| /************************************************************************** |
| * |
| * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. |
| * Copyright (c) 2008 VMware, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| |
| #include "util/format/u_format.h" |
| #include "util/format/u_format_fxt1.h" |
| #include "util/format/u_format_pack.h" |
| #include "util/format_srgb.h" |
| #include "util/u_math.h" |
| |
| #define RCOMP 0 |
| #define GCOMP 1 |
| #define BCOMP 2 |
| #define ACOMP 3 |
| |
| #define FXT1_BLOCK_SIZE 16 |
| |
| static void |
| fxt1_encode (uint32_t width, uint32_t height, int32_t comps, |
| const void *source, int32_t srcRowStride, |
| void *dest, int32_t destRowStride); |
| |
| static void |
| fxt1_decode_1 (const void *texture, int32_t stride, |
| int32_t i, int32_t j, uint8_t *rgba); |
| |
| /***************************************************************************\ |
| * FXT1 encoder |
| * |
| * The encoder was built by reversing the decoder, |
| * and is vaguely based on Texus2 by 3dfx. Note that this code |
| * is merely a proof of concept, since it is highly UNoptimized; |
| * moreover, it is sub-optimal due to initial conditions passed |
| * to Lloyd's algorithm (the interpolation modes are even worse). |
| \***************************************************************************/ |
| |
| |
| #define MAX_COMP 4 /* ever needed maximum number of components in texel */ |
| #define MAX_VECT 4 /* ever needed maximum number of base vectors to find */ |
| #define N_TEXELS 32 /* number of texels in a block (always 32) */ |
| #define LL_N_REP 50 /* number of iterations in lloyd's vq */ |
| #define LL_RMS_D 10 /* fault tolerance (maximum delta) */ |
| #define LL_RMS_E 255 /* fault tolerance (maximum error) */ |
| #define ALPHA_TS 2 /* alpha threshold: (255 - ALPHA_TS) deemed opaque */ |
| static const uint32_t zero = 0; |
| #define ISTBLACK(v) (memcmp(&(v), &zero, sizeof(zero)) == 0) |
| |
| /* |
| * Define a 64-bit unsigned integer type and macros |
| */ |
| #if 1 |
| |
| #define FX64_NATIVE 1 |
| |
| typedef uint64_t Fx64; |
| |
| #define FX64_MOV32(a, b) a = b |
| #define FX64_OR32(a, b) a |= b |
| #define FX64_SHL(a, c) a <<= c |
| |
| #else |
| |
| #define FX64_NATIVE 0 |
| |
| typedef struct { |
| uint32_t lo, hi; |
| } Fx64; |
| |
| #define FX64_MOV32(a, b) a.lo = b |
| #define FX64_OR32(a, b) a.lo |= b |
| |
| #define FX64_SHL(a, c) \ |
| do { \ |
| if ((c) >= 32) { \ |
| a.hi = a.lo << ((c) - 32); \ |
| a.lo = 0; \ |
| } else { \ |
| a.hi = (a.hi << (c)) | (a.lo >> (32 - (c))); \ |
| a.lo <<= (c); \ |
| } \ |
| } while (0) |
| |
| #endif |
| |
| |
| #define F(i) (float)1 /* can be used to obtain an oblong metric: 0.30 / 0.59 / 0.11 */ |
| #define SAFECDOT 1 /* for paranoids */ |
| |
| #define MAKEIVEC(NV, NC, IV, B, V0, V1) \ |
| do { \ |
| /* compute interpolation vector */ \ |
| float d2 = 0.0F; \ |
| float rd2; \ |
| \ |
| for (i = 0; i < NC; i++) { \ |
| IV[i] = (V1[i] - V0[i]) * F(i); \ |
| d2 += IV[i] * IV[i]; \ |
| } \ |
| rd2 = (float)NV / d2; \ |
| B = 0; \ |
| for (i = 0; i < NC; i++) { \ |
| IV[i] *= F(i); \ |
| B -= IV[i] * V0[i]; \ |
| IV[i] *= rd2; \ |
| } \ |
| B = B * rd2 + 0.5f; \ |
| } while (0) |
| |
| #define CALCCDOT(TEXEL, NV, NC, IV, B, V)\ |
| do { \ |
| float dot = 0.0F; \ |
| for (i = 0; i < NC; i++) { \ |
| dot += V[i] * IV[i]; \ |
| } \ |
| TEXEL = (int32_t)(dot + B); \ |
| if (SAFECDOT) { \ |
| if (TEXEL < 0) { \ |
| TEXEL = 0; \ |
| } else if (TEXEL > NV) { \ |
| TEXEL = NV; \ |
| } \ |
| } \ |
| } while (0) |
| |
| |
| static int32_t |
| fxt1_bestcol (float vec[][MAX_COMP], int32_t nv, |
| uint8_t input[MAX_COMP], int32_t nc) |
| { |
| int32_t i, j, best = -1; |
| float err = 1e9; /* big enough */ |
| |
| for (j = 0; j < nv; j++) { |
| float e = 0.0F; |
| for (i = 0; i < nc; i++) { |
| e += (vec[j][i] - input[i]) * (vec[j][i] - input[i]); |
| } |
| if (e < err) { |
| err = e; |
| best = j; |
| } |
| } |
| |
| return best; |
| } |
| |
| |
| static int32_t |
| fxt1_worst (float vec[MAX_COMP], |
| uint8_t input[N_TEXELS][MAX_COMP], int32_t nc, int32_t n) |
| { |
| int32_t i, k, worst = -1; |
| float err = -1.0F; /* small enough */ |
| |
| for (k = 0; k < n; k++) { |
| float e = 0.0F; |
| for (i = 0; i < nc; i++) { |
| e += (vec[i] - input[k][i]) * (vec[i] - input[k][i]); |
| } |
| if (e > err) { |
| err = e; |
| worst = k; |
| } |
| } |
| |
| return worst; |
| } |
| |
| |
| static int32_t |
| fxt1_variance (uint8_t input[N_TEXELS / 2][MAX_COMP], int32_t nc) |
| { |
| const int n = N_TEXELS / 2; |
| int32_t i, k, best = 0; |
| int32_t sx, sx2; |
| double var, maxvar = -1; /* small enough */ |
| double teenth = 1.0 / n; |
| |
| for (i = 0; i < nc; i++) { |
| sx = sx2 = 0; |
| for (k = 0; k < n; k++) { |
| int32_t t = input[k][i]; |
| sx += t; |
| sx2 += t * t; |
| } |
| var = sx2 * teenth - sx * sx * teenth * teenth; |
| if (maxvar < var) { |
| maxvar = var; |
| best = i; |
| } |
| } |
| |
| return best; |
| } |
| |
| |
| static int32_t |
| fxt1_choose (float vec[][MAX_COMP], int32_t nv, |
| uint8_t input[N_TEXELS][MAX_COMP], int32_t nc, int32_t n) |
| { |
| #if 0 |
| /* Choose colors from a grid. |
| */ |
| int32_t i, j; |
| |
| for (j = 0; j < nv; j++) { |
| int32_t m = j * (n - 1) / (nv - 1); |
| for (i = 0; i < nc; i++) { |
| vec[j][i] = input[m][i]; |
| } |
| } |
| #else |
| /* Our solution here is to find the darkest and brightest colors in |
| * the 8x4 tile and use those as the two representative colors. |
| * There are probably better algorithms to use (histogram-based). |
| */ |
| int32_t i, j, k; |
| int32_t minSum = 2000; /* big enough */ |
| int32_t maxSum = -1; /* small enough */ |
| int32_t minCol = 0; /* phoudoin: silent compiler! */ |
| int32_t maxCol = 0; /* phoudoin: silent compiler! */ |
| |
| struct { |
| int32_t flag; |
| int32_t key; |
| int32_t freq; |
| int32_t idx; |
| } hist[N_TEXELS]; |
| int32_t lenh = 0; |
| |
| memset(hist, 0, sizeof(hist)); |
| |
| for (k = 0; k < n; k++) { |
| int32_t l; |
| int32_t key = 0; |
| int32_t sum = 0; |
| for (i = 0; i < nc; i++) { |
| key <<= 8; |
| key |= input[k][i]; |
| sum += input[k][i]; |
| } |
| for (l = 0; l < n; l++) { |
| if (!hist[l].flag) { |
| /* alloc new slot */ |
| hist[l].flag = !0; |
| hist[l].key = key; |
| hist[l].freq = 1; |
| hist[l].idx = k; |
| lenh = l + 1; |
| break; |
| } else if (hist[l].key == key) { |
| hist[l].freq++; |
| break; |
| } |
| } |
| if (minSum > sum) { |
| minSum = sum; |
| minCol = k; |
| } |
| if (maxSum < sum) { |
| maxSum = sum; |
| maxCol = k; |
| } |
| } |
| |
| if (lenh <= nv) { |
| for (j = 0; j < lenh; j++) { |
| for (i = 0; i < nc; i++) { |
| vec[j][i] = (float)input[hist[j].idx][i]; |
| } |
| } |
| for (; j < nv; j++) { |
| for (i = 0; i < nc; i++) { |
| vec[j][i] = vec[0][i]; |
| } |
| } |
| return 0; |
| } |
| |
| for (j = 0; j < nv; j++) { |
| for (i = 0; i < nc; i++) { |
| vec[j][i] = ((nv - 1 - j) * input[minCol][i] + j * input[maxCol][i] + (nv - 1) / 2) / (float)(nv - 1); |
| } |
| } |
| #endif |
| |
| return !0; |
| } |
| |
| |
| static int32_t |
| fxt1_lloyd (float vec[][MAX_COMP], int32_t nv, |
| uint8_t input[N_TEXELS][MAX_COMP], int32_t nc, int32_t n) |
| { |
| /* Use the generalized lloyd's algorithm for VQ: |
| * find 4 color vectors. |
| * |
| * for each sample color |
| * sort to nearest vector. |
| * |
| * replace each vector with the centroid of its matching colors. |
| * |
| * repeat until RMS doesn't improve. |
| * |
| * if a color vector has no samples, or becomes the same as another |
| * vector, replace it with the color which is farthest from a sample. |
| * |
| * vec[][MAX_COMP] initial vectors and resulting colors |
| * nv number of resulting colors required |
| * input[N_TEXELS][MAX_COMP] input texels |
| * nc number of components in input / vec |
| * n number of input samples |
| */ |
| |
| int32_t sum[MAX_VECT][MAX_COMP]; /* used to accumulate closest texels */ |
| int32_t cnt[MAX_VECT]; /* how many times a certain vector was chosen */ |
| float error, lasterror = 1e9; |
| |
| int32_t i, j, k, rep; |
| |
| /* the quantizer */ |
| for (rep = 0; rep < LL_N_REP; rep++) { |
| /* reset sums & counters */ |
| for (j = 0; j < nv; j++) { |
| for (i = 0; i < nc; i++) { |
| sum[j][i] = 0; |
| } |
| cnt[j] = 0; |
| } |
| error = 0; |
| |
| /* scan whole block */ |
| for (k = 0; k < n; k++) { |
| #if 1 |
| int32_t best = -1; |
| float err = 1e9; /* big enough */ |
| /* determine best vector */ |
| for (j = 0; j < nv; j++) { |
| float e = (vec[j][0] - input[k][0]) * (vec[j][0] - input[k][0]) + |
| (vec[j][1] - input[k][1]) * (vec[j][1] - input[k][1]) + |
| (vec[j][2] - input[k][2]) * (vec[j][2] - input[k][2]); |
| if (nc == 4) { |
| e += (vec[j][3] - input[k][3]) * (vec[j][3] - input[k][3]); |
| } |
| if (e < err) { |
| err = e; |
| best = j; |
| } |
| } |
| #else |
| int32_t best = fxt1_bestcol(vec, nv, input[k], nc, &err); |
| #endif |
| assert(best >= 0); |
| /* add in closest color */ |
| for (i = 0; i < nc; i++) { |
| sum[best][i] += input[k][i]; |
| } |
| /* mark this vector as used */ |
| cnt[best]++; |
| /* accumulate error */ |
| error += err; |
| } |
| |
| /* check RMS */ |
| if ((error < LL_RMS_E) || |
| ((error < lasterror) && ((lasterror - error) < LL_RMS_D))) { |
| return !0; /* good match */ |
| } |
| lasterror = error; |
| |
| /* move each vector to the barycenter of its closest colors */ |
| for (j = 0; j < nv; j++) { |
| if (cnt[j]) { |
| float div = 1.0F / cnt[j]; |
| for (i = 0; i < nc; i++) { |
| vec[j][i] = div * sum[j][i]; |
| } |
| } else { |
| /* this vec has no samples or is identical with a previous vec */ |
| int32_t worst = fxt1_worst(vec[j], input, nc, n); |
| for (i = 0; i < nc; i++) { |
| vec[j][i] = input[worst][i]; |
| } |
| } |
| } |
| } |
| |
| return 0; /* could not converge fast enough */ |
| } |
| |
| |
| static void |
| fxt1_quantize_CHROMA (uint32_t *cc, |
| uint8_t input[N_TEXELS][MAX_COMP]) |
| { |
| const int32_t n_vect = 4; /* 4 base vectors to find */ |
| const int32_t n_comp = 3; /* 3 components: R, G, B */ |
| float vec[MAX_VECT][MAX_COMP]; |
| int32_t i, j, k; |
| Fx64 hi; /* high quadword */ |
| uint32_t lohi, lolo; /* low quadword: hi dword, lo dword */ |
| |
| if (fxt1_choose(vec, n_vect, input, n_comp, N_TEXELS) != 0) { |
| fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS); |
| } |
| |
| FX64_MOV32(hi, 4); /* cc-chroma = "010" + unused bit */ |
| for (j = n_vect - 1; j >= 0; j--) { |
| for (i = 0; i < n_comp; i++) { |
| /* add in colors */ |
| FX64_SHL(hi, 5); |
| FX64_OR32(hi, (uint32_t)(vec[j][i] / 8.0F)); |
| } |
| } |
| ((Fx64 *)cc)[1] = hi; |
| |
| lohi = lolo = 0; |
| /* right microtile */ |
| for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) { |
| lohi <<= 2; |
| lohi |= fxt1_bestcol(vec, n_vect, input[k], n_comp); |
| } |
| /* left microtile */ |
| for (; k >= 0; k--) { |
| lolo <<= 2; |
| lolo |= fxt1_bestcol(vec, n_vect, input[k], n_comp); |
| } |
| cc[1] = lohi; |
| cc[0] = lolo; |
| } |
| |
| |
| static void |
| fxt1_quantize_ALPHA0 (uint32_t *cc, |
| uint8_t input[N_TEXELS][MAX_COMP], |
| uint8_t reord[N_TEXELS][MAX_COMP], int32_t n) |
| { |
| const int32_t n_vect = 3; /* 3 base vectors to find */ |
| const int32_t n_comp = 4; /* 4 components: R, G, B, A */ |
| float vec[MAX_VECT][MAX_COMP]; |
| int32_t i, j, k; |
| Fx64 hi; /* high quadword */ |
| uint32_t lohi, lolo; /* low quadword: hi dword, lo dword */ |
| |
| /* the last vector indicates zero */ |
| for (i = 0; i < n_comp; i++) { |
| vec[n_vect][i] = 0; |
| } |
| |
| /* the first n texels in reord are guaranteed to be non-zero */ |
| if (fxt1_choose(vec, n_vect, reord, n_comp, n) != 0) { |
| fxt1_lloyd(vec, n_vect, reord, n_comp, n); |
| } |
| |
| FX64_MOV32(hi, 6); /* alpha = "011" + lerp = 0 */ |
| for (j = n_vect - 1; j >= 0; j--) { |
| /* add in alphas */ |
| FX64_SHL(hi, 5); |
| FX64_OR32(hi, (uint32_t)(vec[j][ACOMP] / 8.0F)); |
| } |
| for (j = n_vect - 1; j >= 0; j--) { |
| for (i = 0; i < n_comp - 1; i++) { |
| /* add in colors */ |
| FX64_SHL(hi, 5); |
| FX64_OR32(hi, (uint32_t)(vec[j][i] / 8.0F)); |
| } |
| } |
| ((Fx64 *)cc)[1] = hi; |
| |
| lohi = lolo = 0; |
| /* right microtile */ |
| for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) { |
| lohi <<= 2; |
| lohi |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp); |
| } |
| /* left microtile */ |
| for (; k >= 0; k--) { |
| lolo <<= 2; |
| lolo |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp); |
| } |
| cc[1] = lohi; |
| cc[0] = lolo; |
| } |
| |
| |
| static void |
| fxt1_quantize_ALPHA1 (uint32_t *cc, |
| uint8_t input[N_TEXELS][MAX_COMP]) |
| { |
| const int32_t n_vect = 3; /* highest vector number in each microtile */ |
| const int32_t n_comp = 4; /* 4 components: R, G, B, A */ |
| float vec[1 + 1 + 1][MAX_COMP]; /* 1.5 extrema for each sub-block */ |
| float b, iv[MAX_COMP]; /* interpolation vector */ |
| int32_t i, j, k; |
| Fx64 hi; /* high quadword */ |
| uint32_t lohi, lolo; /* low quadword: hi dword, lo dword */ |
| |
| int32_t minSum; |
| int32_t maxSum; |
| int32_t minColL = 0, maxColL = 0; |
| int32_t minColR = 0, maxColR = 0; |
| int32_t sumL = 0, sumR = 0; |
| int32_t nn_comp; |
| /* Our solution here is to find the darkest and brightest colors in |
| * the 4x4 tile and use those as the two representative colors. |
| * There are probably better algorithms to use (histogram-based). |
| */ |
| nn_comp = n_comp; |
| while ((minColL == maxColL) && nn_comp) { |
| minSum = 2000; /* big enough */ |
| maxSum = -1; /* small enough */ |
| for (k = 0; k < N_TEXELS / 2; k++) { |
| int32_t sum = 0; |
| for (i = 0; i < nn_comp; i++) { |
| sum += input[k][i]; |
| } |
| if (minSum > sum) { |
| minSum = sum; |
| minColL = k; |
| } |
| if (maxSum < sum) { |
| maxSum = sum; |
| maxColL = k; |
| } |
| sumL += sum; |
| } |
| |
| nn_comp--; |
| } |
| |
| nn_comp = n_comp; |
| while ((minColR == maxColR) && nn_comp) { |
| minSum = 2000; /* big enough */ |
| maxSum = -1; /* small enough */ |
| for (k = N_TEXELS / 2; k < N_TEXELS; k++) { |
| int32_t sum = 0; |
| for (i = 0; i < nn_comp; i++) { |
| sum += input[k][i]; |
| } |
| if (minSum > sum) { |
| minSum = sum; |
| minColR = k; |
| } |
| if (maxSum < sum) { |
| maxSum = sum; |
| maxColR = k; |
| } |
| sumR += sum; |
| } |
| |
| nn_comp--; |
| } |
| |
| /* choose the common vector (yuck!) */ |
| { |
| int32_t j1, j2; |
| int32_t v1 = 0, v2 = 0; |
| float err = 1e9; /* big enough */ |
| float tv[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ |
| for (i = 0; i < n_comp; i++) { |
| tv[0][i] = input[minColL][i]; |
| tv[1][i] = input[maxColL][i]; |
| tv[2][i] = input[minColR][i]; |
| tv[3][i] = input[maxColR][i]; |
| } |
| for (j1 = 0; j1 < 2; j1++) { |
| for (j2 = 2; j2 < 4; j2++) { |
| float e = 0.0F; |
| for (i = 0; i < n_comp; i++) { |
| e += (tv[j1][i] - tv[j2][i]) * (tv[j1][i] - tv[j2][i]); |
| } |
| if (e < err) { |
| err = e; |
| v1 = j1; |
| v2 = j2; |
| } |
| } |
| } |
| for (i = 0; i < n_comp; i++) { |
| vec[0][i] = tv[1 - v1][i]; |
| vec[1][i] = (tv[v1][i] * sumL + tv[v2][i] * sumR) / (sumL + sumR); |
| vec[2][i] = tv[5 - v2][i]; |
| } |
| } |
| |
| /* left microtile */ |
| cc[0] = 0; |
| if (minColL != maxColL) { |
| /* compute interpolation vector */ |
| MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]); |
| |
| /* add in texels */ |
| lolo = 0; |
| for (k = N_TEXELS / 2 - 1; k >= 0; k--) { |
| int32_t texel; |
| /* interpolate color */ |
| CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); |
| /* add in texel */ |
| lolo <<= 2; |
| lolo |= texel; |
| } |
| |
| cc[0] = lolo; |
| } |
| |
| /* right microtile */ |
| cc[1] = 0; |
| if (minColR != maxColR) { |
| /* compute interpolation vector */ |
| MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[1]); |
| |
| /* add in texels */ |
| lohi = 0; |
| for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { |
| int32_t texel; |
| /* interpolate color */ |
| CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); |
| /* add in texel */ |
| lohi <<= 2; |
| lohi |= texel; |
| } |
| |
| cc[1] = lohi; |
| } |
| |
| FX64_MOV32(hi, 7); /* alpha = "011" + lerp = 1 */ |
| for (j = n_vect - 1; j >= 0; j--) { |
| /* add in alphas */ |
| FX64_SHL(hi, 5); |
| FX64_OR32(hi, (uint32_t)(vec[j][ACOMP] / 8.0F)); |
| } |
| for (j = n_vect - 1; j >= 0; j--) { |
| for (i = 0; i < n_comp - 1; i++) { |
| /* add in colors */ |
| FX64_SHL(hi, 5); |
| FX64_OR32(hi, (uint32_t)(vec[j][i] / 8.0F)); |
| } |
| } |
| ((Fx64 *)cc)[1] = hi; |
| } |
| |
| |
| static void |
| fxt1_quantize_HI (uint32_t *cc, |
| uint8_t input[N_TEXELS][MAX_COMP], |
| uint8_t reord[N_TEXELS][MAX_COMP], int32_t n) |
| { |
| const int32_t n_vect = 6; /* highest vector number */ |
| const int32_t n_comp = 3; /* 3 components: R, G, B */ |
| float b = 0.0F; /* phoudoin: silent compiler! */ |
| float iv[MAX_COMP]; /* interpolation vector */ |
| int32_t i, k; |
| uint32_t hihi; /* high quadword: hi dword */ |
| |
| int32_t minSum = 2000; /* big enough */ |
| int32_t maxSum = -1; /* small enough */ |
| int32_t minCol = 0; /* phoudoin: silent compiler! */ |
| int32_t maxCol = 0; /* phoudoin: silent compiler! */ |
| |
| /* Our solution here is to find the darkest and brightest colors in |
| * the 8x4 tile and use those as the two representative colors. |
| * There are probably better algorithms to use (histogram-based). |
| */ |
| for (k = 0; k < n; k++) { |
| int32_t sum = 0; |
| for (i = 0; i < n_comp; i++) { |
| sum += reord[k][i]; |
| } |
| if (minSum > sum) { |
| minSum = sum; |
| minCol = k; |
| } |
| if (maxSum < sum) { |
| maxSum = sum; |
| maxCol = k; |
| } |
| } |
| |
| hihi = 0; /* cc-hi = "00" */ |
| for (i = 0; i < n_comp; i++) { |
| /* add in colors */ |
| hihi <<= 5; |
| hihi |= reord[maxCol][i] >> 3; |
| } |
| for (i = 0; i < n_comp; i++) { |
| /* add in colors */ |
| hihi <<= 5; |
| hihi |= reord[minCol][i] >> 3; |
| } |
| cc[3] = hihi; |
| cc[0] = cc[1] = cc[2] = 0; |
| |
| /* compute interpolation vector */ |
| if (minCol != maxCol) { |
| MAKEIVEC(n_vect, n_comp, iv, b, reord[minCol], reord[maxCol]); |
| } |
| |
| /* add in texels */ |
| for (k = N_TEXELS - 1; k >= 0; k--) { |
| int32_t t = k * 3; |
| uint32_t *kk = (uint32_t *)((char *)cc + t / 8); |
| int32_t texel = n_vect + 1; /* transparent black */ |
| |
| if (!ISTBLACK(input[k])) { |
| if (minCol != maxCol) { |
| /* interpolate color */ |
| CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); |
| /* add in texel */ |
| kk[0] |= texel << (t & 7); |
| } |
| } else { |
| /* add in texel */ |
| kk[0] |= texel << (t & 7); |
| } |
| } |
| } |
| |
| |
| static void |
| fxt1_quantize_MIXED1 (uint32_t *cc, |
| uint8_t input[N_TEXELS][MAX_COMP]) |
| { |
| const int32_t n_vect = 2; /* highest vector number in each microtile */ |
| const int32_t n_comp = 3; /* 3 components: R, G, B */ |
| uint8_t vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ |
| float b, iv[MAX_COMP]; /* interpolation vector */ |
| int32_t i, j, k; |
| Fx64 hi; /* high quadword */ |
| uint32_t lohi, lolo; /* low quadword: hi dword, lo dword */ |
| |
| int32_t minSum; |
| int32_t maxSum; |
| int32_t minColL = 0, maxColL = -1; |
| int32_t minColR = 0, maxColR = -1; |
| |
| /* Our solution here is to find the darkest and brightest colors in |
| * the 4x4 tile and use those as the two representative colors. |
| * There are probably better algorithms to use (histogram-based). |
| */ |
| minSum = 2000; /* big enough */ |
| maxSum = -1; /* small enough */ |
| for (k = 0; k < N_TEXELS / 2; k++) { |
| if (!ISTBLACK(input[k])) { |
| int32_t sum = 0; |
| for (i = 0; i < n_comp; i++) { |
| sum += input[k][i]; |
| } |
| if (minSum > sum) { |
| minSum = sum; |
| minColL = k; |
| } |
| if (maxSum < sum) { |
| maxSum = sum; |
| maxColL = k; |
| } |
| } |
| } |
| minSum = 2000; /* big enough */ |
| maxSum = -1; /* small enough */ |
| for (; k < N_TEXELS; k++) { |
| if (!ISTBLACK(input[k])) { |
| int32_t sum = 0; |
| for (i = 0; i < n_comp; i++) { |
| sum += input[k][i]; |
| } |
| if (minSum > sum) { |
| minSum = sum; |
| minColR = k; |
| } |
| if (maxSum < sum) { |
| maxSum = sum; |
| maxColR = k; |
| } |
| } |
| } |
| |
| /* left microtile */ |
| if (maxColL == -1) { |
| /* all transparent black */ |
| cc[0] = ~0u; |
| for (i = 0; i < n_comp; i++) { |
| vec[0][i] = 0; |
| vec[1][i] = 0; |
| } |
| } else { |
| cc[0] = 0; |
| for (i = 0; i < n_comp; i++) { |
| vec[0][i] = input[minColL][i]; |
| vec[1][i] = input[maxColL][i]; |
| } |
| if (minColL != maxColL) { |
| /* compute interpolation vector */ |
| MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]); |
| |
| /* add in texels */ |
| lolo = 0; |
| for (k = N_TEXELS / 2 - 1; k >= 0; k--) { |
| int32_t texel = n_vect + 1; /* transparent black */ |
| if (!ISTBLACK(input[k])) { |
| /* interpolate color */ |
| CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); |
| } |
| /* add in texel */ |
| lolo <<= 2; |
| lolo |= texel; |
| } |
| cc[0] = lolo; |
| } |
| } |
| |
| /* right microtile */ |
| if (maxColR == -1) { |
| /* all transparent black */ |
| cc[1] = ~0u; |
| for (i = 0; i < n_comp; i++) { |
| vec[2][i] = 0; |
| vec[3][i] = 0; |
| } |
| } else { |
| cc[1] = 0; |
| for (i = 0; i < n_comp; i++) { |
| vec[2][i] = input[minColR][i]; |
| vec[3][i] = input[maxColR][i]; |
| } |
| if (minColR != maxColR) { |
| /* compute interpolation vector */ |
| MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]); |
| |
| /* add in texels */ |
| lohi = 0; |
| for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { |
| int32_t texel = n_vect + 1; /* transparent black */ |
| if (!ISTBLACK(input[k])) { |
| /* interpolate color */ |
| CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); |
| } |
| /* add in texel */ |
| lohi <<= 2; |
| lohi |= texel; |
| } |
| cc[1] = lohi; |
| } |
| } |
| |
| FX64_MOV32(hi, 9 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */ |
| for (j = 2 * 2 - 1; j >= 0; j--) { |
| for (i = 0; i < n_comp; i++) { |
| /* add in colors */ |
| FX64_SHL(hi, 5); |
| FX64_OR32(hi, vec[j][i] >> 3); |
| } |
| } |
| ((Fx64 *)cc)[1] = hi; |
| } |
| |
| |
| static void |
| fxt1_quantize_MIXED0 (uint32_t *cc, |
| uint8_t input[N_TEXELS][MAX_COMP]) |
| { |
| const int32_t n_vect = 3; /* highest vector number in each microtile */ |
| const int32_t n_comp = 3; /* 3 components: R, G, B */ |
| uint8_t vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ |
| float b, iv[MAX_COMP]; /* interpolation vector */ |
| int32_t i, j, k; |
| Fx64 hi; /* high quadword */ |
| uint32_t lohi, lolo; /* low quadword: hi dword, lo dword */ |
| |
| int32_t minColL = 0, maxColL = 0; |
| int32_t minColR = 0, maxColR = 0; |
| #if 0 |
| int32_t minSum; |
| int32_t maxSum; |
| |
| /* Our solution here is to find the darkest and brightest colors in |
| * the 4x4 tile and use those as the two representative colors. |
| * There are probably better algorithms to use (histogram-based). |
| */ |
| minSum = 2000; /* big enough */ |
| maxSum = -1; /* small enough */ |
| for (k = 0; k < N_TEXELS / 2; k++) { |
| int32_t sum = 0; |
| for (i = 0; i < n_comp; i++) { |
| sum += input[k][i]; |
| } |
| if (minSum > sum) { |
| minSum = sum; |
| minColL = k; |
| } |
| if (maxSum < sum) { |
| maxSum = sum; |
| maxColL = k; |
| } |
| } |
| minSum = 2000; /* big enough */ |
| maxSum = -1; /* small enough */ |
| for (; k < N_TEXELS; k++) { |
| int32_t sum = 0; |
| for (i = 0; i < n_comp; i++) { |
| sum += input[k][i]; |
| } |
| if (minSum > sum) { |
| minSum = sum; |
| minColR = k; |
| } |
| if (maxSum < sum) { |
| maxSum = sum; |
| maxColR = k; |
| } |
| } |
| #else |
| int32_t minVal; |
| int32_t maxVal; |
| int32_t maxVarL = fxt1_variance(input, n_comp); |
| int32_t maxVarR = fxt1_variance(&input[N_TEXELS / 2], n_comp); |
| |
| /* Scan the channel with max variance for lo & hi |
| * and use those as the two representative colors. |
| */ |
| minVal = 2000; /* big enough */ |
| maxVal = -1; /* small enough */ |
| for (k = 0; k < N_TEXELS / 2; k++) { |
| int32_t t = input[k][maxVarL]; |
| if (minVal > t) { |
| minVal = t; |
| minColL = k; |
| } |
| if (maxVal < t) { |
| maxVal = t; |
| maxColL = k; |
| } |
| } |
| minVal = 2000; /* big enough */ |
| maxVal = -1; /* small enough */ |
| for (; k < N_TEXELS; k++) { |
| int32_t t = input[k][maxVarR]; |
| if (minVal > t) { |
| minVal = t; |
| minColR = k; |
| } |
| if (maxVal < t) { |
| maxVal = t; |
| maxColR = k; |
| } |
| } |
| #endif |
| |
| /* left microtile */ |
| cc[0] = 0; |
| for (i = 0; i < n_comp; i++) { |
| vec[0][i] = input[minColL][i]; |
| vec[1][i] = input[maxColL][i]; |
| } |
| if (minColL != maxColL) { |
| /* compute interpolation vector */ |
| MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]); |
| |
| /* add in texels */ |
| lolo = 0; |
| for (k = N_TEXELS / 2 - 1; k >= 0; k--) { |
| int32_t texel; |
| /* interpolate color */ |
| CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); |
| /* add in texel */ |
| lolo <<= 2; |
| lolo |= texel; |
| } |
| |
| /* funky encoding for LSB of green */ |
| if ((int32_t)((lolo >> 1) & 1) != (((vec[1][GCOMP] ^ vec[0][GCOMP]) >> 2) & 1)) { |
| for (i = 0; i < n_comp; i++) { |
| vec[1][i] = input[minColL][i]; |
| vec[0][i] = input[maxColL][i]; |
| } |
| lolo = ~lolo; |
| } |
| |
| cc[0] = lolo; |
| } |
| |
| /* right microtile */ |
| cc[1] = 0; |
| for (i = 0; i < n_comp; i++) { |
| vec[2][i] = input[minColR][i]; |
| vec[3][i] = input[maxColR][i]; |
| } |
| if (minColR != maxColR) { |
| /* compute interpolation vector */ |
| MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]); |
| |
| /* add in texels */ |
| lohi = 0; |
| for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { |
| int32_t texel; |
| /* interpolate color */ |
| CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); |
| /* add in texel */ |
| lohi <<= 2; |
| lohi |= texel; |
| } |
| |
| /* funky encoding for LSB of green */ |
| if ((int32_t)((lohi >> 1) & 1) != (((vec[3][GCOMP] ^ vec[2][GCOMP]) >> 2) & 1)) { |
| for (i = 0; i < n_comp; i++) { |
| vec[3][i] = input[minColR][i]; |
| vec[2][i] = input[maxColR][i]; |
| } |
| lohi = ~lohi; |
| } |
| |
| cc[1] = lohi; |
| } |
| |
| FX64_MOV32(hi, 8 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */ |
| for (j = 2 * 2 - 1; j >= 0; j--) { |
| for (i = 0; i < n_comp; i++) { |
| /* add in colors */ |
| FX64_SHL(hi, 5); |
| FX64_OR32(hi, vec[j][i] >> 3); |
| } |
| } |
| ((Fx64 *)cc)[1] = hi; |
| } |
| |
| |
| static void |
| fxt1_quantize (uint32_t *cc, const uint8_t *lines[], int32_t comps) |
| { |
| int32_t trualpha; |
| uint8_t reord[N_TEXELS][MAX_COMP]; |
| |
| uint8_t input[N_TEXELS][MAX_COMP]; |
| int32_t i, k, l; |
| |
| if (comps == 3) { |
| /* make the whole block opaque */ |
| memset(input, -1, sizeof(input)); |
| } |
| |
| /* 8 texels each line */ |
| for (l = 0; l < 4; l++) { |
| for (k = 0; k < 4; k++) { |
| for (i = 0; i < comps; i++) { |
| input[k + l * 4][i] = *lines[l]++; |
| } |
| } |
| for (; k < 8; k++) { |
| for (i = 0; i < comps; i++) { |
| input[k + l * 4 + 12][i] = *lines[l]++; |
| } |
| } |
| } |
| |
| /* block layout: |
| * 00, 01, 02, 03, 08, 09, 0a, 0b |
| * 10, 11, 12, 13, 18, 19, 1a, 1b |
| * 04, 05, 06, 07, 0c, 0d, 0e, 0f |
| * 14, 15, 16, 17, 1c, 1d, 1e, 1f |
| */ |
| |
| /* [dBorca] |
| * stupidity flows forth from this |
| */ |
| l = N_TEXELS; |
| trualpha = 0; |
| if (comps == 4) { |
| /* skip all transparent black texels */ |
| l = 0; |
| for (k = 0; k < N_TEXELS; k++) { |
| /* test all components against 0 */ |
| if (!ISTBLACK(input[k])) { |
| /* texel is not transparent black */ |
| memcpy(reord[l], input[k], 4); |
| if (reord[l][ACOMP] < (255 - ALPHA_TS)) { |
| /* non-opaque texel */ |
| trualpha = !0; |
| } |
| l++; |
| } |
| } |
| } |
| |
| #if 0 |
| if (trualpha) { |
| fxt1_quantize_ALPHA0(cc, input, reord, l); |
| } else if (l == 0) { |
| cc[0] = cc[1] = cc[2] = -1; |
| cc[3] = 0; |
| } else if (l < N_TEXELS) { |
| fxt1_quantize_HI(cc, input, reord, l); |
| } else { |
| fxt1_quantize_CHROMA(cc, input); |
| } |
| (void)fxt1_quantize_ALPHA1; |
| (void)fxt1_quantize_MIXED1; |
| (void)fxt1_quantize_MIXED0; |
| #else |
| if (trualpha) { |
| fxt1_quantize_ALPHA1(cc, input); |
| } else if (l == 0) { |
| cc[0] = cc[1] = cc[2] = ~0u; |
| cc[3] = 0; |
| } else if (l < N_TEXELS) { |
| fxt1_quantize_MIXED1(cc, input); |
| } else { |
| fxt1_quantize_MIXED0(cc, input); |
| } |
| (void)fxt1_quantize_ALPHA0; |
| (void)fxt1_quantize_HI; |
| (void)fxt1_quantize_CHROMA; |
| #endif |
| } |
| |
| |
| |
| /** |
| * Upscale an image by replication, not (typical) stretching. |
| * We use this when the image width or height is less than a |
| * certain size (4, 8) and we need to upscale an image. |
| */ |
| static void |
| upscale_teximage2d(int32_t inWidth, int32_t inHeight, |
| int32_t outWidth, int32_t outHeight, |
| int32_t comps, const uint8_t *src, int32_t srcRowStride, |
| uint8_t *dest ) |
| { |
| int32_t i, j, k; |
| |
| assert(outWidth >= inWidth); |
| assert(outHeight >= inHeight); |
| #if 0 |
| assert(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2); |
| assert((outWidth & 3) == 0); |
| assert((outHeight & 3) == 0); |
| #endif |
| |
| for (i = 0; i < outHeight; i++) { |
| const int32_t ii = i % inHeight; |
| for (j = 0; j < outWidth; j++) { |
| const int32_t jj = j % inWidth; |
| for (k = 0; k < comps; k++) { |
| dest[(i * outWidth + j) * comps + k] |
| = src[ii * srcRowStride + jj * comps + k]; |
| } |
| } |
| } |
| } |
| |
| |
| static void |
| fxt1_encode (uint32_t width, uint32_t height, int32_t comps, |
| const void *source, int32_t srcRowStride, |
| void *dest, int32_t destRowStride) |
| { |
| uint32_t x, y; |
| const uint8_t *data; |
| uint32_t *encoded = (uint32_t *)dest; |
| void *newSource = NULL; |
| |
| assert(comps == 3 || comps == 4); |
| |
| /* Replicate image if width is not M8 or height is not M4 */ |
| if ((width & 7) | (height & 3)) { |
| int32_t newWidth = (width + 7) & ~7; |
| int32_t newHeight = (height + 3) & ~3; |
| newSource = malloc(comps * newWidth * newHeight * sizeof(uint8_t)); |
| if (!newSource) |
| return; |
| upscale_teximage2d(width, height, newWidth, newHeight, |
| comps, (const uint8_t *) source, |
| srcRowStride, (uint8_t *) newSource); |
| source = newSource; |
| width = newWidth; |
| height = newHeight; |
| srcRowStride = comps * newWidth; |
| } |
| |
| data = (const uint8_t *) source; |
| destRowStride = (destRowStride - width * 2) / 4; |
| for (y = 0; y < height; y += 4) { |
| uint32_t offs = 0 + (y + 0) * srcRowStride; |
| for (x = 0; x < width; x += 8) { |
| const uint8_t *lines[4]; |
| lines[0] = &data[offs]; |
| lines[1] = lines[0] + srcRowStride; |
| lines[2] = lines[1] + srcRowStride; |
| lines[3] = lines[2] + srcRowStride; |
| offs += 8 * comps; |
| fxt1_quantize(encoded, lines, comps); |
| /* 128 bits per 8x4 block */ |
| encoded += 4; |
| } |
| encoded += destRowStride; |
| } |
| |
| free(newSource); |
| } |
| |
| |
| /***************************************************************************\ |
| * FXT1 decoder |
| * |
| * The decoder is based on GL_3DFX_texture_compression_FXT1 |
| * specification and serves as a concept for the encoder. |
| \***************************************************************************/ |
| |
| |
| /* lookup table for scaling 5 bit colors up to 8 bits */ |
| static const uint8_t _rgb_scale_5[] = { |
| 0, 8, 16, 25, 33, 41, 49, 58, |
| 66, 74, 82, 90, 99, 107, 115, 123, |
| 132, 140, 148, 156, 165, 173, 181, 189, |
| 197, 206, 214, 222, 230, 239, 247, 255 |
| }; |
| |
| /* lookup table for scaling 6 bit colors up to 8 bits */ |
| static const uint8_t _rgb_scale_6[] = { |
| 0, 4, 8, 12, 16, 20, 24, 28, |
| 32, 36, 40, 45, 49, 53, 57, 61, |
| 65, 69, 73, 77, 81, 85, 89, 93, |
| 97, 101, 105, 109, 113, 117, 121, 125, |
| 130, 134, 138, 142, 146, 150, 154, 158, |
| 162, 166, 170, 174, 178, 182, 186, 190, |
| 194, 198, 202, 206, 210, 215, 219, 223, |
| 227, 231, 235, 239, 243, 247, 251, 255 |
| }; |
| |
| |
| #define CC_SEL(cc, which) (((uint32_t *)(cc))[(which) / 32] >> ((which) & 31)) |
| #define UP5(c) _rgb_scale_5[(c) & 31] |
| #define UP6(c, b) _rgb_scale_6[(((c) & 31) << 1) | ((b) & 1)] |
| #define LERP(n, t, c0, c1) (((n) - (t)) * (c0) + (t) * (c1) + (n) / 2) / (n) |
| |
| |
| static void |
| fxt1_decode_1HI (const uint8_t *code, int32_t t, uint8_t *rgba) |
| { |
| const uint32_t *cc; |
| |
| t *= 3; |
| cc = (const uint32_t *)(code + t / 8); |
| t = (cc[0] >> (t & 7)) & 7; |
| |
| if (t == 7) { |
| rgba[RCOMP] = rgba[GCOMP] = rgba[BCOMP] = rgba[ACOMP] = 0; |
| } else { |
| uint8_t r, g, b; |
| cc = (const uint32_t *)(code + 12); |
| if (t == 0) { |
| b = UP5(CC_SEL(cc, 0)); |
| g = UP5(CC_SEL(cc, 5)); |
| r = UP5(CC_SEL(cc, 10)); |
| } else if (t == 6) { |
| b = UP5(CC_SEL(cc, 15)); |
| g = UP5(CC_SEL(cc, 20)); |
| r = UP5(CC_SEL(cc, 25)); |
| } else { |
| b = LERP(6, t, UP5(CC_SEL(cc, 0)), UP5(CC_SEL(cc, 15))); |
| g = LERP(6, t, UP5(CC_SEL(cc, 5)), UP5(CC_SEL(cc, 20))); |
| r = LERP(6, t, UP5(CC_SEL(cc, 10)), UP5(CC_SEL(cc, 25))); |
| } |
| rgba[RCOMP] = r; |
| rgba[GCOMP] = g; |
| rgba[BCOMP] = b; |
| rgba[ACOMP] = 255; |
| } |
| } |
| |
| |
| static void |
| fxt1_decode_1CHROMA (const uint8_t *code, int32_t t, uint8_t *rgba) |
| { |
| const uint32_t *cc; |
| uint32_t kk; |
| |
| cc = (const uint32_t *)code; |
| if (t & 16) { |
| cc++; |
| t &= 15; |
| } |
| t = (cc[0] >> (t * 2)) & 3; |
| |
| t *= 15; |
| cc = (const uint32_t *)(code + 8 + t / 8); |
| kk = cc[0] >> (t & 7); |
| rgba[BCOMP] = UP5(kk); |
| rgba[GCOMP] = UP5(kk >> 5); |
| rgba[RCOMP] = UP5(kk >> 10); |
| rgba[ACOMP] = 255; |
| } |
| |
| |
| static void |
| fxt1_decode_1MIXED (const uint8_t *code, int32_t t, uint8_t *rgba) |
| { |
| const uint32_t *cc; |
| uint32_t col[2][3]; |
| int32_t glsb, selb; |
| |
| cc = (const uint32_t *)code; |
| if (t & 16) { |
| t &= 15; |
| t = (cc[1] >> (t * 2)) & 3; |
| /* col 2 */ |
| col[0][BCOMP] = (*(const uint32_t *)(code + 11)) >> 6; |
| col[0][GCOMP] = CC_SEL(cc, 99); |
| col[0][RCOMP] = CC_SEL(cc, 104); |
| /* col 3 */ |
| col[1][BCOMP] = CC_SEL(cc, 109); |
| col[1][GCOMP] = CC_SEL(cc, 114); |
| col[1][RCOMP] = CC_SEL(cc, 119); |
| glsb = CC_SEL(cc, 126); |
| selb = CC_SEL(cc, 33); |
| } else { |
| t = (cc[0] >> (t * 2)) & 3; |
| /* col 0 */ |
| col[0][BCOMP] = CC_SEL(cc, 64); |
| col[0][GCOMP] = CC_SEL(cc, 69); |
| col[0][RCOMP] = CC_SEL(cc, 74); |
| /* col 1 */ |
| col[1][BCOMP] = CC_SEL(cc, 79); |
| col[1][GCOMP] = CC_SEL(cc, 84); |
| col[1][RCOMP] = CC_SEL(cc, 89); |
| glsb = CC_SEL(cc, 125); |
| selb = CC_SEL(cc, 1); |
| } |
| |
| if (CC_SEL(cc, 124) & 1) { |
| /* alpha[0] == 1 */ |
| |
| if (t == 3) { |
| /* zero */ |
| rgba[RCOMP] = rgba[BCOMP] = rgba[GCOMP] = rgba[ACOMP] = 0; |
| } else { |
| uint8_t r, g, b; |
| if (t == 0) { |
| b = UP5(col[0][BCOMP]); |
| g = UP5(col[0][GCOMP]); |
| r = UP5(col[0][RCOMP]); |
| } else if (t == 2) { |
| b = UP5(col[1][BCOMP]); |
| g = UP6(col[1][GCOMP], glsb); |
| r = UP5(col[1][RCOMP]); |
| } else { |
| b = (UP5(col[0][BCOMP]) + UP5(col[1][BCOMP])) / 2; |
| g = (UP5(col[0][GCOMP]) + UP6(col[1][GCOMP], glsb)) / 2; |
| r = (UP5(col[0][RCOMP]) + UP5(col[1][RCOMP])) / 2; |
| } |
| rgba[RCOMP] = r; |
| rgba[GCOMP] = g; |
| rgba[BCOMP] = b; |
| rgba[ACOMP] = 255; |
| } |
| } else { |
| /* alpha[0] == 0 */ |
| uint8_t r, g, b; |
| if (t == 0) { |
| b = UP5(col[0][BCOMP]); |
| g = UP6(col[0][GCOMP], glsb ^ selb); |
| r = UP5(col[0][RCOMP]); |
| } else if (t == 3) { |
| b = UP5(col[1][BCOMP]); |
| g = UP6(col[1][GCOMP], glsb); |
| r = UP5(col[1][RCOMP]); |
| } else { |
| b = LERP(3, t, UP5(col[0][BCOMP]), UP5(col[1][BCOMP])); |
| g = LERP(3, t, UP6(col[0][GCOMP], glsb ^ selb), |
| UP6(col[1][GCOMP], glsb)); |
| r = LERP(3, t, UP5(col[0][RCOMP]), UP5(col[1][RCOMP])); |
| } |
| rgba[RCOMP] = r; |
| rgba[GCOMP] = g; |
| rgba[BCOMP] = b; |
| rgba[ACOMP] = 255; |
| } |
| } |
| |
| |
| static void |
| fxt1_decode_1ALPHA (const uint8_t *code, int32_t t, uint8_t *rgba) |
| { |
| const uint32_t *cc; |
| uint8_t r, g, b, a; |
| |
| cc = (const uint32_t *)code; |
| if (CC_SEL(cc, 124) & 1) { |
| /* lerp == 1 */ |
| uint32_t col0[4]; |
| |
| if (t & 16) { |
| t &= 15; |
| t = (cc[1] >> (t * 2)) & 3; |
| /* col 2 */ |
| col0[BCOMP] = (*(const uint32_t *)(code + 11)) >> 6; |
| col0[GCOMP] = CC_SEL(cc, 99); |
| col0[RCOMP] = CC_SEL(cc, 104); |
| col0[ACOMP] = CC_SEL(cc, 119); |
| } else { |
| t = (cc[0] >> (t * 2)) & 3; |
| /* col 0 */ |
| col0[BCOMP] = CC_SEL(cc, 64); |
| col0[GCOMP] = CC_SEL(cc, 69); |
| col0[RCOMP] = CC_SEL(cc, 74); |
| col0[ACOMP] = CC_SEL(cc, 109); |
| } |
| |
| if (t == 0) { |
| b = UP5(col0[BCOMP]); |
| g = UP5(col0[GCOMP]); |
| r = UP5(col0[RCOMP]); |
| a = UP5(col0[ACOMP]); |
| } else if (t == 3) { |
| b = UP5(CC_SEL(cc, 79)); |
| g = UP5(CC_SEL(cc, 84)); |
| r = UP5(CC_SEL(cc, 89)); |
| a = UP5(CC_SEL(cc, 114)); |
| } else { |
| b = LERP(3, t, UP5(col0[BCOMP]), UP5(CC_SEL(cc, 79))); |
| g = LERP(3, t, UP5(col0[GCOMP]), UP5(CC_SEL(cc, 84))); |
| r = LERP(3, t, UP5(col0[RCOMP]), UP5(CC_SEL(cc, 89))); |
| a = LERP(3, t, UP5(col0[ACOMP]), UP5(CC_SEL(cc, 114))); |
| } |
| } else { |
| /* lerp == 0 */ |
| |
| if (t & 16) { |
| cc++; |
| t &= 15; |
| } |
| t = (cc[0] >> (t * 2)) & 3; |
| |
| if (t == 3) { |
| /* zero */ |
| r = g = b = a = 0; |
| } else { |
| uint32_t kk; |
| cc = (const uint32_t *)code; |
| a = UP5(cc[3] >> (t * 5 + 13)); |
| t *= 15; |
| cc = (const uint32_t *)(code + 8 + t / 8); |
| kk = cc[0] >> (t & 7); |
| b = UP5(kk); |
| g = UP5(kk >> 5); |
| r = UP5(kk >> 10); |
| } |
| } |
| rgba[RCOMP] = r; |
| rgba[GCOMP] = g; |
| rgba[BCOMP] = b; |
| rgba[ACOMP] = a; |
| } |
| |
| |
| static void |
| fxt1_decode_1 (const void *texture, int32_t stride, /* in pixels */ |
| int32_t i, int32_t j, uint8_t *rgba) |
| { |
| static void (*decode_1[]) (const uint8_t *, int32_t, uint8_t *) = { |
| fxt1_decode_1HI, /* cc-high = "00?" */ |
| fxt1_decode_1HI, /* cc-high = "00?" */ |
| fxt1_decode_1CHROMA, /* cc-chroma = "010" */ |
| fxt1_decode_1ALPHA, /* alpha = "011" */ |
| fxt1_decode_1MIXED, /* mixed = "1??" */ |
| fxt1_decode_1MIXED, /* mixed = "1??" */ |
| fxt1_decode_1MIXED, /* mixed = "1??" */ |
| fxt1_decode_1MIXED /* mixed = "1??" */ |
| }; |
| |
| const uint8_t *code = (const uint8_t *)texture + |
| ((j / 4) * (stride / 8) + (i / 8)) * 16; |
| int32_t mode = CC_SEL(code, 125); |
| int32_t t = i & 7; |
| |
| if (t & 4) { |
| t += 12; |
| } |
| t += (j & 3) * 4; |
| |
| decode_1[mode](code, t, rgba); |
| } |
| |
| /* |
| * Pixel fetch within a block. |
| */ |
| |
| void |
| util_format_fxt1_rgb_fetch_rgba_8unorm(uint8_t *restrict dst, const uint8_t *restrict src, unsigned i, unsigned j) |
| { |
| fxt1_decode_1(src, 0, i, j, dst); |
| } |
| |
| void |
| util_format_fxt1_rgba_fetch_rgba_8unorm(uint8_t *restrict dst, const uint8_t *restrict src, unsigned i, unsigned j) |
| { |
| fxt1_decode_1(src, 0, i, j, dst); |
| dst[3] = 0xff; |
| } |
| |
| void |
| util_format_fxt1_rgb_fetch_rgba(void *restrict in_dst, const uint8_t *restrict src, unsigned i, unsigned j) |
| { |
| float *dst = in_dst; |
| uint8_t tmp[4]; |
| fxt1_decode_1(src, 0, i, j, tmp); |
| dst[0] = ubyte_to_float(tmp[0]); |
| dst[1] = ubyte_to_float(tmp[1]); |
| dst[2] = ubyte_to_float(tmp[2]); |
| dst[3] = 1.0; |
| } |
| |
| void |
| util_format_fxt1_rgba_fetch_rgba(void *restrict in_dst, const uint8_t *restrict src, unsigned i, unsigned j) |
| { |
| float *dst = in_dst; |
| uint8_t tmp[4]; |
| fxt1_decode_1(src, 0, i, j, tmp); |
| dst[0] = ubyte_to_float(tmp[0]); |
| dst[1] = ubyte_to_float(tmp[1]); |
| dst[2] = ubyte_to_float(tmp[2]); |
| dst[3] = ubyte_to_float(tmp[3]); |
| } |
| |
| /* |
| * Block decompression. |
| */ |
| |
| static inline void |
| util_format_fxtn_rgb_unpack_rgba_8unorm(uint8_t *restrict dst_row, unsigned dst_stride, |
| const uint8_t *restrict src_row, unsigned src_stride, |
| unsigned width, unsigned height, |
| boolean rgba) |
| { |
| const unsigned bw = 8, bh = 4, comps = 4; |
| unsigned x, y, i, j; |
| for (y = 0; y < height; y += bh) { |
| const uint8_t *src = src_row; |
| for (x = 0; x < width; x += bw) { |
| for (j = 0; j < bh; ++j) { |
| for (i = 0; i < bw; ++i) { |
| uint8_t *dst = dst_row + (y + j) * dst_stride / sizeof(*dst_row) + (x + i) * comps; |
| fxt1_decode_1(src, 0, i, j, dst); |
| if (!rgba) |
| dst[3] = 0xff; |
| } |
| } |
| src += FXT1_BLOCK_SIZE; |
| } |
| src_row += src_stride; |
| } |
| } |
| |
| void |
| util_format_fxt1_rgb_unpack_rgba_8unorm(uint8_t *restrict dst_row, unsigned dst_stride, |
| const uint8_t *restrict src_row, unsigned src_stride, |
| unsigned width, unsigned height) |
| { |
| util_format_fxtn_rgb_unpack_rgba_8unorm(dst_row, dst_stride, |
| src_row, src_stride, |
| width, height, |
| false); |
| } |
| |
| void |
| util_format_fxt1_rgba_unpack_rgba_8unorm(uint8_t *restrict dst_row, unsigned dst_stride, |
| const uint8_t *restrict src_row, unsigned src_stride, |
| unsigned width, unsigned height) |
| { |
| util_format_fxtn_rgb_unpack_rgba_8unorm(dst_row, dst_stride, |
| src_row, src_stride, |
| width, height, |
| true); |
| } |
| |
| static inline void |
| util_format_fxtn_rgb_unpack_rgba_float(float *dst_row, unsigned dst_stride, |
| const uint8_t *restrict src_row, unsigned src_stride, |
| unsigned width, unsigned height, |
| boolean rgba) |
| { |
| const unsigned bw = 8, bh = 4, comps = 4; |
| unsigned x, y, i, j; |
| for (y = 0; y < height; y += 4) { |
| const uint8_t *src = src_row; |
| for (x = 0; x < width; x += 8) { |
| for (j = 0; j < bh; ++j) { |
| for (i = 0; i < bw; ++i) { |
| float *dst = dst_row + (y + j)*dst_stride/sizeof(*dst_row) + (x + i) * comps; |
| uint8_t tmp[4]; |
| fxt1_decode_1(src, 0, i, j, tmp); |
| dst[0] = ubyte_to_float(tmp[0]); |
| dst[1] = ubyte_to_float(tmp[1]); |
| dst[2] = ubyte_to_float(tmp[2]); |
| if (rgba) |
| dst[3] = ubyte_to_float(tmp[3]); |
| else |
| dst[3] = 1.0; |
| } |
| } |
| src += FXT1_BLOCK_SIZE; |
| } |
| src_row += src_stride; |
| } |
| } |
| |
| void |
| util_format_fxt1_rgb_unpack_rgba_float(void *restrict dst_row, unsigned dst_stride, |
| const uint8_t *restrict src_row, unsigned src_stride, |
| unsigned width, unsigned height) |
| { |
| util_format_fxtn_rgb_unpack_rgba_float(dst_row, dst_stride, |
| src_row, src_stride, |
| width, height, |
| false); |
| } |
| |
| void |
| util_format_fxt1_rgba_unpack_rgba_float(void *restrict dst_row, unsigned dst_stride, |
| const uint8_t *restrict src_row, unsigned src_stride, |
| unsigned width, unsigned height) |
| { |
| util_format_fxtn_rgb_unpack_rgba_float(dst_row, dst_stride, |
| src_row, src_stride, |
| width, height, |
| true); |
| } |
| |
| /* |
| * Block compression. |
| */ |
| |
| void |
| util_format_fxt1_rgb_pack_rgba_8unorm(uint8_t *restrict dst_row, unsigned dst_stride, |
| const uint8_t *restrict src, unsigned src_stride, |
| unsigned width, unsigned height) |
| { |
| /* The encoder for FXT1_RGB wants 24bpp packed rgb, so make a temporary to do that. |
| */ |
| int temp_stride = width * 3; |
| uint8_t *temp = malloc(height * temp_stride); |
| if (!temp) |
| return; |
| |
| for (int y = 0; y < height; y++) { |
| for (int x = 0; x < width; x++) { |
| temp[y * temp_stride + x * 3 + 0] = src[x * 4 + 0]; |
| temp[y * temp_stride + x * 3 + 1] = src[x * 4 + 1]; |
| temp[y * temp_stride + x * 3 + 2] = src[x * 4 + 2]; |
| } |
| src += src_stride; |
| } |
| |
| fxt1_encode(width, height, 3, temp, temp_stride, dst_row, dst_stride); |
| |
| free(temp); |
| } |
| |
| void |
| util_format_fxt1_rgba_pack_rgba_8unorm(uint8_t *restrict dst_row, unsigned dst_stride, |
| const uint8_t *restrict src, unsigned src_stride, |
| unsigned width, unsigned height) |
| { |
| fxt1_encode(width, height, 4, src, src_stride, dst_row, dst_stride); |
| } |
| |
| void |
| util_format_fxt1_rgb_pack_rgba_float(uint8_t *restrict dst_row, unsigned dst_stride, |
| const float *restrict src, unsigned src_stride, |
| unsigned width, unsigned height) |
| { |
| int temp_stride = width * 4; |
| uint8_t *temp = malloc(height * temp_stride); |
| if (!temp) |
| return; |
| |
| util_format_r8g8b8a8_unorm_pack_rgba_float(temp, temp_stride, |
| src, src_stride, |
| width, height); |
| |
| util_format_fxt1_rgb_pack_rgba_8unorm(dst_row, dst_stride, |
| temp, temp_stride, |
| width, height); |
| |
| free(temp); |
| } |
| |
| void |
| util_format_fxt1_rgba_pack_rgba_float(uint8_t *restrict dst_row, unsigned dst_stride, |
| const float *restrict src, unsigned src_stride, |
| unsigned width, unsigned height) |
| { |
| int temp_stride = width * 4; |
| uint8_t *temp = malloc(height * temp_stride); |
| if (!temp) |
| return; |
| |
| util_format_r8g8b8a8_unorm_pack_rgba_float(temp, temp_stride, |
| src, src_stride, |
| width, height); |
| |
| util_format_fxt1_rgba_pack_rgba_8unorm(dst_row, dst_stride, |
| temp, temp_stride, |
| width, height); |
| |
| free(temp); |
| } |