blob: 7152509bc39dc39f2da646f947ecaced0e5e0a6f [file] [log] [blame]
#
# Copyright (C) 2020 Collabora, Ltd.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# Useful for autogeneration
COPYRIGHT = """/*
* Copyright (C) 2020 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* Autogenerated file, do not edit */
"""
# Parse instruction set XML into a normalized form for processing
import xml.etree.ElementTree as ET
import copy
import itertools
from collections import OrderedDict
def parse_cond(cond, aliased = False):
if cond.tag == 'reserved':
return None
if cond.attrib.get('alias', False) and not aliased:
return ['alias', parse_cond(cond, True)]
if 'left' in cond.attrib:
return [cond.tag, cond.attrib['left'], cond.attrib['right']]
else:
return [cond.tag] + [parse_cond(x) for x in cond.findall('*')]
def parse_exact(obj):
return [int(obj.attrib['mask'], 0), int(obj.attrib['exact'], 0)]
def parse_derived(obj):
out = []
for deriv in obj.findall('derived'):
loc = [int(deriv.attrib['start']), int(deriv.attrib['size'])]
count = 1 << loc[1]
opts = [parse_cond(d) for d in deriv.findall('*')]
default = [None] * count
opts_fit = (opts + default)[0:count]
out.append([loc, opts_fit])
return out
def parse_modifiers(obj, include_pseudo):
out = []
for mod in obj.findall('mod'):
if mod.attrib.get('pseudo', False) and not include_pseudo:
continue
name = mod.attrib['name']
start = mod.attrib.get('start', None)
size = int(mod.attrib['size'])
if start is not None:
start = int(start)
opts = [x.text if x.tag == 'opt' else x.tag for x in mod.findall('*')]
if len(opts) == 0:
assert('opt' in mod.attrib)
opts = ['none', mod.attrib['opt']]
# Find suitable default
default = mod.attrib.get('default', 'none' if 'none' in opts else None)
# Pad out as reserved
count = (1 << size)
opts = (opts + (['reserved'] * count))[0:count]
out.append([[name, start, size], default, opts])
return out
def parse_copy(enc, existing):
for node in enc.findall('copy'):
name = node.get('name')
for ex in existing:
if ex[0][0] == name:
ex[0][1] = node.get('start')
def parse_instruction(ins, include_pseudo):
common = {
'srcs': [],
'modifiers': [],
'immediates': [],
'swaps': [],
'derived': [],
'staging': ins.attrib.get('staging', '').split('=')[0],
'staging_count': ins.attrib.get('staging', '=0').split('=')[1],
'dests': int(ins.attrib.get('dests', '1')),
'variable_dests': ins.attrib.get('variable_dests', False),
'variable_srcs': ins.attrib.get('variable_srcs', False),
'unused': ins.attrib.get('unused', False),
'pseudo': ins.attrib.get('pseudo', False),
'message': ins.attrib.get('message', 'none'),
'last': ins.attrib.get('last', False),
'table': ins.attrib.get('table', False),
}
if 'exact' in ins.attrib:
common['exact'] = parse_exact(ins)
for src in ins.findall('src'):
if src.attrib.get('pseudo', False) and not include_pseudo:
continue
mask = int(src.attrib['mask'], 0) if ('mask' in src.attrib) else 0xFF
common['srcs'].append([int(src.attrib['start'], 0), mask])
for imm in ins.findall('immediate'):
if imm.attrib.get('pseudo', False) and not include_pseudo:
continue
start = int(imm.attrib['start']) if 'start' in imm.attrib else None
common['immediates'].append([imm.attrib['name'], start, int(imm.attrib['size'])])
common['derived'] = parse_derived(ins)
common['modifiers'] = parse_modifiers(ins, include_pseudo)
for swap in ins.findall('swap'):
lr = [int(swap.get('left')), int(swap.get('right'))]
cond = parse_cond(swap.findall('*')[0])
rewrites = {}
for rw in swap.findall('rewrite'):
mp = {}
for m in rw.findall('map'):
mp[m.attrib['from']] = m.attrib['to']
rewrites[rw.attrib['name']] = mp
common['swaps'].append([lr, cond, rewrites])
encodings = ins.findall('encoding')
variants = []
if len(encodings) == 0:
variants = [[None, common]]
else:
for enc in encodings:
variant = copy.deepcopy(common)
assert(len(variant['derived']) == 0)
variant['exact'] = parse_exact(enc)
variant['derived'] = parse_derived(enc)
parse_copy(enc, variant['modifiers'])
cond = parse_cond(enc.findall('*')[0])
variants.append([cond, variant])
return variants
def parse_instructions(xml, include_unused = False, include_pseudo = False):
final = {}
instructions = ET.parse(xml).getroot().findall('ins')
for ins in instructions:
parsed = parse_instruction(ins, include_pseudo)
# Some instructions are for useful disassembly only and can be stripped
# out of the compiler, particularly useful for release builds
if parsed[0][1]["unused"] and not include_unused:
continue
# On the other hand, some instructions are only for the IR, not disassembly
if parsed[0][1]["pseudo"] and not include_pseudo:
continue
final[ins.attrib['name']] = parsed
return final
# Expand out an opcode name to something C-escaped
def opname_to_c(name):
return name.lower().replace('*', 'fma_').replace('+', 'add_').replace('.', '_')
# Expand out distinct states to distrinct instructions, with a placeholder
# condition for instructions with a single state
def expand_states(instructions):
out = {}
for ins in instructions:
c = instructions[ins]
for ((test, desc), i) in zip(c, range(len(c))):
# Construct a name for the state
name = ins + (('.' + str(i)) if len(c) > 1 else '')
out[name] = (ins, test if test is not None else [], desc)
return out
# Drop keys used for packing to simplify IR representation, so we can check for
# equivalence easier
def simplify_to_ir(ins):
return {
'staging': ins['staging'],
'srcs': len(ins['srcs']),
'dests': ins['dests'],
'variable_dests': ins['variable_dests'],
'variable_srcs': ins['variable_srcs'],
'modifiers': [[m[0][0], m[2]] for m in ins['modifiers']],
'immediates': [m[0] for m in ins['immediates']]
}
# Converstions to integers default to rounding-to-zero
# All other opcodes default to rounding to nearest even
def default_round_to_zero(name):
# 8-bit int to float is exact
subs = ['_TO_U', '_TO_S', '_TO_V2U', '_TO_V2S', '_TO_V4U', '_TO_V4S']
return any([x in name for x in subs])
def combine_ir_variants(instructions, key):
seen = [op for op in instructions.keys() if op[1:] == key]
variant_objs = [[simplify_to_ir(Q[1]) for Q in instructions[x]] for x in seen]
variants = sum(variant_objs, [])
# Accumulate modifiers across variants
modifiers = {}
for s in variants[0:]:
# Check consistency
assert(s['srcs'] == variants[0]['srcs'])
assert(s['dests'] == variants[0]['dests'])
assert(s['immediates'] == variants[0]['immediates'])
assert(s['staging'] == variants[0]['staging'])
for name, opts in s['modifiers']:
if name not in modifiers:
modifiers[name] = copy.deepcopy(opts)
else:
modifiers[name] += opts
# Great, we've checked srcs/immediates are consistent and we've summed over
# modifiers
return {
'key': key,
'srcs': variants[0]['srcs'],
'dests': variants[0]['dests'],
'variable_dests': variants[0]['variable_dests'],
'variable_srcs': variants[0]['variable_srcs'],
'staging': variants[0]['staging'],
'immediates': sorted(variants[0]['immediates']),
'modifiers': modifiers,
'v': len(variants),
'ir': variants,
'rtz': default_round_to_zero(key)
}
# Partition instructions to mnemonics, considering units and variants
# equivalent.
def partition_mnemonics(instructions):
key_func = lambda x: x[1:]
sorted_instrs = sorted(instructions.keys(), key = key_func)
partitions = itertools.groupby(sorted_instrs, key_func)
return { k: combine_ir_variants(instructions, k) for k, v in partitions }
# Generate modifier lists, by accumulating all the possible modifiers, and
# deduplicating thus assigning canonical enum values. We don't try _too_ hard
# to be clever, but by preserving as much of the original orderings as
# possible, later instruction encoding is simplified a bit. Probably a micro
# optimization but we have to pick _some_ ordering, might as well choose the
# most convenient.
#
# THIS MUST BE DETERMINISTIC
def order_modifiers(ir_instructions):
out = {}
# modifier name -> (list of option strings)
modifier_lists = {}
for ins in sorted(ir_instructions):
modifiers = ir_instructions[ins]["modifiers"]
for name in modifiers:
name_ = name[0:-1] if name[-1] in "0123" else name
if name_ not in modifier_lists:
modifier_lists[name_] = copy.deepcopy(modifiers[name])
else:
modifier_lists[name_] += modifiers[name]
for mod in modifier_lists:
lst = list(OrderedDict.fromkeys(modifier_lists[mod]))
# Ensure none is false for booleans so the builder makes sense
if len(lst) == 2 and lst[1] == "none":
lst.reverse()
elif mod == "table":
# We really need a zero sentinel to materialize DTSEL
assert(lst[2] == "none")
lst[2] = lst[0]
lst[0] = "none"
out[mod] = lst
return out
# Count sources for a simplified (IR) instruction, including a source for a
# staging register if necessary
def src_count(op):
staging = 1 if (op["staging"] in ["r", "rw"]) else 0
return op["srcs"] + staging
# Parses out the size part of an opocde name
def typesize(opcode):
if opcode[-3:] == '128':
return 128
if opcode[-2:] == '48':
return 48
elif opcode[-1] == '8':
return 8
else:
try:
return int(opcode[-2:])
except:
return 32