blob: a4ea28fcdc810e196b57b290e893a760c51757e1 [file] [log] [blame]
/*
* Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
* Copyright (C) 2019-2020 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "midgard_ops.h"
void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new)
{
mir_foreach_src(ins, i) {
if (ins->src[i] == old)
ins->src[i] = new;
}
}
void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new)
{
if (ins->dest == old)
ins->dest = new;
}
static void
mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle)
{
for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
if (ins->src[i] != old) continue;
ins->src[i] = new;
mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
}
}
void
mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
{
mir_foreach_instr_global(ctx, ins) {
mir_rewrite_index_src_single(ins, old, new);
}
}
void
mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle)
{
mir_foreach_instr_global(ctx, ins) {
mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
}
}
void
mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
{
mir_foreach_instr_global(ctx, ins) {
mir_rewrite_index_dst_single(ins, old, new);
}
/* Implicitly written before the shader */
if (ctx->blend_input == old)
ctx->blend_input = new;
if (ctx->blend_src1 == old)
ctx->blend_src1 = new;
}
void
mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
{
mir_rewrite_index_src(ctx, old, new);
mir_rewrite_index_dst(ctx, old, new);
}
unsigned
mir_use_count(compiler_context *ctx, unsigned value)
{
unsigned used_count = 0;
mir_foreach_instr_global(ctx, ins) {
if (mir_has_arg(ins, value))
++used_count;
}
if (ctx->blend_input == value)
++used_count;
if (ctx->blend_src1 == value)
++used_count;
return used_count;
}
/* Checks if a value is used only once (or totally dead), which is an important
* heuristic to figure out if certain optimizations are Worth It (TM) */
bool
mir_single_use(compiler_context *ctx, unsigned value)
{
/* We can replicate constants in places so who cares */
if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
return true;
return mir_use_count(ctx, value) <= 1;
}
bool
mir_nontrivial_mod(midgard_instruction *ins, unsigned i, bool check_swizzle)
{
bool is_int = midgard_is_integer_op(ins->op);
if (is_int) {
if (ins->src_shift[i]) return true;
} else {
if (ins->src_neg[i]) return true;
if (ins->src_abs[i]) return true;
}
if (ins->dest_type != ins->src_types[i]) return true;
if (check_swizzle) {
for (unsigned c = 0; c < 16; ++c) {
if (!(ins->mask & (1 << c))) continue;
if (ins->swizzle[i][c] != c) return true;
}
}
return false;
}
bool
mir_nontrivial_outmod(midgard_instruction *ins)
{
bool is_int = midgard_is_integer_op(ins->op);
unsigned mod = ins->outmod;
if (ins->dest_type != ins->src_types[1])
return true;
if (is_int)
return mod != midgard_outmod_keeplo;
else
return mod != midgard_outmod_none;
}
/* 128 / sz = exp2(log2(128 / sz))
* = exp2(log2(128) - log2(sz))
* = exp2(7 - log2(sz))
* = 1 << (7 - log2(sz))
*/
static unsigned
mir_components_for_bits(unsigned bits)
{
return 1 << (7 - util_logbase2(bits));
}
unsigned
mir_components_for_type(nir_alu_type T)
{
unsigned sz = nir_alu_type_get_type_size(T);
return mir_components_for_bits(sz);
}
uint16_t
mir_from_bytemask(uint16_t bytemask, unsigned bits)
{
unsigned value = 0;
unsigned count = bits / 8;
for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
bool a = (bytemask & (1 << c)) != 0;
for (unsigned q = c; q < count; ++q)
assert(((bytemask & (1 << q)) != 0) == a);
value |= (a << d);
}
return value;
}
/* Rounds up a bytemask to fill a given component count. Iterate each
* component, and check if any bytes in the component are masked on */
uint16_t
mir_round_bytemask_up(uint16_t mask, unsigned bits)
{
unsigned bytes = bits / 8;
unsigned maxmask = mask_of(bytes);
unsigned channels = mir_components_for_bits(bits);
for (unsigned c = 0; c < channels; ++c) {
unsigned submask = maxmask << (c * bytes);
if (mask & submask)
mask |= submask;
}
return mask;
}
/* Grabs the per-byte mask of an instruction (as opposed to per-component) */
uint16_t
mir_bytemask(midgard_instruction *ins)
{
unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
return pan_to_bytemask(type_size, ins->mask);
}
void
mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
{
unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
ins->mask = mir_from_bytemask(bytemask, type_size);
}
/*
* Checks if we should use an upper destination override, rather than the lower
* one in the IR. If yes, returns the bytes to shift by. If no, returns zero
* for a lower override and negative for no override.
*/
signed
mir_upper_override(midgard_instruction *ins, unsigned inst_size)
{
unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
/* If the sizes are the same, there's nothing to override */
if (type_size == inst_size)
return -1;
/* There are 16 bytes per vector, so there are (16/bytes)
* components per vector. So the magic half is half of
* (16/bytes), which simplifies to 8/bytes = 8 / (bits / 8) = 64 / bits
* */
unsigned threshold = mir_components_for_bits(type_size) >> 1;
/* How many components did we shift over? */
unsigned zeroes = __builtin_ctz(ins->mask);
/* Did we hit the threshold? */
return (zeroes >= threshold) ? threshold : 0;
}
/* Creates a mask of the components of a node read by an instruction, by
* analyzing the swizzle with respect to the instruction's mask. E.g.:
*
* fadd r0.xz, r1.yyyy, r2.zwyx
*
* will return a mask of Z/Y for r2
*/
static uint16_t
mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, unsigned bits)
{
unsigned cmask = 0;
for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
if (!(inmask & (1 << c))) continue;
cmask |= (1 << swizzle[c]);
}
return pan_to_bytemask(bits, cmask);
}
uint16_t
mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i)
{
/* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */
if (ins->compact_branch && ins->branch.conditional && (i == 0))
return 0xF;
/* ALU ops act componentwise so we need to pay attention to
* their mask. Texture/ldst does not so we don't clamp source
* readmasks based on the writemask */
unsigned qmask = ~0;
/* Handle dot products and things */
if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
unsigned props = alu_opcode_props[ins->op].props;
unsigned channel_override = GET_CHANNEL_COUNT(props);
if (channel_override)
qmask = mask_of(channel_override);
else
qmask = ins->mask;
}
return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask,
nir_alu_type_get_type_size(ins->src_types[i]));
}
uint16_t
mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
{
uint16_t mask = 0;
if (node == ~0)
return 0;
mir_foreach_src(ins, i) {
if (ins->src[i] != node) continue;
mask |= mir_bytemask_of_read_components_index(ins, i);
}
return mask;
}
/* Register allocation occurs after instruction scheduling, which is fine until
* we start needing to spill registers and therefore insert instructions into
* an already-scheduled program. We don't have to be terribly efficient about
* this, since spilling is already slow. So just semantically we need to insert
* the instruction into a new bundle before/after the bundle of the instruction
* in question */
static midgard_bundle
mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
{
midgard_instruction *u = mir_upload_ins(ctx, ins);
midgard_bundle bundle = {
.tag = ins.type,
.instruction_count = 1,
.instructions = { u },
};
if (bundle.tag == TAG_ALU_4) {
assert(OP_IS_MOVE(u->op));
u->unit = UNIT_VMUL;
size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
bundle.padding = ~(bytes_emitted - 1) & 0xF;
bundle.control = ins.type | u->unit;
}
return bundle;
}
static unsigned
mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
{
midgard_bundle *bundles =
(midgard_bundle *) block->bundles.data;
size_t count = (block->bundles.size / sizeof(midgard_bundle));
for (unsigned i = 0; i < count; ++i) {
for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
if (bundles[i].instructions[j] == tag)
return i;
}
}
mir_print_instruction(tag);
unreachable("Instruction not scheduled in block");
}
midgard_instruction *
mir_insert_instruction_before_scheduled(
compiler_context *ctx,
midgard_block *block,
midgard_instruction *tag,
midgard_instruction ins)
{
unsigned before = mir_bundle_idx_for_ins(tag, block);
size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle));
midgard_bundle *before_bundle = bundles + before + 1;
midgard_bundle new = mir_bundle_for_op(ctx, ins);
memcpy(bundles + before, &new, sizeof(new));
list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link);
block->quadword_count += midgard_tag_props[new.tag].size;
return new.instructions[0];
}
midgard_instruction *
mir_insert_instruction_after_scheduled(
compiler_context *ctx,
midgard_block *block,
midgard_instruction *tag,
midgard_instruction ins)
{
/* We need to grow the bundles array to add our new bundle */
size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
/* Find the bundle that we want to insert after */
unsigned after = mir_bundle_idx_for_ins(tag, block);
/* All the bundles after that one, we move ahead by one */
midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle));
midgard_bundle *after_bundle = bundles + after;
midgard_bundle new = mir_bundle_for_op(ctx, ins);
memcpy(bundles + after + 1, &new, sizeof(new));
list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
block->quadword_count += midgard_tag_props[new.tag].size;
return new.instructions[0];
}
/* Flip the first-two arguments of a (binary) op. Currently ALU
* only, no known uses for ldst/tex */
void
mir_flip(midgard_instruction *ins)
{
unsigned temp = ins->src[0];
ins->src[0] = ins->src[1];
ins->src[1] = temp;
assert(ins->type == TAG_ALU_4);
temp = ins->src_types[0];
ins->src_types[0] = ins->src_types[1];
ins->src_types[1] = temp;
temp = ins->src_abs[0];
ins->src_abs[0] = ins->src_abs[1];
ins->src_abs[1] = temp;
temp = ins->src_neg[0];
ins->src_neg[0] = ins->src_neg[1];
ins->src_neg[1] = temp;
temp = ins->src_invert[0];
ins->src_invert[0] = ins->src_invert[1];
ins->src_invert[1] = temp;
unsigned temp_swizzle[16];
memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
}
/* Before squashing, calculate ctx->temp_count just by observing the MIR */
void
mir_compute_temp_count(compiler_context *ctx)
{
if (ctx->temp_count)
return;
unsigned max_dest = 0;
mir_foreach_instr_global(ctx, ins) {
if (ins->dest < SSA_FIXED_MINIMUM)
max_dest = MAX2(max_dest, ins->dest + 1);
}
ctx->temp_count = max_dest;
}