanup = u_vector_add(&table->cleanups);
if (!cleanup)
return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
*cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
#if defined(__Fuchsia__)
zx_vaddr_t vaddr;
zx_status_t status = zx_vmar_map(zx_vmar_root_self(),
ZX_VM_PERM_READ|ZX_VM_PERM_WRITE,
0, // offset
(zx_handle_t) table->fd,
0, // vmo_offset
size,
&vaddr);
if (status != ZX_OK) {
return vk_errorf(table->device, VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
}
map = (void*) vaddr;
#else
/* Just leak the old map until we destroy the pool. We can't munmap it
* without races or imposing locking on the block allocate fast path. On
* the whole the leaked maps adds up to less than the size of the
* current map. MAP_POPULATE seems like the right thing to do, but we
* should try to get some numbers.
*/
map = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_POPULATE, table->fd, 0);
if (map == MAP_FAILED) {
return vk_errorf(table->device, VK_ERROR_OUT_OF_HOST_MEMORY,
"mmap failed: %m");
}
#endif
cleanup->map = map;
cleanup->size = size;
table->map = map;
table->size = size;
return VK_SUCCESS;
}
static VkResult
anv_state_table_grow(struct anv_state_table *table)
{
VkResult result = VK_SUCCESS;
uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
PAGE_SIZE);
uint32_t old_size = table->size;
/* The block pool is always initialized to a nonzero size and this function
* is always called after initialization.
*/
assert(old_size > 0);
uint32_t required = MAX2(used, old_size);
if (used * 2 <= required) {
/* If we're in this case then this isn't the firsta allocation and we
* already have enough space on both sides to hold double what we
* have allocated. There's nothing for us to do.
*/
goto done;
}
uint32_t size = old_size * 2;
while (size < required)
size *= 2;
assert(size > table->size);
result = anv_state_table_expand_range(table, size);
done:
return result;
}
void
anv_state_table_finish(struct anv_state_table *table)
{
struct anv_state_table_cleanup *cleanup;
u_vector_foreach(cleanup, &table->cleanups) {
if (cleanup->map) {
#if defined(__Fuchsia__)
zx_status_t status = zx_vmar_unmap(zx_vmar_root_self(), (zx_vaddr_t) cleanup->map, cleanup->size);
assert(status == ZX_OK);
#else
munmap(cleanup->map, cleanup->size);
#endif
}
}
u_vector_finish(&table->cleanups);
#if defined(__Fuchsia__)
zx_handle_close(table->fd);
#else
close(table->fd);
#endif
}
VkResult
anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
uint32_t count)
{
struct anv_block_state state, old, new;
VkResult result;
assert(idx);
while(1) {
state.u64 = __sync_fetch_and_add(&table->state.u64, count);
if (state.next + count <= state.end) {
assert(table->map);
struct anv_free_entry *entry = &table->map[state.next];
for (int i = 0; i < count; i++) {
entry[i].state.idx = state.next + i;
}
*idx = state.next;
return VK_SUCCESS;
} else if (state.next <= state.end) {
/* We allocated the first block outside the pool so we have to grow
* the pool. pool_state->next acts a mutex: threads who try to
* allocate now will get block indexes above the current limit and
* hit futex_wait below.
*/
new.next = state.next + count;
do {
result = anv_state_table_grow(table);
if (result != VK_SUCCESS)
return result;
new.end = table->size / ANV_STATE_ENTRY_SIZE;
} while (new.end < new.next);
old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
if (old.next != state.next)
futex_wake(&table->state.end, INT_MAX);
} else {
futex_wait(&table->state.end, state.end, NULL);
continue;
}
}
}
void
anv_free_list_push(union anv_free_list *list,
struct anv_state_table *table,
uint32_t first, uint32_t count)
{
union anv_free_list current, old, new;
uint32_t last = first;
for (uint32_t i = 1; i < count; i++, last++)
table->map[last].next = last + 1;
old.u64 = list->u64;
do {
current = old;
table->map[last].next = current.offset;
new.offset = first;
new.count = current.count + 1;
old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
} while (old.u64 != current.u64);
}
struct anv_state *
anv_free_list_pop(union anv_free_list *list,
struct anv_state_table *table)
{
union anv_free_list current, new, old;
current.u64 = list->u64;
while (current.offset != EMPTY) {
__sync_synchronize();
new.offset = table->map[current.offset].next;
new.count = current.count + 1;
old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
if (old.u64 == current.u64) {
struct anv_free_entry *entry = &table->map[current.offset];
return &entry->state;
}
current = old;
}
return NULL;
}
static VkResult
anv_block_pool_expand_range(struct anv_block_pool *pool, uint32_t size);
VkResult
anv_block_pool_init(struct anv_block_pool *pool,
struct anv_device *device,
const char *name,
uint64_t start_address,
uint32_t initial_size)
{
VkResult result;
if (device->info->verx10 >= 125) {
/* Make sure VMA addresses are 2MiB aligned for the block pool */
assert(anv_is_aligned(start_address, 2 * 1024 * 1024));
assert(anv_is_aligned(initial_size, 2 * 1024 * 1024));
}
pool->name = name;
pool->device = device;
pool->nbos = 0;
pool->size = 0;
pool->start_address = intel_canonical_address(start_address);
pool->bo = NULL;
pool->state.next = 0;
pool->state.end = 0;
pool->bo_alloc_flags =
ANV_BO_ALLOC_FIXED_ADDRESS |
ANV_BO_ALLOC_MAPPED |
ANV_BO_ALLOC_SNOOPED |
ANV_BO_ALLOC_CAPTURE |
(device->info->has_local_mem ? ANV_BO_ALLOC_WRITE_COMBINE : 0);
result = anv_block_pool_expand_range(pool, initial_size);
if (result != VK_SUCCESS)
return result;
/* Make the entire pool available in the front of the pool. If back
* allocation needs to use this space, the "ends" will be re-arranged.
*/
pool->state.end = pool->size;
return VK_SUCCESS;
}
void
anv_block_pool_finish(struct anv_block_pool *pool)
{
anv_block_pool_foreach_bo(bo, pool) {
assert(bo->refcount == 1);
anv_device_release_bo(pool->device, bo);
}
}
static VkResult
anv_block_pool_expand_range(struct anv_block_pool *pool, uint32_t size)
{
/* Assert that we only ever grow the pool */
assert(size >= pool->state.end);
/* For state pool BOs we have to be a bit careful about where we place them
* in the GTT. There are two documented workarounds for state base address
* placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
* which state that those two base addresses do not support 48-bit
* addresses and need to be placed in the bottom 32-bit range.
* Unfortunately, this is not quite accurate.
*
* The real problem is that we always set the size of our state pools in
* STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
* likely significantly smaller. We do this because we do not no at the
* time we emit STATE_BASE_ADDRESS whether or not we will need to expand
* the pool during command buffer building so we don't actually have a
* valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
* overflows 48 bits, the GPU appears to treat all accesses to the buffer
* as being out of bounds and returns zero. For dynamic state, this
* usually just leads to rendering corruptions, but shaders that are all
* zero hang the GPU immediately.
*
* The easiest solution to do is exactly what the bogus workarounds say to
* do: restrict these buffers to 32-bit addresses. We could also pin the
* BO to some particular location of our choosing, but that's significantly
* more work than just not setting a flag. So, we explicitly DO NOT set
* the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
* hard work for us. When using softpin, we're in control and the fixed
* addresses we choose are fine for base addresses.
*/
uint32_t new_bo_size = size - pool->size;
struct anv_bo *new_bo = NULL;
VkResult result = anv_device_alloc_bo(pool->device,
pool->name,
new_bo_size,
pool->bo_alloc_flags,
pool->start_address + pool->size,
&new_bo);
if (result != VK_SUCCESS)
return result;
pool->bos[pool->nbos++] = new_bo;
/* This pointer will always point to the first BO in the list */
pool->bo = pool->bos[0];
assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
pool->size = size;
return VK_SUCCESS;
}
/** Returns current memory map of the block pool.
*
* The returned pointer points to the map for the memory at the specified
* offset. The offset parameter is relative to the "center" of the block pool
* rather than the start of the block pool BO map.
*/
void*
anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t size)
{
struct anv_bo *bo = NULL;
int32_t bo_offset = 0;
anv_block_pool_foreach_bo(iter_bo, pool) {
if (offset < bo_offset + iter_bo->size) {
bo = iter_bo;
break;
}
bo_offset += iter_bo->size;
}
assert(bo != NULL);
assert(offset >= bo_offset);
assert((offset - bo_offset) + size <= bo->size);
return bo->map + (offset - bo_offset);
}
/** Grows and re-centers the block pool.
*
* We grow the block pool in one or both directions in such a way that the
* following conditions are met:
*
* 1) The size of the entire pool is always a power of two.
*
* 2) The pool only grows on both ends. Neither end can get
* shortened.
*
* 3) At the end of the allocation, we have about twice as much space
* allocated for each end as we have used. This way the pool doesn't
* grow too far in one direction or the other.
*
* 4) We have enough space allocated for at least one more block in
* whichever side `state` points to.
*
* 5) The center of the pool is always aligned to both the block_size of
* the pool and a 4K CPU page.
*/
static uint32_t
anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state,
uint32_t contiguous_size)
{
VkResult result = VK_SUCCESS;
pthread_mutex_lock(&pool->device->mutex);
assert(state == &pool->state);
/* Gather a little usage information on the pool. Since we may have
* threads waiting in queue to get some storage while we resize, it's
* actually possible that total_used will be larger than old_size. In
* particular, block_pool_alloc() increments state->next prior to
* calling block_pool_grow, so this ensures that we get enough space for
* which ever side tries to grow the pool.
*
* We align to a page size because it makes it easier to do our
* calculations later in such a way that we state page-aigned.
*/
uint32_t total_used = align_u32(pool->state.next, PAGE_SIZE);
uint32_t old_size = pool->size;
/* The block pool is always initialized to a nonzero size and this function
* is always called after initialization.
*/
assert(old_size > 0);
/* total_used may actually be smaller than the actual requirement because
* they are based on the next pointers which are updated prior to calling
* this function.
*/
uint32_t required = MAX2(total_used, old_size);
/* With softpin, the pool is made up of a bunch of buffers with separate
* maps. Make sure we have enough contiguous space that we can get a
* properly contiguous map for the next chunk.
*/
required = MAX2(required, old_size + contiguous_size);
if (total_used * 2 > required) {
uint32_t size = old_size * 2;
while (size < required)
size *= 2;
assert(size > pool->size);
result = anv_block_pool_expand_range(pool, size);
}
pthread_mutex_unlock(&pool->device->mutex);
if (result != VK_SUCCESS)
return 0;
/* Return the appropriate new size. This function never actually
* updates state->next. Instead, we let the caller do that because it
* needs to do so in order to maintain its concurrency model.
*/
return pool->size;
}
static uint32_t
anv_block_pool_alloc_new(struct anv_block_pool *pool,
struct anv_block_state *pool_state,
uint32_t block_size, uint32_t *padding)
{
struct anv_block_state state, old, new;
/* Most allocations won't generate any padding */
if (padding)
*padding = 0;
while (1) {
state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
if (state.next + block_size <= state.end) {
return state.next;
} else if (state.next <= state.end) {
if (state.next < state.end) {
/* We need to grow the block pool, but still have some leftover
* space that can't be used by that particular allocation. So we
* add that as a "padding", and return it.
*/
uint32_t leftover = state.end - state.next;
/* If there is some leftover space in the pool, the caller must
* deal with it.
*/
assert(leftover == 0 || padding);
if (padding)
*padding = leftover;
state.next += leftover;
}
/* We allocated the first block outside the pool so we have to grow
* the pool. pool_state->next acts a mutex: threads who try to
* allocate now will get block indexes above the current limit and
* hit futex_wait below.
*/
new.next = state.next + block_size;
do {
new.end = anv_block_pool_grow(pool, pool_state, block_size);
} while (new.end < new.next);
old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
if (old.next != state.next)
futex_wake(&pool_state->end, INT_MAX);
return state.next;
} else {
futex_wait(&pool_state->end, state.end, NULL);
continue;
}
}
}
int32_t
anv_block_pool_alloc(struct anv_block_pool *pool,
uint32_t block_size, uint32_t *padding)
{
uint32_t offset;
offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
return offset;
}
VkResult
anv_state_pool_init(struct anv_state_pool *pool,
struct anv_device *device,
const char *name,
uint64_t base_address,
int32_t start_offset,
uint32_t block_size)
{
/* We don't want to ever see signed overflow */
assert(start_offset < INT32_MAX - (int32_t)BLOCK_POOL_MEMFD_SIZE);
uint32_t initial_size = block_size * 16;
if (device->info->verx10 >= 125)
initial_size = MAX2(initial_size, 2 * 1024 * 1024);
VkResult result = anv_block_pool_init(&pool->block_pool, device, name,
base_address + start_offset,
initial_size);
if (result != VK_SUCCESS)
return result;
pool->start_offset = start_offset;
result = anv_state_table_init(&pool->table, device, 64);
if (result != VK_SUCCESS) {
anv_block_pool_finish(&pool->block_pool);
return result;
}
assert(util_is_power_of_two_or_zero(block_size));
pool->block_size = block_size;
for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
pool->buckets[i].block.next = 0;
pool->buckets[i].block.end = 0;
}
VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
return VK_SUCCESS;
}
void
anv_state_pool_finish(struct anv_state_pool *pool)
{
VG(VALGRIND_DESTROY_MEMPOOL(pool));
anv_state_table_finish(&pool->table);
anv_block_pool_finish(&pool->block_pool);
}
static uint32_t
anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
struct anv_block_pool *block_pool,
uint32_t state_size,
uint32_t block_size,
uint32_t *padding)
{
struct anv_block_state block, old, new;
uint32_t offset;
/* We don't always use anv_block_pool_alloc(), which would set *padding to
* zero for us. So if we have a pointer to padding, we must zero it out
* ourselves here, to make sure we always return some sensible value.
*/
if (padding)
*padding = 0;
/* If our state is large, we don't need any sub-allocation from a block.
* Instead, we just grab whole (potentially large) blocks.
*/
if (state_size >= block_size)
return anv_block_pool_alloc(block_pool, state_size, padding);
restart:
block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
if (block.next < block.end) {
return block.next;
} else if (block.next == block.end) {
offset = anv_block_pool_alloc(block_pool, block_size, padding);
new.next = offset + state_size;
new.end = offset + block_size;
old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
if (old.next != block.next)
futex_wake(&pool->block.end, INT_MAX);
return offset;
} else {
futex_wait(&pool->block.end, block.end, NULL);
goto restart;
}
}
static uint32_t
anv_state_pool_get_bucket(uint32_t size)
{
unsigned size_log2 = util_logbase2_ceil(size);
assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
size_log2 = ANV_MIN_STATE_SIZE_LOG2;
return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
}
static uint32_t
anv_state_pool_get_bucket_size(uint32_t bucket)
{
uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
return 1 << size_log2;
}
/** Helper to push a chunk into the state table.
*
* It creates 'count' entries into the state table and update their sizes,
* offsets and maps, also pushing them as "free" states.
*/
static void
anv_state_pool_return_blocks(struct anv_state_pool *pool,
uint32_t chunk_offset, uint32_t count,
uint32_t block_size)
{
/* Disallow returning 0 chunks */
assert(count != 0);
/* Make sure we always return chunks aligned to the block_size */
assert(chunk_offset % block_size == 0);
uint32_t st_idx;
UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
assert(result == VK_SUCCESS);
for (int i = 0; i < count; i++) {
/* update states that were added back to the state table */
struct anv_state *state_i = anv_state_table_get(&pool->table,
st_idx + i);
state_i->alloc_size = block_size;
state_i->offset = pool->start_offset + chunk_offset + block_size * i;
state_i->map = anv_block_pool_map(&pool->block_pool,
state_i->offset,
state_i->alloc_size);
}
uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
anv_free_list_push(&pool->buckets[block_bucket].free_list,
&pool->table, st_idx, count);
}
/** Returns a chunk of memory back to the state pool.
*
* Do a two-level split. If chunk_size is bigger than divisor
* (pool->block_size), we return as many divisor sized blocks as we can, from
* the end of the chunk.
*
* The remaining is then split into smaller blocks (starting at small_size if
* it is non-zero), with larger blocks always being taken from the end of the
* chunk.
*/
static void
anv_state_pool_return_chunk(struct anv_state_pool *pool,
uint32_t chunk_offset, uint32_t chunk_size,
uint32_t small_size)
{
uint32_t divisor = pool->block_size;
uint32_t nblocks = chunk_size / divisor;
uint32_t rest = chunk_size - nblocks * divisor;
if (nblocks > 0) {
/* First return divisor aligned and sized chunks. We start returning
* larger blocks from the end of the chunk, since they should already be
* aligned to divisor. Also anv_state_pool_return_blocks() only accepts
* aligned chunks.
*/
uint32_t offset = chunk_offset + rest;
anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
}
chunk_size = rest;
divisor /= 2;
if (small_size > 0 && small_size < divisor)
divisor = small_size;
uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
/* Just as before, return larger divisor aligned blocks from the end of the
* chunk first.
*/
while (chunk_size > 0 && divisor >= min_size) {
nblocks = chunk_size / divisor;
rest = chunk_size - nblocks * divisor;
if (nblocks > 0) {
anv_state_pool_return_blocks(pool, chunk_offset + rest,
nblocks, divisor);
chunk_size = rest;
}
divisor /= 2;
}
}
static struct anv_state
anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
uint32_t size, uint32_t align)
{
uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
struct anv_state *state;
uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
int32_t offset;
/* Try free list first. */
state = anv_free_list_pop(&pool->buckets[bucket].free_list,
&pool->table);
if (state) {
assert(state->offset >= pool->start_offset);
goto done;
}
/* Try to grab a chunk from some larger bucket and split it up */
for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
if (state) {
unsigned chunk_size = anv_state_pool_get_bucket_size(b);
int32_t chunk_offset = state->offset;
/* First lets update the state we got to its new size. offset and map
* remain the same.
*/
state->alloc_size = alloc_size;
/* Now return the unused part of the chunk back to the pool as free
* blocks
*
* There are a couple of options as to what we do with it:
*
* 1) We could fully split the chunk into state.alloc_size sized
* pieces. However, this would mean that allocating a 16B
* state could potentially split a 2MB chunk into 512K smaller
* chunks. This would lead to unnecessary fragmentation.
*
* 2) The classic "buddy allocator" method would have us split the
* chunk in half and return one half. Then we would split the
* remaining half in half and return one half, and repeat as
* needed until we get down to the size we want. However, if
* you are allocating a bunch of the same size state (which is
* the common case), this means that every other allocation has
* to go up a level and every fourth goes up two levels, etc.
* This is not nearly as efficient as it could be if we did a
* little more work up-front.
*
* 3) Split the difference between (1) and (2) by doing a
* two-level split. If it's bigger than some fixed block_size,
* we split it into block_size sized chunks and return all but
* one of them. Then we split what remains into
* state.alloc_size sized chunks and return them.
*
* We choose something close to option (3), which is implemented with
* anv_state_pool_return_chunk(). That is done by returning the
* remaining of the chunk, with alloc_size as a hint of the size that
* we want the smaller chunk split into.
*/
anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
chunk_size - alloc_size, alloc_size);
goto done;
}
}
uint32_t padding;
offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
&pool->block_pool,
alloc_size,
pool->block_size,
&padding);
/* Every time we allocate a new state, add it to the state pool */
uint32_t idx = 0;
UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
assert(result == VK_SUCCESS);
state = anv_state_table_get(&pool->table, idx);
state->offset = pool->start_offset + offset;
state->alloc_size = alloc_size;
state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
if (padding > 0) {
uint32_t return_offset = offset - padding;
anv_state_pool_return_chunk(pool, return_offset, padding, 0);
}
done:
return *state;
}
struct anv_state
anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
{
if (size == 0)
return ANV_STATE_NULL;
struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
return state;
}
static void
anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
{
assert(util_is_power_of_two_or_zero(state.alloc_size));
unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
assert(state.offset >= pool->start_offset);
anv_free_list_push(&pool->buckets[bucket].free_list,
&pool->table, state.idx, 1);
}
void
anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
{
if (state.alloc_size == 0)
return;
VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
anv_state_pool_free_no_vg(pool, state);
}
struct anv_state_stream_block {
struct anv_state block;
/* The next block */
struct anv_state_stream_block *next;
#ifdef HAVE_VALGRIND
/* A pointer to the first user-allocated thing in this block. This is
* what valgrind sees as the start of the block.
*/
void *_vg_ptr;
#endif
};
/* The state stream allocator is a one-shot, single threaded allocator for
* variable sized blocks. We use it for allocating dynamic state.
*/
void
anv_state_stream_init(struct anv_state_stream *stream,
struct anv_state_pool *state_pool,
uint32_t block_size)
{
stream->state_pool = state_pool;
stream->block_size = block_size;
stream->block = ANV_STATE_NULL;
/* Ensure that next + whatever > block_size. This way the first call to
* state_stream_alloc fetches a new block.
*/
stream->next = block_size;
util_dynarray_init(&stream->all_blocks, NULL);
VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
}
void
anv_state_stream_finish(struct anv_state_stream *stream)
{
util_dynarray_foreach(&stream->all_blocks, struct anv_state, block) {
VG(VALGRIND_MEMPOOL_FREE(stream, block->map));
VG(VALGRIND_MAKE_MEM_NOACCESS(block->map, block->alloc_size));
anv_state_pool_free_no_vg(stream->state_pool, *block);
}
util_dynarray_fini(&stream->all_blocks);
VG(VALGRIND_DESTROY_MEMPOOL(stream));
}
struct anv_state
anv_state_stream_alloc(struct anv_state_stream *stream,
uint32_t size, uint32_t alignment)
{
if (size == 0)
return ANV_STATE_NULL;
assert(alignment <= PAGE_SIZE);
uint32_t offset = align_u32(stream->next, alignment);
if (offset + size > stream->block.alloc_size) {
uint32_t block_size = stream->block_size;
if (block_size < size)
block_size = util_next_power_of_two(size);
stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
block_size, PAGE_SIZE);
util_dynarray_append(&stream->all_blocks,
struct anv_state, stream->block);
VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, block_size));
/* Reset back to the start */
stream->next = offset = 0;
assert(offset + size <= stream->block.alloc_size);
}
const bool new_block = stream->next == 0;
struct anv_state state = stream->block;
state.offset += offset;
state.alloc_size = size;
state.map += offset;
stream->next = offset + size;
if (new_block) {
assert(state.map == stream->block.map);
VG(VALGRIND_MEMPOOL_ALLOC(stream, state.map, size));
} else {
/* This only updates the mempool. The newly allocated chunk is still
* marked as NOACCESS. */
VG(VALGRIND_MEMPOOL_CHANGE(stream, stream->block.map, stream->block.map,
stream->next));
/* Mark the newly allocated chunk as undefined */
VG(VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size));
}
return state;
}
void
anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
struct anv_state_pool *parent,
uint32_t count, uint32_t size, uint32_t alignment)
{
pool->pool = parent;
pool->reserved_blocks = ANV_FREE_LIST_EMPTY;
pool->count = count;
for (unsigned i = 0; i < count; i++) {
struct anv_state state = anv_state_pool_alloc(pool->pool, size, alignment);
anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
}
}
void
anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool)
{
struct anv_state *state;
while ((state = anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table))) {
anv_state_pool_free(pool->pool, *state);
pool->count--;
}
assert(pool->count == 0);
}
struct anv_state
anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool)
{
return *anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table);
}
void
anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
struct anv_state state)
{
anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
}
void
anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
const char *name)
{
pool->name = name;
pool->device = device;
pool->bo_alloc_flags =
ANV_BO_ALLOC_MAPPED |
ANV_BO_ALLOC_SNOOPED |
ANV_BO_ALLOC_CAPTURE |
(device->info->has_local_mem ? ANV_BO_ALLOC_WRITE_COMBINE : 0);
for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
util_sparse_array_free_list_init(&pool->free_list[i],
&device->bo_cache.bo_map, 0,
offsetof(struct anv_bo, free_index));
}
VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
}
void
anv_bo_pool_finish(struct anv_bo_pool *pool)
{
for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
while (1) {
struct anv_bo *bo =
util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
if (bo == NULL)
break;
/* anv_device_release_bo is going to "free" it */
VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
anv_device_release_bo(pool->device, bo);
}
}
VG(VALGRIND_DESTROY_MEMPOOL(pool));
}
VkResult
anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
struct anv_bo **bo_out)
{
const unsigned size_log2 = size < 4096 ? 12 : util_logbase2_ceil(size);
const unsigned pow2_size = 1 << size_log2;
const unsigned bucket = size_log2 - 12;
assert(bucket < ARRAY_SIZE(pool->free_list));
struct anv_bo *bo =
util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
if (bo != NULL) {
VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
*bo_out = bo;
return VK_SUCCESS;
}
VkResult result = anv_device_alloc_bo(pool->device,
pool->name,
pow2_size,
pool->bo_alloc_flags,
0 /* explicit_address */,
&bo);
if (result != VK_SUCCESS)
return result;
/* We want it to look like it came from this pool */
VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
*bo_out = bo;
return VK_SUCCESS;
}
void
anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
{
VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
assert(util_is_power_of_two_or_zero(bo->size));
const unsigned size_log2 = util_logbase2_ceil(bo->size);
const unsigned bucket = size_log2 - 12;
assert(bucket < ARRAY_SIZE(pool->free_list));
assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
bo->gem_handle) == bo);
util_sparse_array_free_list_push(&pool->free_list[bucket],
&bo->gem_handle, 1);
}
// Scratch pool
void
anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
{
memset(pool, 0, sizeof(*pool));
}
void
anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
{
for (unsigned s = 0; s < ARRAY_SIZE(pool->bos[0]); s++) {
for (unsigned i = 0; i < 16; i++) {
if (pool->bos[i][s] != NULL)
anv_device_release_bo(device, pool->bos[i][s]);
}
}
for (unsigned i = 0; i < 16; i++) {
if (pool->surf_states[i].map != NULL) {
anv_state_pool_free(&device->scratch_surface_state_pool,
pool->surf_states[i]);
}
}
}
struct anv_bo *
anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
gl_shader_stage stage, unsigned per_thread_scratch)
{
if (per_thread_scratch == 0)
return NULL;
unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
assert(scratch_size_log2 < 16);
assert(stage < ARRAY_SIZE(pool->bos));
const struct intel_device_info *devinfo = device->info;
/* On GFX version 12.5, scratch access changed to a surface-based model.
* Instead of each shader type having its own layout based on IDs passed
* from the relevant fixed-function unit, all scratch access is based on
* thread IDs like it always has been for compute.
*/
if (devinfo->verx10 >= 125)
stage = MESA_SHADER_COMPUTE;
struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
if (bo != NULL)
return bo;
assert(stage < ARRAY_SIZE(devinfo->max_scratch_ids));
uint32_t size = per_thread_scratch * devinfo->max_scratch_ids[stage];
/* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
* are still relative to the general state base address. When we emit
* STATE_BASE_ADDRESS, we set general state base address to 0 and the size
* to the maximum (1 page under 4GB). This allows us to just place the
* scratch buffers anywhere we wish in the bottom 32 bits of address space
* and just set the scratch base pointer in 3DSTATE_*S using a relocation.
* However, in order to do so, we need to ensure that the kernel does not
* place the scratch BO above the 32-bit boundary.
*
* NOTE: Technically, it can't go "anywhere" because the top page is off
* limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
* kernel allocates space using
*
* end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
*
* so nothing will ever touch the top page.
*/
const enum anv_bo_alloc_flags alloc_flags =
devinfo->verx10 < 125 ? ANV_BO_ALLOC_32BIT_ADDRESS : 0;
VkResult result = anv_device_alloc_bo(device, "scratch", size,
alloc_flags,
0 /* explicit_address */,
&bo);
if (result != VK_SUCCESS)
return NULL; /* TODO */
struct anv_bo *current_bo =
p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
if (current_bo) {
anv_device_release_bo(device, bo);
return current_bo;
} else {
return bo;
}
}
uint32_t
anv_scratch_pool_get_surf(struct anv_device *device,
struct anv_scratch_pool *pool,
unsigned per_thread_scratch)
{
assert(device->info->verx10 >= 125);
if (per_thread_scratch == 0)
return 0;
unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
assert(scratch_size_log2 < 16);
uint32_t surf = p_atomic_read(&pool->surfs[scratch_size_log2]);
if (surf > 0)
return surf;
struct anv_bo *bo =
anv_scratch_pool_alloc(device, pool, MESA_SHADER_COMPUTE,
per_thread_scratch);
struct anv_address addr = { .bo = bo };
struct anv_state state =
anv_state_pool_alloc(&device->scratch_surface_state_pool,
device->isl_dev.ss.size, 64);
isl_buffer_fill_state(&device->isl_dev, state.map,
.address = anv_address_physical(addr),
.size_B = bo->size,
.mocs = anv_mocs(device, bo, 0),
.format = ISL_FORMAT_RAW,
.swizzle = ISL_SWIZZLE_IDENTITY,
.stride_B = per_thread_scratch,
.is_scratch = true);
uint32_t current = p_atomic_cmpxchg(&pool->surfs[scratch_size_log2],
0, state.offset);
if (current) {
anv_state_pool_free(&device->scratch_surface_state_pool, state);
return current;
} else {
pool->surf_states[scratch_size_log2] = state;
return state.offset;
}
}
VkResult
anv_bo_cache_init(struct anv_bo_cache *cache, struct anv_device *device)
{
util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
if (pthread_mutex_init(&cache->mutex, NULL)) {
util_sparse_array_finish(&cache->bo_map);
return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY,
"pthread_mutex_init failed: %m");
}
return VK_SUCCESS;
}
void
anv_bo_cache_finish(struct anv_bo_cache *cache)
{
util_sparse_array_finish(&cache->bo_map);
pthread_mutex_destroy(&cache->mutex);
}
#define ANV_BO_CACHE_SUPPORTED_FLAGS \
(EXEC_OBJECT_WRITE | \
EXEC_OBJECT_ASYNC | \
EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
EXEC_OBJECT_PINNED | \
EXEC_OBJECT_CAPTURE | \
ANV_BO_UNCACHED | \
ANV_BO_EXTERNAL)
static uint32_t
anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
enum anv_bo_alloc_flags alloc_flags)
{
struct anv_physical_device *pdevice = device->physical;
uint64_t bo_flags = EXEC_OBJECT_PINNED;
if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
pdevice->supports_48bit_addresses)
bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
if (((alloc_flags & ANV_BO_ALLOC_CAPTURE) ||
INTEL_DEBUG(DEBUG_CAPTURE_ALL)) &&
pdevice->has_exec_capture)
bo_flags |= EXEC_OBJECT_CAPTURE;
if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
bo_flags |= EXEC_OBJECT_WRITE;
}
if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
bo_flags |= EXEC_OBJECT_ASYNC;
if (alloc_flags & ANV_BO_UNCACHED)
bo_flags |= ANV_BO_UNCACHED;
return bo_flags;
}
static void
anv_bo_finish(struct anv_device *device, struct anv_bo *bo)
{
#if defined(USE_MAGMA)
/* For magma, we ensure the buffer is closed first, so that the GPU mapping
* is freed prior to releasing the VMA here, because the VMA can be
* immediately re-used by another thread in one of the codepaths not protected
* by the cache mutex.
*/
assert(bo->gem_handle != 0);
anv_gem_close(device, bo->gem_handle);
#endif
if (bo->offset != 0 && !bo->has_fixed_address)
anv_vma_free(device, bo->offset, bo->size + bo->_ccs_size);
if (bo->map && !bo->from_host_ptr)
anv_device_unmap_bo(device, bo, bo->map, bo->size);
#if !defined(USE_MAGMA)
assert(bo->gem_handle != 0);
anv_gem_close(device, bo->gem_handle);
#endif
}
static VkResult
anv_bo_vma_alloc_or_close(struct anv_device *device,
struct anv_bo *bo,
enum anv_bo_alloc_flags alloc_flags,
uint64_t explicit_address)
{
assert(explicit_address == intel_48b_address(explicit_address));
uint32_t align = 4096;
/* Gen12 CCS surface addresses need to be 64K aligned. */
if (device->info->ver >= 12 && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS))
align = 64 * 1024;
/* For XeHP, lmem and smem cannot share a single PDE, which means they
* can't live in the same 2MiB aligned region.
*/
if (device->info->verx10 >= 125)
align = 2 * 1024 * 1024;
if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
bo->has_fixed_address = true;
bo->offset = explicit_address;
} else {
bo->offset = anv_vma_alloc(device, bo->size + bo->_ccs_size,
align, alloc_flags, explicit_address);
if (bo->offset == 0) {
anv_bo_finish(device, bo);
return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
"failed to allocate virtual address for BO");
}
}
return VK_SUCCESS;
}
VkResult
anv_device_alloc_bo(struct anv_device *device,
const char *name,
uint64_t size,
enum anv_bo_alloc_flags alloc_flags,
uint64_t explicit_address,
struct anv_bo **bo_out)
{
if (!device->physical->has_implicit_ccs)
assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
const uint32_t bo_flags =
anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
/* The kernel is going to give us whole pages anyway */
size = align_u64(size, 4096);
uint64_t ccs_size = 0;
if (device->info->has_aux_map && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) {
/* Align the size up to the next multiple of 64K so we don't have any
* AUX-TT entries pointing from a 64K page to itself.
*/
size = align_u64(size, 64 * 1024);
/* See anv_bo::_ccs_size */
ccs_size = align_u64(DIV_ROUND_UP(size, INTEL_AUX_MAP_GFX12_CCS_SCALE), 4096);
}
uint32_t gem_handle;
/* If we have vram size, we have multiple memory regions and should choose
* one of them.
*/
if (anv_physical_device_has_vram(device->physical)) {
struct drm_i915_gem_memory_class_instance regions[2];
uint32_t nregions = 0;
/* This always try to put the object in local memory. Here
* vram_non_mappable & vram_mappable actually are the same region.
*/
if (alloc_flags & ANV_BO_ALLOC_NO_LOCAL_MEM)
regions[nregions++] = device->physical->sys.region;
else
regions[nregions++] = device->physical->vram_non_mappable.region;
/* If the buffer is mapped on the host, add the system memory region.
* This ensures that if the buffer cannot live in mappable local memory,
* it can be spilled to system memory.
*/
uint32_t flags = 0;
if (!(alloc_flags & ANV_BO_ALLOC_NO_LOCAL_MEM) &&
((alloc_flags & ANV_BO_ALLOC_MAPPED) ||
(alloc_flags & ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE))) {
regions[nregions++] = device->physical->sys.region;
if (device->physical->vram_non_mappable.size > 0)
flags |= I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS;
}
gem_handle = anv_gem_create_regions(device, size + ccs_size,
flags, nregions, regions);
} else {
gem_handle = anv_gem_create(device, size + ccs_size);
}
if (gem_handle == 0)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
struct anv_bo new_bo = {
.name = name,
.gem_handle = gem_handle,
.refcount = 1,
.offset = -1,
.size = size,
._ccs_size = ccs_size,
.flags = bo_flags,
.is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
.has_client_visible_address =
(alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
.has_implicit_ccs = ccs_size > 0 ||
(device->info->verx10 >= 125 && !(alloc_flags & ANV_BO_ALLOC_NO_LOCAL_MEM)),
.map_wc = alloc_flags & ANV_BO_ALLOC_WRITE_COMBINE,
};
if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
VkResult result = anv_device_map_bo(device, &new_bo, 0, size,
0 /* gem_flags */, &new_bo.map);
if (unlikely(result != VK_SUCCESS)) {
anv_gem_close(device, new_bo.gem_handle);
return result;
}
}
if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
/* We don't want to change these defaults if it's going to be shared
* with another process.
*/
assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
/* Regular objects are created I915_CACHING_CACHED on LLC platforms and
* I915_CACHING_NONE on non-LLC platforms. For many internal state
* objects, we'd rather take the snooping overhead than risk forgetting
* a CLFLUSH somewhere. Userptr objects are always created as
* I915_CACHING_CACHED, which on non-LLC means snooped so there's no
* need to do this there.
*/
if (!device->info->has_llc) {
anv_gem_set_caching(device, new_bo.gem_handle,
I915_CACHING_CACHED);
}
}
VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
alloc_flags,
explicit_address);
if (result != VK_SUCCESS)
return result;
if (new_bo._ccs_size > 0) {
assert(device->info->has_aux_map);
intel_aux_map_add_mapping(device->aux_map_ctx,
intel_canonical_address(new_bo.offset),
intel_canonical_address(new_bo.offset + new_bo.size),
new_bo.size, 0 /* format_bits */);
}
assert(new_bo.gem_handle);
/* If we just got this gem_handle from anv_bo_init_new then we know no one
* else is touching this BO at the moment so we don't need to lock here.
*/
struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
*bo = new_bo;
*bo_out = bo;
return VK_SUCCESS;
}
VkResult
anv_device_map_bo(struct anv_device *device,
struct anv_bo *bo,
uint64_t offset,
size_t size,
uint32_t gem_flags,
void **map_out)
{
assert(!bo->from_host_ptr);
assert(size > 0);
if (bo->map_wc)
gem_flags |= I915_MMAP_WC;
void *map = anv_gem_mmap(device, bo->gem_handle, offset, size, gem_flags);
if (unlikely(map == MAP_FAILED))
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
assert(map != NULL);
if (map_out)
*map_out = map;
return VK_SUCCESS;
}
void
anv_device_unmap_bo(struct anv_device *device,
struct anv_bo *bo,
void *map, size_t map_size)
{
assert(!bo->from_host_ptr);
anv_gem_munmap(device, map, map_size);
}
VkResult
anv_device_import_bo_from_host_ptr(struct anv_device *device,
void *host_ptr, uint32_t size,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct anv_bo **bo_out)
{
assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
ANV_BO_ALLOC_SNOOPED |
ANV_BO_ALLOC_FIXED_ADDRESS)));
assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS) ||
(device->physical->has_implicit_ccs && device->info->has_aux_map));
struct anv_bo_cache *cache = &device->bo_cache;
const uint32_t bo_flags =
anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
if (!gem_handle)
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
pthread_mutex_lock(&cache->mutex);
struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
if (bo->refcount > 0) {
/* VK_EXT_external_memory_host doesn't require handling importing the
* same pointer twice at the same time, but we don't get in the way. If
* kernel gives us the same gem_handle, only succeed if the flags match.
*/
assert(bo->gem_handle == gem_handle);
if (bo_flags != bo->flags) {
pthread_mutex_unlock(&cache->mutex);
return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"same host pointer imported two different ways");
}
if (bo->has_client_visible_address !=
((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
pthread_mutex_unlock(&cache->mutex);
return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"The same BO was imported with and without buffer "
"device address");
}
if (client_address && client_address != intel_48b_address(bo->offset)) {
pthread_mutex_unlock(&cache->mutex);
return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"The same BO was imported at two different "
"addresses");
}
__sync_fetch_and_add(&bo->refcount, 1);
} else {
struct anv_bo new_bo = {
.name = "host-ptr",
.gem_handle = gem_handle,
.refcount = 1,
.offset = -1,
.size = size,
.map = host_ptr,
.flags = bo_flags,
.is_external = true,
.from_host_ptr = true,
.has_client_visible_address =
(alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
};
VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
alloc_flags,
client_address);
if (result != VK_SUCCESS) {
pthread_mutex_unlock(&cache->mutex);
return result;
}
*bo = new_bo;
}
pthread_mutex_unlock(&cache->mutex);
*bo_out = bo;
return VK_SUCCESS;
}
VkResult
anv_device_import_bo(struct anv_device *device,
int fd,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct anv_bo **bo_out)
{
uint64_t import_size = lseek(fd, 0, SEEK_END);
return anv_device_import_bo_with_size(device, fd, import_size,
alloc_flags, client_address, bo_out);
}
/* TODO(https://fxbug.dev/42154140) - don't pass size once lseek is available */
VkResult
anv_device_import_bo_with_size(struct anv_device *device,
int fd,
uint64_t import_size,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct anv_bo **bo_out)
{
uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
if (!gem_handle) {
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
}
return anv_device_import_buffer_handle(
device,
gem_handle,
import_size,
alloc_flags,
client_address,
bo_out);
}
VkResult anv_device_import_buffer_handle(struct anv_device* device,
uint32_t gem_handle,
uint64_t import_size,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct anv_bo** bo_out)
{
assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
ANV_BO_ALLOC_SNOOPED |
ANV_BO_ALLOC_FIXED_ADDRESS)));
assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS) ||
(device->physical->has_implicit_ccs && device->info->has_aux_map));
struct anv_bo_cache *cache = &device->bo_cache;
const uint32_t bo_flags =
anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
pthread_mutex_lock(&cache->mutex);
struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
if (bo->refcount > 0) {
/* We have to be careful how we combine flags so that it makes sense.
* Really, though, if we get to this case and it actually matters, the
* client has imported a BO twice in different ways and they get what
* they have coming.
*/
uint64_t new_flags = ANV_BO_EXTERNAL;
new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
new_flags |= (bo->flags | bo_flags) & ANV_BO_UNCACHED;
/* It's theoretically possible for a BO to get imported such that it's
* both pinned and not pinned. The only way this can happen is if it
* gets imported as both a semaphore and a memory object and that would
* be an application error. Just fail out in that case.
*/
if ((bo->flags & EXEC_OBJECT_PINNED) !=
(bo_flags & EXEC_OBJECT_PINNED)) {
pthread_mutex_unlock(&cache->mutex);
return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"The same BO was imported two different ways");
}
/* It's also theoretically possible that someone could export a BO from
* one heap and import it into another or to import the same BO into two
* different heaps. If this happens, we could potentially end up both
* allowing and disallowing 48-bit addresses. There's not much we can
* do about it if we're pinning so we just throw an error and hope no
* app is actually that stupid.
*/
if ((new_flags & EXEC_OBJECT_PINNED) &&
(bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
(bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
pthread_mutex_unlock(&cache->mutex);
return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"The same BO was imported on two different heaps");
}
if (bo->has_client_visible_address !=
((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
pthread_mutex_unlock(&cache->mutex);
return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"The same BO was imported with and without buffer "
"device address");
}
if (client_address && client_address != intel_48b_address(bo->offset)) {
pthread_mutex_unlock(&cache->mutex);
return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"The same BO was imported at two different "
"addresses");
}
bo->flags = new_flags;
__sync_fetch_and_add(&bo->refcount, 1);
} else {
off_t size = import_size;
if (size == (off_t)-1) {
anv_gem_close(device, gem_handle);
pthread_mutex_unlock(&cache->mutex);
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
}
struct anv_bo new_bo = {
.name = "imported",
.gem_handle = gem_handle,
.refcount = 1,
.offset = -1,
.size = size,
.flags = bo_flags,
.is_external = true,
.has_client_visible_address =
(alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
};
assert(new_bo._ccs_size == 0);
VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
alloc_flags,
client_address);
if (result != VK_SUCCESS) {
pthread_mutex_unlock(&cache->mutex);
return result;
}
*bo = new_bo;
}
pthread_mutex_unlock(&cache->mutex);
*bo_out = bo;
return VK_SUCCESS;
}
VkResult
anv_device_export_bo(struct anv_device *device,
struct anv_bo *bo, int *fd_out)
{
assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
/* This BO must have been flagged external in order for us to be able
* to export it. This is done based on external options passed into
* anv_AllocateMemory.
*/
assert(bo->is_external);
int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
if (fd < 0)
return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
*fd_out = fd;
return VK_SUCCESS;
}
VkResult
anv_device_get_bo_tiling(struct anv_device *device,
struct anv_bo *bo,
enum isl_tiling *tiling_out)
{
int i915_tiling = anv_gem_get_tiling(device, bo->gem_handle);
if (i915_tiling < 0) {
return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"failed to get BO tiling: %m");
}
*tiling_out = isl_tiling_from_i915_tiling(i915_tiling);
return VK_SUCCESS;
}
VkResult
anv_device_set_bo_tiling(struct anv_device *device,
struct anv_bo *bo,
uint32_t row_pitch_B,
enum isl_tiling tiling)
{
int ret = anv_gem_set_tiling(device, bo->gem_handle, row_pitch_B,
isl_tiling_to_i915_tiling(tiling));
if (ret) {
return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
"failed to set BO tiling: %m");
}
return VK_SUCCESS;
}
static bool
atomic_dec_not_one(uint32_t *counter)
{
uint32_t old, val;
val = *counter;
while (1) {
if (val == 1)
return false;
old = __sync_val_compare_and_swap(counter, val, val - 1);
if (old == val)
return true;
val = old;
}
}
void
anv_device_release_bo(struct anv_device *device,
struct anv_bo *bo)
{
struct anv_bo_cache *cache = &device->bo_cache;
assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
/* Try to decrement the counter but don't go below one. If this succeeds
* then the refcount has been decremented and we are not the last
* reference.
*/
if (atomic_dec_not_one(&bo->refcount))
return;
pthread_mutex_lock(&cache->mutex);
/* We are probably the last reference since our attempt to decrement above
* failed. However, we can't actually know until we are inside the mutex.
* Otherwise, someone could import the BO between the decrement and our
* taking the mutex.
*/
if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
/* Turns out we're not the last reference. Unlock and bail. */
pthread_mutex_unlock(&cache->mutex);
return;
}
assert(bo->refcount == 0);
if (bo->_ccs_size > 0) {
assert(device->physical->has_implicit_ccs);
assert(device->info->has_aux_map);
assert(bo->has_implicit_ccs);
intel_aux_map_unmap_range(device->aux_map_ctx,
intel_canonical_address(bo->offset),
bo->size);
}
/* Memset the BO just in case. The refcount being zero should be enough to
* prevent someone from assuming the data is valid but it's safer to just
* stomp to zero just in case. We explicitly do this *before* we actually
* close the GEM handle to ensure that if anyone allocates something and
* gets the same GEM handle, the memset has already happen and won't stomp
* all over any data they may write in this BO.
*/
struct anv_bo old_bo = *bo;
memset(bo, 0, sizeof(*bo));
anv_bo_finish(device, &old_bo);
/* Don't unlock until we've actually closed the BO. The whole point of
* the BO cache is to ensure that we correctly handle races with creating
* and releasing GEM handles and we don't want to let someone import the BO
* again between mutex unlock and closing the GEM handle.
*/
pthread_mutex_unlock(&cache->mutex);
}