blob: 7ef613497bf8d2de5eae584e5afa55fb2e8cf93c [file] [log] [blame]
/*
* Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
* Copyright (C) 2019-2020 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "midgard_ops.h"
#include "midgard_quirks.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "util/half_float.h"
/* Scheduling for Midgard is complicated, to say the least. ALU instructions
* must be grouped into VLIW bundles according to following model:
*
* [VMUL] [SADD]
* [VADD] [SMUL] [VLUT]
*
* A given instruction can execute on some subset of the units (or a few can
* execute on all). Instructions can be either vector or scalar; only scalar
* instructions can execute on SADD/SMUL units. Units on a given line execute
* in parallel. Subsequent lines execute separately and can pass results
* directly via pipeline registers r24/r25, bypassing the register file.
*
* A bundle can optionally have 128-bits of embedded constants, shared across
* all of the instructions within a bundle.
*
* Instructions consuming conditionals (branches and conditional selects)
* require their condition to be written into the conditional register (r31)
* within the same bundle they are consumed.
*
* Fragment writeout requires its argument to be written in full within the
* same bundle as the branch, with no hanging dependencies.
*
* Load/store instructions are also in bundles of simply two instructions, and
* texture instructions have no bundling.
*
* -------------------------------------------------------------------------
*
*/
/* We create the dependency graph with per-byte granularity */
#define BYTE_COUNT 16
static void
add_dependency(struct util_dynarray *table, unsigned index, uint16_t mask, midgard_instruction **instructions, unsigned child)
{
for (unsigned i = 0; i < BYTE_COUNT; ++i) {
if (!(mask & (1 << i)))
continue;
struct util_dynarray *parents = &table[(BYTE_COUNT * index) + i];
util_dynarray_foreach(parents, unsigned, parent) {
BITSET_WORD *dependents = instructions[*parent]->dependents;
/* Already have the dependency */
if (BITSET_TEST(dependents, child))
continue;
BITSET_SET(dependents, child);
instructions[child]->nr_dependencies++;
}
}
}
static void
mark_access(struct util_dynarray *table, unsigned index, uint16_t mask, unsigned parent)
{
for (unsigned i = 0; i < BYTE_COUNT; ++i) {
if (!(mask & (1 << i)))
continue;
util_dynarray_append(&table[(BYTE_COUNT * index) + i], unsigned, parent);
}
}
static void
mir_create_dependency_graph(midgard_instruction **instructions, unsigned count, unsigned node_count)
{
size_t sz = node_count * BYTE_COUNT;
struct util_dynarray *last_read = calloc(sizeof(struct util_dynarray), sz);
struct util_dynarray *last_write = calloc(sizeof(struct util_dynarray), sz);
for (unsigned i = 0; i < sz; ++i) {
util_dynarray_init(&last_read[i], NULL);
util_dynarray_init(&last_write[i], NULL);
}
/* Initialize dependency graph */
for (unsigned i = 0; i < count; ++i) {
instructions[i]->dependents =
calloc(BITSET_WORDS(count), sizeof(BITSET_WORD));
instructions[i]->nr_dependencies = 0;
}
unsigned prev_ldst[3] = {~0, ~0, ~0};
/* Populate dependency graph */
for (signed i = count - 1; i >= 0; --i) {
if (instructions[i]->compact_branch)
continue;
unsigned dest = instructions[i]->dest;
unsigned mask = mir_bytemask(instructions[i]);
mir_foreach_src((*instructions), s) {
unsigned src = instructions[i]->src[s];
if (src < node_count) {
unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
add_dependency(last_write, src, readmask, instructions, i);
}
}
/* Create a list of dependencies for each type of load/store
* instruction to prevent reordering. */
if (instructions[i]->type == TAG_LOAD_STORE_4 &&
load_store_opcode_props[instructions[i]->op].props & LDST_ADDRESS) {
unsigned type = instructions[i]->load_store.arg_reg |
instructions[i]->load_store.arg_comp;
unsigned idx;
switch (type) {
case LDST_SHARED: idx = 0; break;
case LDST_SCRATCH: idx = 1; break;
default: idx = 2; break;
}
unsigned prev = prev_ldst[idx];
if (prev != ~0) {
BITSET_WORD *dependents = instructions[prev]->dependents;
/* Already have the dependency */
if (BITSET_TEST(dependents, i))
continue;
BITSET_SET(dependents, i);
instructions[i]->nr_dependencies++;
}
prev_ldst[idx] = i;
}
if (dest < node_count) {
add_dependency(last_read, dest, mask, instructions, i);
add_dependency(last_write, dest, mask, instructions, i);
mark_access(last_write, dest, mask, i);
}
mir_foreach_src((*instructions), s) {
unsigned src = instructions[i]->src[s];
if (src < node_count) {
unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
mark_access(last_read, src, readmask, i);
}
}
}
/* If there is a branch, all instructions depend on it, as interblock
* execution must be purely in-order */
if (instructions[count - 1]->compact_branch) {
BITSET_WORD *dependents = instructions[count - 1]->dependents;
for (signed i = count - 2; i >= 0; --i) {
if (BITSET_TEST(dependents, i))
continue;
BITSET_SET(dependents, i);
instructions[i]->nr_dependencies++;
}
}
/* Free the intermediate structures */
for (unsigned i = 0; i < sz; ++i) {
util_dynarray_fini(&last_read[i]);
util_dynarray_fini(&last_write[i]);
}
free(last_read);
free(last_write);
}
/* Does the mask cover more than a scalar? */
static bool
is_single_component_mask(unsigned mask)
{
int components = 0;
for (int c = 0; c < 8; ++c) {
if (mask & (1 << c))
components++;
}
return components == 1;
}
/* Helpers for scheudling */
static bool
mir_is_scalar(midgard_instruction *ains)
{
/* Do we try to use it as a vector op? */
if (!is_single_component_mask(ains->mask))
return false;
/* Otherwise, check mode hazards */
bool could_scalar = true;
unsigned szd = nir_alu_type_get_type_size(ains->dest_type);
unsigned sz0 = nir_alu_type_get_type_size(ains->src_types[0]);
unsigned sz1 = nir_alu_type_get_type_size(ains->src_types[1]);
/* Only 16/32-bit can run on a scalar unit */
could_scalar &= (szd == 16) || (szd == 32);
if (ains->src[0] != ~0)
could_scalar &= (sz0 == 16) || (sz0 == 32);
if (ains->src[1] != ~0)
could_scalar &= (sz1 == 16) || (sz1 == 32);
if (midgard_is_integer_out_op(ains->op) && ains->outmod != midgard_outmod_keeplo)
return false;
return could_scalar;
}
/* How many bytes does this ALU instruction add to the bundle? */
static unsigned
bytes_for_instruction(midgard_instruction *ains)
{
if (ains->unit & UNITS_ANY_VECTOR)
return sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
else if (ains->unit == ALU_ENAB_BRANCH)
return sizeof(midgard_branch_extended);
else if (ains->compact_branch)
return sizeof(uint16_t);
else
return sizeof(midgard_reg_info) + sizeof(midgard_scalar_alu);
}
/* We would like to flatten the linked list of midgard_instructions in a bundle
* to an array of pointers on the heap for easy indexing */
static midgard_instruction **
flatten_mir(midgard_block *block, unsigned *len)
{
*len = list_length(&block->base.instructions);
if (!(*len))
return NULL;
midgard_instruction **instructions =
calloc(sizeof(midgard_instruction *), *len);
unsigned i = 0;
mir_foreach_instr_in_block(block, ins)
instructions[i++] = ins;
return instructions;
}
/* The worklist is the set of instructions that can be scheduled now; that is,
* the set of instructions with no remaining dependencies */
static void
mir_initialize_worklist(BITSET_WORD *worklist, midgard_instruction **instructions, unsigned count)
{
for (unsigned i = 0; i < count; ++i) {
if (instructions[i]->nr_dependencies == 0)
BITSET_SET(worklist, i);
}
}
/* Update the worklist after an instruction terminates. Remove its edges from
* the graph and if that causes any node to have no dependencies, add it to the
* worklist */
static void
mir_update_worklist(
BITSET_WORD *worklist, unsigned count,
midgard_instruction **instructions, midgard_instruction *done)
{
/* Sanity check: if no instruction terminated, there is nothing to do.
* If the instruction that terminated had dependencies, that makes no
* sense and means we messed up the worklist. Finally, as the purpose
* of this routine is to update dependents, we abort early if there are
* no dependents defined. */
if (!done)
return;
assert(done->nr_dependencies == 0);
if (!done->dependents)
return;
/* We have an instruction with dependents. Iterate each dependent to
* remove one dependency (`done`), adding dependents to the worklist
* where possible. */
unsigned i;
BITSET_FOREACH_SET(i, done->dependents, count) {
assert(instructions[i]->nr_dependencies);
if (!(--instructions[i]->nr_dependencies))
BITSET_SET(worklist, i);
}
free(done->dependents);
}
/* While scheduling, we need to choose instructions satisfying certain
* criteria. As we schedule backwards, we choose the *last* instruction in the
* worklist to simulate in-order scheduling. Chosen instructions must satisfy a
* given predicate. */
struct midgard_predicate {
/* TAG or ~0 for dont-care */
unsigned tag;
/* True if we want to pop off the chosen instruction */
bool destructive;
/* For ALU, choose only this unit */
unsigned unit;
/* State for bundle constants. constants is the actual constants
* for the bundle. constant_count is the number of bytes (up to
* 16) currently in use for constants. When picking in destructive
* mode, the constants array will be updated, and the instruction
* will be adjusted to index into the constants array */
midgard_constants *constants;
unsigned constant_mask;
/* Exclude this destination (if not ~0) */
unsigned exclude;
/* Don't schedule instructions consuming conditionals (since we already
* scheduled one). Excludes conditional branches and csel */
bool no_cond;
/* Require (or reject) a minimal mask and (if nonzero) given
* destination. Used for writeout optimizations */
unsigned mask;
unsigned no_mask;
unsigned dest;
/* Whether to not-care/only/never schedule imov/fmov instructions This
* allows non-move instructions to get priority on each unit */
unsigned move_mode;
/* For load/store: how many pipeline registers are in use? The two
* scheduled instructions cannot use more than the 256-bits of pipeline
* space available or RA will fail (as it would run out of pipeline
* registers and fail to spill without breaking the schedule) */
unsigned pipeline_count;
/* For load/store: is a ST_VARY.a32 instruction scheduled into the
* bundle? is a non-ST_VARY.a32 instruction scheduled? Potential
* hardware issue, unknown cause.
*/
bool any_st_vary_a32, any_non_st_vary_a32;
};
static bool
mir_adjust_constant(midgard_instruction *ins, unsigned src,
unsigned *bundle_constant_mask,
unsigned *comp_mapping,
uint8_t *bundle_constants,
bool upper)
{
unsigned type_size = nir_alu_type_get_type_size(ins->src_types[src]) / 8;
unsigned type_shift = util_logbase2(type_size);
unsigned max_comp = mir_components_for_type(ins->src_types[src]);
unsigned comp_mask = mir_from_bytemask(mir_round_bytemask_up(
mir_bytemask_of_read_components_index(ins, src),
type_size * 8),
type_size * 8);
unsigned type_mask = (1 << type_size) - 1;
/* Upper only makes sense for 16-bit */
if (type_size != 16 && upper)
return false;
/* For 16-bit, we need to stay on either upper or lower halves to avoid
* disrupting the swizzle */
unsigned start = upper ? 8 : 0;
unsigned length = (type_size == 2) ? 8 : 16;
for (unsigned comp = 0; comp < max_comp; comp++) {
if (!(comp_mask & (1 << comp)))
continue;
uint8_t *constantp = ins->constants.u8 + (type_size * comp);
unsigned best_reuse_bytes = 0;
signed best_place = -1;
unsigned i, j;
for (i = start; i < (start + length); i += type_size) {
unsigned reuse_bytes = 0;
for (j = 0; j < type_size; j++) {
if (!(*bundle_constant_mask & (1 << (i + j))))
continue;
if (constantp[j] != bundle_constants[i + j])
break;
if ((i + j) > (start + length))
break;
reuse_bytes++;
}
/* Select the place where existing bytes can be
* reused so we leave empty slots to others
*/
if (j == type_size &&
(reuse_bytes > best_reuse_bytes || best_place < 0)) {
best_reuse_bytes = reuse_bytes;
best_place = i;
break;
}
}
/* This component couldn't fit in the remaining constant slot,
* no need check the remaining components, bail out now
*/
if (best_place < 0)
return false;
memcpy(&bundle_constants[i], constantp, type_size);
*bundle_constant_mask |= type_mask << best_place;
comp_mapping[comp] = best_place >> type_shift;
}
return true;
}
/* For an instruction that can fit, adjust it to fit and update the constants
* array, in destructive mode. Returns whether the fitting was successful. */
static bool
mir_adjust_constants(midgard_instruction *ins,
struct midgard_predicate *pred,
bool destructive)
{
/* No constant, nothing to adjust */
if (!ins->has_constants)
return true;
unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
unsigned bundle_constant_mask = pred->constant_mask;
unsigned comp_mapping[2][16] = { };
uint8_t bundle_constants[16];
memcpy(bundle_constants, pred->constants, 16);
/* Let's try to find a place for each active component of the constant
* register.
*/
for (unsigned src = 0; src < 2; ++src) {
if (ins->src[src] != SSA_FIXED_REGISTER(REGISTER_CONSTANT))
continue;
/* First, try lower half (or whole for !16) */
if (mir_adjust_constant(ins, src, &bundle_constant_mask,
comp_mapping[src], bundle_constants, false))
continue;
/* Next, try upper half */
if (mir_adjust_constant(ins, src, &bundle_constant_mask,
comp_mapping[src], bundle_constants, true))
continue;
/* Otherwise bail */
return false;
}
/* If non-destructive, we're done */
if (!destructive)
return true;
/* Otherwise update the constant_mask and constant values */
pred->constant_mask = bundle_constant_mask;
memcpy(pred->constants, bundle_constants, 16);
/* Use comp_mapping as a swizzle */
mir_foreach_src(ins, s) {
if (ins->src[s] == r_constant)
mir_compose_swizzle(ins->swizzle[s], comp_mapping[s], ins->swizzle[s]);
}
return true;
}
/* Conservative estimate of the pipeline registers required for load/store */
static unsigned
mir_pipeline_count(midgard_instruction *ins)
{
unsigned bytecount = 0;
mir_foreach_src(ins, i) {
/* Skip empty source */
if (ins->src[i] == ~0) continue;
if (i == 0) {
/* First source is a vector, worst-case the mask */
unsigned bytemask = mir_bytemask_of_read_components_index(ins, i);
unsigned max = util_logbase2(bytemask) + 1;
bytecount += max;
} else {
/* Sources 1 on are scalars */
bytecount += 4;
}
}
unsigned dwords = DIV_ROUND_UP(bytecount, 16);
assert(dwords <= 2);
return dwords;
}
/* Matches FADD x, x with modifiers compatible. Since x + x = x * 2, for
* any x including of the form f(y) for some swizzle/abs/neg function f */
static bool
mir_is_add_2(midgard_instruction *ins)
{
if (ins->op != midgard_alu_op_fadd)
return false;
if (ins->src[0] != ins->src[1])
return false;
if (ins->src_types[0] != ins->src_types[1])
return false;
for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i) {
if (ins->swizzle[0][i] != ins->swizzle[1][i])
return false;
}
if (ins->src_abs[0] != ins->src_abs[1])
return false;
if (ins->src_neg[0] != ins->src_neg[1])
return false;
return true;
}
static void
mir_adjust_unit(midgard_instruction *ins, unsigned unit)
{
/* FADD x, x = FMUL x, #2 */
if (mir_is_add_2(ins) && (unit & (UNITS_MUL | UNIT_VLUT))) {
ins->op = midgard_alu_op_fmul;
ins->src[1] = ~0;
ins->src_abs[1] = false;
ins->src_neg[1] = false;
ins->has_inline_constant = true;
ins->inline_constant = _mesa_float_to_half(2.0);
}
}
static unsigned
mir_has_unit(midgard_instruction *ins, unsigned unit)
{
if (alu_opcode_props[ins->op].props & unit)
return true;
/* FADD x, x can run on any adder or any multiplier */
if (mir_is_add_2(ins))
return true;
return false;
}
/* Net change in liveness if an instruction were scheduled. Loosely based on
* ir3's scheduler. */
static int
mir_live_effect(uint16_t *liveness, midgard_instruction *ins, bool destructive)
{
/* TODO: what if dest is used multiple times? */
int free_live = 0;
if (ins->dest < SSA_FIXED_MINIMUM) {
unsigned bytemask = mir_bytemask(ins);
bytemask = util_next_power_of_two(bytemask + 1) - 1;
free_live += util_bitcount(liveness[ins->dest] & bytemask);
if (destructive)
liveness[ins->dest] &= ~bytemask;
}
int new_live = 0;
mir_foreach_src(ins, s) {
unsigned S = ins->src[s];
bool dupe = false;
for (unsigned q = 0; q < s; ++q)
dupe |= (ins->src[q] == S);
if (dupe)
continue;
if (S < SSA_FIXED_MINIMUM) {
unsigned bytemask = mir_bytemask_of_read_components(ins, S);
bytemask = util_next_power_of_two(bytemask + 1) - 1;
/* Count only the new components */
new_live += util_bitcount(bytemask & ~(liveness[S]));
if (destructive)
liveness[S] |= bytemask;
}
}
return new_live - free_live;
}
static midgard_instruction *
mir_choose_instruction(
midgard_instruction **instructions,
uint16_t *liveness,
BITSET_WORD *worklist, unsigned count,
struct midgard_predicate *predicate)
{
/* Parse the predicate */
unsigned tag = predicate->tag;
unsigned unit = predicate->unit;
bool scalar = (unit != ~0) && (unit & UNITS_SCALAR);
bool no_cond = predicate->no_cond;
unsigned mask = predicate->mask;
unsigned dest = predicate->dest;
bool needs_dest = mask & 0xF;
/* Iterate to find the best instruction satisfying the predicate */
unsigned i;
signed best_index = -1;
signed best_effect = INT_MAX;
bool best_conditional = false;
/* Enforce a simple metric limiting distance to keep down register
* pressure. TOOD: replace with liveness tracking for much better
* results */
unsigned max_active = 0;
unsigned max_distance = 36;
#ifndef NDEBUG
/* Force in-order scheduling */
if (midgard_debug & MIDGARD_DBG_INORDER)
max_distance = 1;
#endif
BITSET_FOREACH_SET(i, worklist, count) {
max_active = MAX2(max_active, i);
}
BITSET_FOREACH_SET(i, worklist, count) {
if ((max_active - i) >= max_distance)
continue;
if (tag != ~0 && instructions[i]->type != tag)
continue;
bool alu = (instructions[i]->type == TAG_ALU_4);
bool ldst = (instructions[i]->type == TAG_LOAD_STORE_4);
bool branch = alu && (unit == ALU_ENAB_BR_COMPACT);
bool is_move = alu &&
(instructions[i]->op == midgard_alu_op_imov ||
instructions[i]->op == midgard_alu_op_fmov);
if (predicate->exclude != ~0 && instructions[i]->dest == predicate->exclude)
continue;
if (alu && !branch && unit != ~0 && !(mir_has_unit(instructions[i], unit)))
continue;
/* 0: don't care, 1: no moves, 2: only moves */
if (predicate->move_mode && ((predicate->move_mode - 1) != is_move))
continue;
if (branch && !instructions[i]->compact_branch)
continue;
if (alu && scalar && !mir_is_scalar(instructions[i]))
continue;
if (alu && predicate->constants && !mir_adjust_constants(instructions[i], predicate, false))
continue;
if (needs_dest && instructions[i]->dest != dest)
continue;
if (mask && ((~instructions[i]->mask) & mask))
continue;
if (instructions[i]->mask & predicate->no_mask)
continue;
if (ldst && mir_pipeline_count(instructions[i]) + predicate->pipeline_count > 2)
continue;
bool st_vary_a32 = (instructions[i]->op == midgard_op_st_vary_32);
if (ldst && predicate->any_non_st_vary_a32 && st_vary_a32)
continue;
if (ldst && predicate->any_st_vary_a32 && !st_vary_a32)
continue;
bool conditional = alu && !branch && OP_IS_CSEL(instructions[i]->op);
conditional |= (branch && instructions[i]->branch.conditional);
if (conditional && no_cond)
continue;
int effect = mir_live_effect(liveness, instructions[i], false);
if (effect > best_effect)
continue;
if (effect == best_effect && (signed) i < best_index)
continue;
best_effect = effect;
best_index = i;
best_conditional = conditional;
}
/* Did we find anything? */
if (best_index < 0)
return NULL;
/* If we found something, remove it from the worklist */
assert(best_index < count);
midgard_instruction *I = instructions[best_index];
if (predicate->destructive) {
BITSET_CLEAR(worklist, best_index);
if (I->type == TAG_ALU_4)
mir_adjust_constants(instructions[best_index], predicate, true);
if (I->type == TAG_LOAD_STORE_4) {
predicate->pipeline_count += mir_pipeline_count(instructions[best_index]);
if (instructions[best_index]->op == midgard_op_st_vary_32)
predicate->any_st_vary_a32 = true;
else
predicate->any_non_st_vary_a32 = true;
}
if (I->type == TAG_ALU_4)
mir_adjust_unit(instructions[best_index], unit);
/* Once we schedule a conditional, we can't again */
predicate->no_cond |= best_conditional;
mir_live_effect(liveness, instructions[best_index], true);
}
return I;
}
/* Still, we don't choose instructions in a vacuum. We need a way to choose the
* best bundle type (ALU, load/store, texture). Nondestructive. */
static unsigned
mir_choose_bundle(
midgard_instruction **instructions,
uint16_t *liveness,
BITSET_WORD *worklist, unsigned count,
unsigned num_ldst)
{
/* At the moment, our algorithm is very simple - use the bundle of the
* best instruction, regardless of what else could be scheduled
* alongside it. This is not optimal but it works okay for in-order */
struct midgard_predicate predicate = {
.tag = ~0,
.unit = ~0,
.destructive = false,
.exclude = ~0
};
midgard_instruction *chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate);
if (chosen && chosen->type == TAG_LOAD_STORE_4 && !(num_ldst % 2)) {
/* Try to schedule load/store ops in pairs */
predicate.exclude = chosen->dest;
predicate.tag = TAG_LOAD_STORE_4;
chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate);
if (chosen)
return TAG_LOAD_STORE_4;
predicate.tag = ~0;
chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate);
assert(chosen == NULL || chosen->type != TAG_LOAD_STORE_4);
if (chosen)
return chosen->type;
else
return TAG_LOAD_STORE_4;
}
if (chosen)
return chosen->type;
else
return ~0;
}
/* We want to choose an ALU instruction filling a given unit */
static void
mir_choose_alu(midgard_instruction **slot,
midgard_instruction **instructions,
uint16_t *liveness,
BITSET_WORD *worklist, unsigned len,
struct midgard_predicate *predicate,
unsigned unit)
{
/* Did we already schedule to this slot? */
if ((*slot) != NULL)
return;
/* Try to schedule something, if not */
predicate->unit = unit;
*slot = mir_choose_instruction(instructions, liveness, worklist, len, predicate);
/* Store unit upon scheduling */
if (*slot && !((*slot)->compact_branch))
(*slot)->unit = unit;
}
/* When we are scheduling a branch/csel, we need the consumed condition in the
* same block as a pipeline register. There are two options to enable this:
*
* - Move the conditional into the bundle. Preferred, but only works if the
* conditional is used only once and is from this block.
* - Copy the conditional.
*
* We search for the conditional. If it's in this block, single-use, and
* without embedded constants, we schedule it immediately. Otherwise, we
* schedule a move for it.
*
* mir_comparison_mobile is a helper to find the moveable condition.
*/
static unsigned
mir_comparison_mobile(
compiler_context *ctx,
midgard_instruction **instructions,
struct midgard_predicate *predicate,
unsigned count,
unsigned cond)
{
if (!mir_single_use(ctx, cond))
return ~0;
unsigned ret = ~0;
for (unsigned i = 0; i < count; ++i) {
if (instructions[i]->dest != cond)
continue;
/* Must fit in an ALU bundle */
if (instructions[i]->type != TAG_ALU_4)
return ~0;
/* If it would itself require a condition, that's recursive */
if (OP_IS_CSEL(instructions[i]->op))
return ~0;
/* We'll need to rewrite to .w but that doesn't work for vector
* ops that don't replicate (ball/bany), so bail there */
if (GET_CHANNEL_COUNT(alu_opcode_props[instructions[i]->op].props))
return ~0;
/* Ensure it will fit with constants */
if (!mir_adjust_constants(instructions[i], predicate, false))
return ~0;
/* Ensure it is written only once */
if (ret != ~0)
return ~0;
else
ret = i;
}
/* Inject constants now that we are sure we want to */
if (ret != ~0)
mir_adjust_constants(instructions[ret], predicate, true);
return ret;
}
/* Using the information about the moveable conditional itself, we either pop
* that condition off the worklist for use now, or create a move to
* artificially schedule instead as a fallback */
static midgard_instruction *
mir_schedule_comparison(
compiler_context *ctx,
midgard_instruction **instructions,
struct midgard_predicate *predicate,
BITSET_WORD *worklist, unsigned count,
unsigned cond, bool vector, unsigned *swizzle,
midgard_instruction *user)
{
/* TODO: swizzle when scheduling */
unsigned comp_i =
(!vector && (swizzle[0] == 0)) ?
mir_comparison_mobile(ctx, instructions, predicate, count, cond) : ~0;
/* If we can, schedule the condition immediately */
if ((comp_i != ~0) && BITSET_TEST(worklist, comp_i)) {
assert(comp_i < count);
BITSET_CLEAR(worklist, comp_i);
return instructions[comp_i];
}
/* Otherwise, we insert a move */
midgard_instruction mov = v_mov(cond, cond);
mov.mask = vector ? 0xF : 0x1;
memcpy(mov.swizzle[1], swizzle, sizeof(mov.swizzle[1]));
return mir_insert_instruction_before(ctx, user, mov);
}
/* Most generally, we need instructions writing to r31 in the appropriate
* components */
static midgard_instruction *
mir_schedule_condition(compiler_context *ctx,
struct midgard_predicate *predicate,
BITSET_WORD *worklist, unsigned count,
midgard_instruction **instructions,
midgard_instruction *last)
{
/* For a branch, the condition is the only argument; for csel, third */
bool branch = last->compact_branch;
unsigned condition_index = branch ? 0 : 2;
/* csel_v is vector; otherwise, conditions are scalar */
bool vector = !branch && OP_IS_CSEL_V(last->op);
/* Grab the conditional instruction */
midgard_instruction *cond = mir_schedule_comparison(
ctx, instructions, predicate, worklist, count, last->src[condition_index],
vector, last->swizzle[condition_index], last);
/* We have exclusive reign over this (possibly move) conditional
* instruction. We can rewrite into a pipeline conditional register */
predicate->exclude = cond->dest;
cond->dest = SSA_FIXED_REGISTER(31);
if (!vector) {
cond->mask = (1 << COMPONENT_W);
mir_foreach_src(cond, s) {
if (cond->src[s] == ~0)
continue;
for (unsigned q = 0; q < 4; ++q)
cond->swizzle[s][q + COMPONENT_W] = cond->swizzle[s][q];
}
}
/* Schedule the unit: csel is always in the latter pipeline, so a csel
* condition must be in the former pipeline stage (vmul/sadd),
* depending on scalar/vector of the instruction itself. A branch must
* be written from the latter pipeline stage and a branch condition is
* always scalar, so it is always in smul (exception: ball/bany, which
* will be vadd) */
if (branch)
cond->unit = UNIT_SMUL;
else
cond->unit = vector ? UNIT_VMUL : UNIT_SADD;
return cond;
}
/* Schedules a single bundle of the given type */
static midgard_bundle
mir_schedule_texture(
midgard_instruction **instructions,
uint16_t *liveness,
BITSET_WORD *worklist, unsigned len,
bool is_vertex)
{
struct midgard_predicate predicate = {
.tag = TAG_TEXTURE_4,
.destructive = true,
.exclude = ~0
};
midgard_instruction *ins =
mir_choose_instruction(instructions, liveness, worklist, len, &predicate);
mir_update_worklist(worklist, len, instructions, ins);
struct midgard_bundle out = {
.tag = ins->op == midgard_tex_op_barrier ?
TAG_TEXTURE_4_BARRIER :
(ins->op == midgard_tex_op_fetch) || is_vertex ?
TAG_TEXTURE_4_VTX : TAG_TEXTURE_4,
.instruction_count = 1,
.instructions = { ins }
};
return out;
}
static midgard_bundle
mir_schedule_ldst(
midgard_instruction **instructions,
uint16_t *liveness,
BITSET_WORD *worklist, unsigned len,
unsigned *num_ldst)
{
struct midgard_predicate predicate = {
.tag = TAG_LOAD_STORE_4,
.destructive = true,
.exclude = ~0
};
/* Try to pick two load/store ops. Second not gauranteed to exist */
midgard_instruction *ins =
mir_choose_instruction(instructions, liveness, worklist, len, &predicate);
midgard_instruction *pair =
mir_choose_instruction(instructions, liveness, worklist, len, &predicate);
assert(ins != NULL);
struct midgard_bundle out = {
.tag = TAG_LOAD_STORE_4,
.instruction_count = pair ? 2 : 1,
.instructions = { ins, pair }
};
*num_ldst -= out.instruction_count;
/* We have to update the worklist atomically, since the two
* instructions run concurrently (TODO: verify it's not pipelined) */
mir_update_worklist(worklist, len, instructions, ins);
mir_update_worklist(worklist, len, instructions, pair);
return out;
}
static void
mir_schedule_zs_write(
compiler_context *ctx,
struct midgard_predicate *predicate,
midgard_instruction **instructions,
uint16_t *liveness,
BITSET_WORD *worklist, unsigned len,
midgard_instruction *branch,
midgard_instruction **smul,
midgard_instruction **vadd,
midgard_instruction **vlut,
bool stencil)
{
bool success = false;
unsigned idx = stencil ? 3 : 2;
unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(1) : branch->src[idx];
predicate->dest = src;
predicate->mask = 0x1;
midgard_instruction **units[] = { smul, vadd, vlut };
unsigned unit_names[] = { UNIT_SMUL, UNIT_VADD, UNIT_VLUT };
for (unsigned i = 0; i < 3; ++i) {
if (*(units[i]))
continue;
predicate->unit = unit_names[i];
midgard_instruction *ins =
mir_choose_instruction(instructions, liveness, worklist, len, predicate);
if (ins) {
ins->unit = unit_names[i];
*(units[i]) = ins;
success |= true;
break;
}
}
predicate->dest = predicate->mask = 0;
if (success)
return;
midgard_instruction *mov = ralloc(ctx, midgard_instruction);
*mov = v_mov(src, make_compiler_temp(ctx));
mov->mask = 0x1;
branch->src[idx] = mov->dest;
if (stencil) {
unsigned swizzle = (branch->src[0] == ~0) ? COMPONENT_Y : COMPONENT_X;
for (unsigned c = 0; c < 16; ++c)
mov->swizzle[1][c] = swizzle;
}
for (unsigned i = 0; i < 3; ++i) {
if (!(*(units[i]))) {
*(units[i]) = mov;
mov->unit = unit_names[i];
return;
}
}
unreachable("Could not schedule Z/S move to any unit");
}
static midgard_bundle
mir_schedule_alu(
compiler_context *ctx,
midgard_instruction **instructions,
uint16_t *liveness,
BITSET_WORD *worklist, unsigned len)
{
struct midgard_bundle bundle = {};
unsigned bytes_emitted = sizeof(bundle.control);
struct midgard_predicate predicate = {
.tag = TAG_ALU_4,
.destructive = true,
.exclude = ~0,
.constants = &bundle.constants
};
midgard_instruction *vmul = NULL;
midgard_instruction *vadd = NULL;
midgard_instruction *vlut = NULL;
midgard_instruction *smul = NULL;
midgard_instruction *sadd = NULL;
midgard_instruction *branch = NULL;
mir_choose_alu(&branch, instructions, liveness, worklist, len, &predicate, ALU_ENAB_BR_COMPACT);
mir_update_worklist(worklist, len, instructions, branch);
unsigned writeout = branch ? branch->writeout : 0;
if (branch && branch->branch.conditional) {
midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, branch);
if (cond->unit == UNIT_VADD)
vadd = cond;
else if (cond->unit == UNIT_SMUL)
smul = cond;
else
unreachable("Bad condition");
}
/* If we have a render target reference, schedule a move for it. Since
* this will be in sadd, we boost this to prevent scheduling csel into
* smul */
if (writeout && (branch->constants.u32[0] || ctx->inputs->is_blend)) {
sadd = ralloc(ctx, midgard_instruction);
*sadd = v_mov(~0, make_compiler_temp(ctx));
sadd->unit = UNIT_SADD;
sadd->mask = 0x1;
sadd->has_inline_constant = true;
sadd->inline_constant = branch->constants.u32[0];
branch->src[1] = sadd->dest;
branch->src_types[1] = sadd->dest_type;
}
if (writeout) {
/* Propagate up */
bundle.last_writeout = branch->last_writeout;
/* Mask off any conditionals.
* This prevents csel and csel_v being scheduled into smul
* since we might not have room for a conditional in vmul/sadd.
* This is important because both writeout and csel have same-bundle
* requirements on their dependencies. */
predicate.no_cond = true;
}
/* Set r1.w to the return address so we can return from blend shaders */
if (writeout) {
vadd = ralloc(ctx, midgard_instruction);
*vadd = v_mov(~0, make_compiler_temp(ctx));
if (!ctx->inputs->is_blend) {
vadd->op = midgard_alu_op_iadd;
vadd->src[0] = SSA_FIXED_REGISTER(31);
vadd->src_types[0] = nir_type_uint32;
for (unsigned c = 0; c < 16; ++c)
vadd->swizzle[0][c] = COMPONENT_X;
vadd->has_inline_constant = true;
vadd->inline_constant = 0;
} else {
vadd->src[1] = SSA_FIXED_REGISTER(1);
vadd->src_types[0] = nir_type_uint32;
for (unsigned c = 0; c < 16; ++c)
vadd->swizzle[1][c] = COMPONENT_W;
}
vadd->unit = UNIT_VADD;
vadd->mask = 0x1;
branch->dest = vadd->dest;
branch->dest_type = vadd->dest_type;
}
if (writeout & PAN_WRITEOUT_Z)
mir_schedule_zs_write(ctx, &predicate, instructions, liveness, worklist, len, branch, &smul, &vadd, &vlut, false);
if (writeout & PAN_WRITEOUT_S)
mir_schedule_zs_write(ctx, &predicate, instructions, liveness, worklist, len, branch, &smul, &vadd, &vlut, true);
mir_choose_alu(&smul, instructions, liveness, worklist, len, &predicate, UNIT_SMUL);
for (unsigned mode = 1; mode < 3; ++mode) {
predicate.move_mode = mode;
predicate.no_mask = writeout ? (1 << 3) : 0;
mir_choose_alu(&vlut, instructions, liveness, worklist, len, &predicate, UNIT_VLUT);
predicate.no_mask = 0;
mir_choose_alu(&vadd, instructions, liveness, worklist, len, &predicate, UNIT_VADD);
}
/* Reset */
predicate.move_mode = 0;
mir_update_worklist(worklist, len, instructions, vlut);
mir_update_worklist(worklist, len, instructions, vadd);
mir_update_worklist(worklist, len, instructions, smul);
bool vadd_csel = vadd && OP_IS_CSEL(vadd->op);
bool smul_csel = smul && OP_IS_CSEL(smul->op);
if (vadd_csel || smul_csel) {
midgard_instruction *ins = vadd_csel ? vadd : smul;
midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, ins);
if (cond->unit == UNIT_VMUL)
vmul = cond;
else if (cond->unit == UNIT_SADD)
sadd = cond;
else
unreachable("Bad condition");
}
/* Stage 2, let's schedule sadd before vmul for writeout */
mir_choose_alu(&sadd, instructions, liveness, worklist, len, &predicate, UNIT_SADD);
/* Check if writeout reads its own register */
if (writeout) {
midgard_instruction *stages[] = { sadd, vadd, smul, vlut };
unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : branch->src[0];
unsigned writeout_mask = 0x0;
bool bad_writeout = false;
for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
if (!stages[i])
continue;
if (stages[i]->dest != src)
continue;
writeout_mask |= stages[i]->mask;
bad_writeout |= mir_has_arg(stages[i], branch->src[0]);
}
/* It's possible we'll be able to schedule something into vmul
* to fill r0. Let's peak into the future, trying to schedule
* vmul specially that way. */
unsigned full_mask = 0xF;
if (!bad_writeout && writeout_mask != full_mask) {
predicate.unit = UNIT_VMUL;
predicate.dest = src;
predicate.mask = writeout_mask ^ full_mask;
struct midgard_instruction *peaked =
mir_choose_instruction(instructions, liveness, worklist, len, &predicate);
if (peaked) {
vmul = peaked;
vmul->unit = UNIT_VMUL;
writeout_mask |= predicate.mask;
assert(writeout_mask == full_mask);
}
/* Cleanup */
predicate.dest = predicate.mask = 0;
}
/* Finally, add a move if necessary */
if (bad_writeout || writeout_mask != full_mask) {
unsigned temp = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : make_compiler_temp(ctx);
vmul = ralloc(ctx, midgard_instruction);
*vmul = v_mov(src, temp);
vmul->unit = UNIT_VMUL;
vmul->mask = full_mask ^ writeout_mask;
/* Rewrite to use our temp */
for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
if (stages[i]) {
mir_rewrite_index_dst_single(stages[i], src, temp);
mir_rewrite_index_src_single(stages[i], src, temp);
}
}
mir_rewrite_index_src_single(branch, src, temp);
}
}
mir_choose_alu(&vmul, instructions, liveness, worklist, len, &predicate, UNIT_VMUL);
mir_update_worklist(worklist, len, instructions, vmul);
mir_update_worklist(worklist, len, instructions, sadd);
bundle.has_embedded_constants = predicate.constant_mask != 0;
unsigned padding = 0;
/* Now that we have finished scheduling, build up the bundle */
midgard_instruction *stages[] = { vmul, sadd, vadd, smul, vlut, branch };
for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
if (stages[i]) {
bundle.control |= stages[i]->unit;
bytes_emitted += bytes_for_instruction(stages[i]);
bundle.instructions[bundle.instruction_count++] = stages[i];
/* If we branch, we can't spill to TLS since the store
* instruction will never get executed. We could try to
* break the bundle but this is probably easier for
* now. */
if (branch)
stages[i]->no_spill |= (1 << REG_CLASS_WORK);
}
}
/* Pad ALU op to nearest word */
if (bytes_emitted & 15) {
padding = 16 - (bytes_emitted & 15);
bytes_emitted += padding;
}
/* Constants must always be quadwords */
if (bundle.has_embedded_constants)
bytes_emitted += 16;
/* Size ALU instruction for tag */
bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
bool tilebuf_wait = branch && branch->compact_branch &&
branch->branch.target_type == TARGET_TILEBUF_WAIT;
/* MRT capable GPUs use a special writeout procedure */
if ((writeout || tilebuf_wait) && !(ctx->quirks & MIDGARD_NO_UPPER_ALU))
bundle.tag += 4;
bundle.padding = padding;
bundle.control |= bundle.tag;
return bundle;
}
/* Schedule a single block by iterating its instruction to create bundles.
* While we go, tally about the bundle sizes to compute the block size. */
static void
schedule_block(compiler_context *ctx, midgard_block *block)
{
/* Copy list to dynamic array */
unsigned len = 0;
midgard_instruction **instructions = flatten_mir(block, &len);
if (!len)
return;
/* Calculate dependencies and initial worklist */
unsigned node_count = ctx->temp_count + 1;
mir_create_dependency_graph(instructions, len, node_count);
/* Allocate the worklist */
size_t sz = BITSET_WORDS(len) * sizeof(BITSET_WORD);
BITSET_WORD *worklist = calloc(sz, 1);
uint16_t *liveness = calloc(node_count, 2);
mir_initialize_worklist(worklist, instructions, len);
/* Count the number of load/store instructions so we know when it's
* worth trying to schedule them in pairs. */
unsigned num_ldst = 0;
for (unsigned i = 0; i < len; ++i) {
if (instructions[i]->type == TAG_LOAD_STORE_4)
++num_ldst;
}
struct util_dynarray bundles;
util_dynarray_init(&bundles, NULL);
block->quadword_count = 0;
for (;;) {
unsigned tag = mir_choose_bundle(instructions, liveness, worklist, len, num_ldst);
midgard_bundle bundle;
if (tag == TAG_TEXTURE_4)
bundle = mir_schedule_texture(instructions, liveness, worklist, len, ctx->stage != MESA_SHADER_FRAGMENT);
else if (tag == TAG_LOAD_STORE_4)
bundle = mir_schedule_ldst(instructions, liveness, worklist, len, &num_ldst);
else if (tag == TAG_ALU_4)
bundle = mir_schedule_alu(ctx, instructions, liveness, worklist, len);
else
break;
for (unsigned i = 0; i < bundle.instruction_count; ++i)
bundle.instructions[i]->bundle_id =
ctx->quadword_count + block->quadword_count;
util_dynarray_append(&bundles, midgard_bundle, bundle);
block->quadword_count += midgard_tag_props[bundle.tag].size;
}
assert(num_ldst == 0);
/* We emitted bundles backwards; copy into the block in reverse-order */
util_dynarray_init(&block->bundles, block);
util_dynarray_foreach_reverse(&bundles, midgard_bundle, bundle) {
util_dynarray_append(&block->bundles, midgard_bundle, *bundle);
}
util_dynarray_fini(&bundles);
block->scheduled = true;
ctx->quadword_count += block->quadword_count;
/* Reorder instructions to match bundled. First remove existing
* instructions and then recreate the list */
mir_foreach_instr_in_block_safe(block, ins) {
list_del(&ins->link);
}
mir_foreach_instr_in_block_scheduled_rev(block, ins) {
list_add(&ins->link, &block->base.instructions);
}
free(instructions); /* Allocated by flatten_mir() */
free(worklist);
free(liveness);
}
/* Insert moves to ensure we can register allocate load/store registers */
static void
mir_lower_ldst(compiler_context *ctx)
{
mir_foreach_instr_global_safe(ctx, I) {
if (I->type != TAG_LOAD_STORE_4) continue;
mir_foreach_src(I, s) {
if (s == 0) continue;
if (I->src[s] == ~0) continue;
if (I->swizzle[s][0] == 0) continue;
unsigned temp = make_compiler_temp(ctx);
midgard_instruction mov = v_mov(I->src[s], temp);
mov.mask = 0x1;
mov.dest_type = I->src_types[s];
for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
mov.swizzle[1][c] = I->swizzle[s][0];
mir_insert_instruction_before(ctx, I, mov);
I->src[s] = mov.dest;
I->swizzle[s][0] = 0;
}
}
}
/* Insert moves to ensure we can register allocate blend writeout */
static void
mir_lower_blend_input(compiler_context *ctx)
{
mir_foreach_block(ctx, _blk) {
midgard_block *blk = (midgard_block *) _blk;
if (list_is_empty(&blk->base.instructions))
continue;
midgard_instruction *I = mir_last_in_block(blk);
if (!I || I->type != TAG_ALU_4 || !I->writeout)
continue;
mir_foreach_src(I, s) {
unsigned src = I->src[s];
if (src >= ctx->temp_count)
continue;
if (!_blk->live_out[src])
continue;
unsigned temp = make_compiler_temp(ctx);
midgard_instruction mov = v_mov(src, temp);
mov.mask = 0xF;
mov.dest_type = nir_type_uint32;
mir_insert_instruction_before(ctx, I, mov);
I->src[s] = mov.dest;
}
}
}
void
midgard_schedule_program(compiler_context *ctx)
{
mir_lower_ldst(ctx);
midgard_promote_uniforms(ctx);
/* Must be lowered right before scheduling */
mir_squeeze_index(ctx);
mir_lower_special_reads(ctx);
if (ctx->stage == MESA_SHADER_FRAGMENT) {
mir_invalidate_liveness(ctx);
mir_compute_liveness(ctx);
mir_lower_blend_input(ctx);
}
mir_squeeze_index(ctx);
/* Lowering can introduce some dead moves */
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
midgard_opt_dead_move_eliminate(ctx, block);
schedule_block(ctx, block);
}
}