| /* |
| * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io> |
| * Copyright (C) 2019-2020 Collabora, Ltd. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include "compiler.h" |
| #include "midgard_ops.h" |
| #include "midgard_quirks.h" |
| #include "util/u_memory.h" |
| #include "util/u_math.h" |
| #include "util/half_float.h" |
| |
| /* Scheduling for Midgard is complicated, to say the least. ALU instructions |
| * must be grouped into VLIW bundles according to following model: |
| * |
| * [VMUL] [SADD] |
| * [VADD] [SMUL] [VLUT] |
| * |
| * A given instruction can execute on some subset of the units (or a few can |
| * execute on all). Instructions can be either vector or scalar; only scalar |
| * instructions can execute on SADD/SMUL units. Units on a given line execute |
| * in parallel. Subsequent lines execute separately and can pass results |
| * directly via pipeline registers r24/r25, bypassing the register file. |
| * |
| * A bundle can optionally have 128-bits of embedded constants, shared across |
| * all of the instructions within a bundle. |
| * |
| * Instructions consuming conditionals (branches and conditional selects) |
| * require their condition to be written into the conditional register (r31) |
| * within the same bundle they are consumed. |
| * |
| * Fragment writeout requires its argument to be written in full within the |
| * same bundle as the branch, with no hanging dependencies. |
| * |
| * Load/store instructions are also in bundles of simply two instructions, and |
| * texture instructions have no bundling. |
| * |
| * ------------------------------------------------------------------------- |
| * |
| */ |
| |
| /* We create the dependency graph with per-byte granularity */ |
| |
| #define BYTE_COUNT 16 |
| |
| static void |
| add_dependency(struct util_dynarray *table, unsigned index, uint16_t mask, midgard_instruction **instructions, unsigned child) |
| { |
| for (unsigned i = 0; i < BYTE_COUNT; ++i) { |
| if (!(mask & (1 << i))) |
| continue; |
| |
| struct util_dynarray *parents = &table[(BYTE_COUNT * index) + i]; |
| |
| util_dynarray_foreach(parents, unsigned, parent) { |
| BITSET_WORD *dependents = instructions[*parent]->dependents; |
| |
| /* Already have the dependency */ |
| if (BITSET_TEST(dependents, child)) |
| continue; |
| |
| BITSET_SET(dependents, child); |
| instructions[child]->nr_dependencies++; |
| } |
| } |
| } |
| |
| static void |
| mark_access(struct util_dynarray *table, unsigned index, uint16_t mask, unsigned parent) |
| { |
| for (unsigned i = 0; i < BYTE_COUNT; ++i) { |
| if (!(mask & (1 << i))) |
| continue; |
| |
| util_dynarray_append(&table[(BYTE_COUNT * index) + i], unsigned, parent); |
| } |
| } |
| |
| static void |
| mir_create_dependency_graph(midgard_instruction **instructions, unsigned count, unsigned node_count) |
| { |
| size_t sz = node_count * BYTE_COUNT; |
| |
| struct util_dynarray *last_read = calloc(sizeof(struct util_dynarray), sz); |
| struct util_dynarray *last_write = calloc(sizeof(struct util_dynarray), sz); |
| |
| for (unsigned i = 0; i < sz; ++i) { |
| util_dynarray_init(&last_read[i], NULL); |
| util_dynarray_init(&last_write[i], NULL); |
| } |
| |
| /* Initialize dependency graph */ |
| for (unsigned i = 0; i < count; ++i) { |
| instructions[i]->dependents = |
| calloc(BITSET_WORDS(count), sizeof(BITSET_WORD)); |
| |
| instructions[i]->nr_dependencies = 0; |
| } |
| |
| unsigned prev_ldst[3] = {~0, ~0, ~0}; |
| |
| /* Populate dependency graph */ |
| for (signed i = count - 1; i >= 0; --i) { |
| if (instructions[i]->compact_branch) |
| continue; |
| |
| unsigned dest = instructions[i]->dest; |
| unsigned mask = mir_bytemask(instructions[i]); |
| |
| mir_foreach_src((*instructions), s) { |
| unsigned src = instructions[i]->src[s]; |
| |
| if (src < node_count) { |
| unsigned readmask = mir_bytemask_of_read_components(instructions[i], src); |
| add_dependency(last_write, src, readmask, instructions, i); |
| } |
| } |
| |
| /* Create a list of dependencies for each type of load/store |
| * instruction to prevent reordering. */ |
| if (instructions[i]->type == TAG_LOAD_STORE_4 && |
| load_store_opcode_props[instructions[i]->op].props & LDST_ADDRESS) { |
| |
| unsigned type = instructions[i]->load_store.arg_reg | |
| instructions[i]->load_store.arg_comp; |
| |
| unsigned idx; |
| switch (type) { |
| case LDST_SHARED: idx = 0; break; |
| case LDST_SCRATCH: idx = 1; break; |
| default: idx = 2; break; |
| } |
| |
| unsigned prev = prev_ldst[idx]; |
| |
| if (prev != ~0) { |
| BITSET_WORD *dependents = instructions[prev]->dependents; |
| |
| /* Already have the dependency */ |
| if (BITSET_TEST(dependents, i)) |
| continue; |
| |
| BITSET_SET(dependents, i); |
| instructions[i]->nr_dependencies++; |
| } |
| |
| prev_ldst[idx] = i; |
| } |
| |
| if (dest < node_count) { |
| add_dependency(last_read, dest, mask, instructions, i); |
| add_dependency(last_write, dest, mask, instructions, i); |
| mark_access(last_write, dest, mask, i); |
| } |
| |
| mir_foreach_src((*instructions), s) { |
| unsigned src = instructions[i]->src[s]; |
| |
| if (src < node_count) { |
| unsigned readmask = mir_bytemask_of_read_components(instructions[i], src); |
| mark_access(last_read, src, readmask, i); |
| } |
| } |
| } |
| |
| /* If there is a branch, all instructions depend on it, as interblock |
| * execution must be purely in-order */ |
| |
| if (instructions[count - 1]->compact_branch) { |
| BITSET_WORD *dependents = instructions[count - 1]->dependents; |
| |
| for (signed i = count - 2; i >= 0; --i) { |
| if (BITSET_TEST(dependents, i)) |
| continue; |
| |
| BITSET_SET(dependents, i); |
| instructions[i]->nr_dependencies++; |
| } |
| } |
| |
| /* Free the intermediate structures */ |
| for (unsigned i = 0; i < sz; ++i) { |
| util_dynarray_fini(&last_read[i]); |
| util_dynarray_fini(&last_write[i]); |
| } |
| |
| free(last_read); |
| free(last_write); |
| } |
| |
| /* Does the mask cover more than a scalar? */ |
| |
| static bool |
| is_single_component_mask(unsigned mask) |
| { |
| int components = 0; |
| |
| for (int c = 0; c < 8; ++c) { |
| if (mask & (1 << c)) |
| components++; |
| } |
| |
| return components == 1; |
| } |
| |
| /* Helpers for scheudling */ |
| |
| static bool |
| mir_is_scalar(midgard_instruction *ains) |
| { |
| /* Do we try to use it as a vector op? */ |
| if (!is_single_component_mask(ains->mask)) |
| return false; |
| |
| /* Otherwise, check mode hazards */ |
| bool could_scalar = true; |
| unsigned szd = nir_alu_type_get_type_size(ains->dest_type); |
| unsigned sz0 = nir_alu_type_get_type_size(ains->src_types[0]); |
| unsigned sz1 = nir_alu_type_get_type_size(ains->src_types[1]); |
| |
| /* Only 16/32-bit can run on a scalar unit */ |
| could_scalar &= (szd == 16) || (szd == 32); |
| |
| if (ains->src[0] != ~0) |
| could_scalar &= (sz0 == 16) || (sz0 == 32); |
| |
| if (ains->src[1] != ~0) |
| could_scalar &= (sz1 == 16) || (sz1 == 32); |
| |
| if (midgard_is_integer_out_op(ains->op) && ains->outmod != midgard_outmod_keeplo) |
| return false; |
| |
| return could_scalar; |
| } |
| |
| /* How many bytes does this ALU instruction add to the bundle? */ |
| |
| static unsigned |
| bytes_for_instruction(midgard_instruction *ains) |
| { |
| if (ains->unit & UNITS_ANY_VECTOR) |
| return sizeof(midgard_reg_info) + sizeof(midgard_vector_alu); |
| else if (ains->unit == ALU_ENAB_BRANCH) |
| return sizeof(midgard_branch_extended); |
| else if (ains->compact_branch) |
| return sizeof(uint16_t); |
| else |
| return sizeof(midgard_reg_info) + sizeof(midgard_scalar_alu); |
| } |
| |
| /* We would like to flatten the linked list of midgard_instructions in a bundle |
| * to an array of pointers on the heap for easy indexing */ |
| |
| static midgard_instruction ** |
| flatten_mir(midgard_block *block, unsigned *len) |
| { |
| *len = list_length(&block->base.instructions); |
| |
| if (!(*len)) |
| return NULL; |
| |
| midgard_instruction **instructions = |
| calloc(sizeof(midgard_instruction *), *len); |
| |
| unsigned i = 0; |
| |
| mir_foreach_instr_in_block(block, ins) |
| instructions[i++] = ins; |
| |
| return instructions; |
| } |
| |
| /* The worklist is the set of instructions that can be scheduled now; that is, |
| * the set of instructions with no remaining dependencies */ |
| |
| static void |
| mir_initialize_worklist(BITSET_WORD *worklist, midgard_instruction **instructions, unsigned count) |
| { |
| for (unsigned i = 0; i < count; ++i) { |
| if (instructions[i]->nr_dependencies == 0) |
| BITSET_SET(worklist, i); |
| } |
| } |
| |
| /* Update the worklist after an instruction terminates. Remove its edges from |
| * the graph and if that causes any node to have no dependencies, add it to the |
| * worklist */ |
| |
| static void |
| mir_update_worklist( |
| BITSET_WORD *worklist, unsigned count, |
| midgard_instruction **instructions, midgard_instruction *done) |
| { |
| /* Sanity check: if no instruction terminated, there is nothing to do. |
| * If the instruction that terminated had dependencies, that makes no |
| * sense and means we messed up the worklist. Finally, as the purpose |
| * of this routine is to update dependents, we abort early if there are |
| * no dependents defined. */ |
| |
| if (!done) |
| return; |
| |
| assert(done->nr_dependencies == 0); |
| |
| if (!done->dependents) |
| return; |
| |
| /* We have an instruction with dependents. Iterate each dependent to |
| * remove one dependency (`done`), adding dependents to the worklist |
| * where possible. */ |
| |
| unsigned i; |
| BITSET_FOREACH_SET(i, done->dependents, count) { |
| assert(instructions[i]->nr_dependencies); |
| |
| if (!(--instructions[i]->nr_dependencies)) |
| BITSET_SET(worklist, i); |
| } |
| |
| free(done->dependents); |
| } |
| |
| /* While scheduling, we need to choose instructions satisfying certain |
| * criteria. As we schedule backwards, we choose the *last* instruction in the |
| * worklist to simulate in-order scheduling. Chosen instructions must satisfy a |
| * given predicate. */ |
| |
| struct midgard_predicate { |
| /* TAG or ~0 for dont-care */ |
| unsigned tag; |
| |
| /* True if we want to pop off the chosen instruction */ |
| bool destructive; |
| |
| /* For ALU, choose only this unit */ |
| unsigned unit; |
| |
| /* State for bundle constants. constants is the actual constants |
| * for the bundle. constant_count is the number of bytes (up to |
| * 16) currently in use for constants. When picking in destructive |
| * mode, the constants array will be updated, and the instruction |
| * will be adjusted to index into the constants array */ |
| |
| midgard_constants *constants; |
| unsigned constant_mask; |
| |
| /* Exclude this destination (if not ~0) */ |
| unsigned exclude; |
| |
| /* Don't schedule instructions consuming conditionals (since we already |
| * scheduled one). Excludes conditional branches and csel */ |
| bool no_cond; |
| |
| /* Require (or reject) a minimal mask and (if nonzero) given |
| * destination. Used for writeout optimizations */ |
| |
| unsigned mask; |
| unsigned no_mask; |
| unsigned dest; |
| |
| /* Whether to not-care/only/never schedule imov/fmov instructions This |
| * allows non-move instructions to get priority on each unit */ |
| unsigned move_mode; |
| |
| /* For load/store: how many pipeline registers are in use? The two |
| * scheduled instructions cannot use more than the 256-bits of pipeline |
| * space available or RA will fail (as it would run out of pipeline |
| * registers and fail to spill without breaking the schedule) */ |
| |
| unsigned pipeline_count; |
| |
| /* For load/store: is a ST_VARY.a32 instruction scheduled into the |
| * bundle? is a non-ST_VARY.a32 instruction scheduled? Potential |
| * hardware issue, unknown cause. |
| */ |
| bool any_st_vary_a32, any_non_st_vary_a32; |
| }; |
| |
| static bool |
| mir_adjust_constant(midgard_instruction *ins, unsigned src, |
| unsigned *bundle_constant_mask, |
| unsigned *comp_mapping, |
| uint8_t *bundle_constants, |
| bool upper) |
| { |
| unsigned type_size = nir_alu_type_get_type_size(ins->src_types[src]) / 8; |
| unsigned type_shift = util_logbase2(type_size); |
| unsigned max_comp = mir_components_for_type(ins->src_types[src]); |
| unsigned comp_mask = mir_from_bytemask(mir_round_bytemask_up( |
| mir_bytemask_of_read_components_index(ins, src), |
| type_size * 8), |
| type_size * 8); |
| unsigned type_mask = (1 << type_size) - 1; |
| |
| /* Upper only makes sense for 16-bit */ |
| if (type_size != 16 && upper) |
| return false; |
| |
| /* For 16-bit, we need to stay on either upper or lower halves to avoid |
| * disrupting the swizzle */ |
| unsigned start = upper ? 8 : 0; |
| unsigned length = (type_size == 2) ? 8 : 16; |
| |
| for (unsigned comp = 0; comp < max_comp; comp++) { |
| if (!(comp_mask & (1 << comp))) |
| continue; |
| |
| uint8_t *constantp = ins->constants.u8 + (type_size * comp); |
| unsigned best_reuse_bytes = 0; |
| signed best_place = -1; |
| unsigned i, j; |
| |
| for (i = start; i < (start + length); i += type_size) { |
| unsigned reuse_bytes = 0; |
| |
| for (j = 0; j < type_size; j++) { |
| if (!(*bundle_constant_mask & (1 << (i + j)))) |
| continue; |
| if (constantp[j] != bundle_constants[i + j]) |
| break; |
| if ((i + j) > (start + length)) |
| break; |
| |
| reuse_bytes++; |
| } |
| |
| /* Select the place where existing bytes can be |
| * reused so we leave empty slots to others |
| */ |
| if (j == type_size && |
| (reuse_bytes > best_reuse_bytes || best_place < 0)) { |
| best_reuse_bytes = reuse_bytes; |
| best_place = i; |
| break; |
| } |
| } |
| |
| /* This component couldn't fit in the remaining constant slot, |
| * no need check the remaining components, bail out now |
| */ |
| if (best_place < 0) |
| return false; |
| |
| memcpy(&bundle_constants[i], constantp, type_size); |
| *bundle_constant_mask |= type_mask << best_place; |
| comp_mapping[comp] = best_place >> type_shift; |
| } |
| |
| return true; |
| } |
| |
| /* For an instruction that can fit, adjust it to fit and update the constants |
| * array, in destructive mode. Returns whether the fitting was successful. */ |
| |
| static bool |
| mir_adjust_constants(midgard_instruction *ins, |
| struct midgard_predicate *pred, |
| bool destructive) |
| { |
| /* No constant, nothing to adjust */ |
| if (!ins->has_constants) |
| return true; |
| |
| unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT); |
| unsigned bundle_constant_mask = pred->constant_mask; |
| unsigned comp_mapping[2][16] = { }; |
| uint8_t bundle_constants[16]; |
| |
| memcpy(bundle_constants, pred->constants, 16); |
| |
| /* Let's try to find a place for each active component of the constant |
| * register. |
| */ |
| for (unsigned src = 0; src < 2; ++src) { |
| if (ins->src[src] != SSA_FIXED_REGISTER(REGISTER_CONSTANT)) |
| continue; |
| |
| /* First, try lower half (or whole for !16) */ |
| if (mir_adjust_constant(ins, src, &bundle_constant_mask, |
| comp_mapping[src], bundle_constants, false)) |
| continue; |
| |
| /* Next, try upper half */ |
| if (mir_adjust_constant(ins, src, &bundle_constant_mask, |
| comp_mapping[src], bundle_constants, true)) |
| continue; |
| |
| /* Otherwise bail */ |
| return false; |
| } |
| |
| /* If non-destructive, we're done */ |
| if (!destructive) |
| return true; |
| |
| /* Otherwise update the constant_mask and constant values */ |
| pred->constant_mask = bundle_constant_mask; |
| memcpy(pred->constants, bundle_constants, 16); |
| |
| /* Use comp_mapping as a swizzle */ |
| mir_foreach_src(ins, s) { |
| if (ins->src[s] == r_constant) |
| mir_compose_swizzle(ins->swizzle[s], comp_mapping[s], ins->swizzle[s]); |
| } |
| |
| return true; |
| } |
| |
| /* Conservative estimate of the pipeline registers required for load/store */ |
| |
| static unsigned |
| mir_pipeline_count(midgard_instruction *ins) |
| { |
| unsigned bytecount = 0; |
| |
| mir_foreach_src(ins, i) { |
| /* Skip empty source */ |
| if (ins->src[i] == ~0) continue; |
| |
| if (i == 0) { |
| /* First source is a vector, worst-case the mask */ |
| unsigned bytemask = mir_bytemask_of_read_components_index(ins, i); |
| unsigned max = util_logbase2(bytemask) + 1; |
| bytecount += max; |
| } else { |
| /* Sources 1 on are scalars */ |
| bytecount += 4; |
| } |
| } |
| |
| unsigned dwords = DIV_ROUND_UP(bytecount, 16); |
| assert(dwords <= 2); |
| |
| return dwords; |
| } |
| |
| /* Matches FADD x, x with modifiers compatible. Since x + x = x * 2, for |
| * any x including of the form f(y) for some swizzle/abs/neg function f */ |
| |
| static bool |
| mir_is_add_2(midgard_instruction *ins) |
| { |
| if (ins->op != midgard_alu_op_fadd) |
| return false; |
| |
| if (ins->src[0] != ins->src[1]) |
| return false; |
| |
| if (ins->src_types[0] != ins->src_types[1]) |
| return false; |
| |
| for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i) { |
| if (ins->swizzle[0][i] != ins->swizzle[1][i]) |
| return false; |
| } |
| |
| if (ins->src_abs[0] != ins->src_abs[1]) |
| return false; |
| |
| if (ins->src_neg[0] != ins->src_neg[1]) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| mir_adjust_unit(midgard_instruction *ins, unsigned unit) |
| { |
| /* FADD x, x = FMUL x, #2 */ |
| if (mir_is_add_2(ins) && (unit & (UNITS_MUL | UNIT_VLUT))) { |
| ins->op = midgard_alu_op_fmul; |
| |
| ins->src[1] = ~0; |
| ins->src_abs[1] = false; |
| ins->src_neg[1] = false; |
| |
| ins->has_inline_constant = true; |
| ins->inline_constant = _mesa_float_to_half(2.0); |
| } |
| } |
| |
| static unsigned |
| mir_has_unit(midgard_instruction *ins, unsigned unit) |
| { |
| if (alu_opcode_props[ins->op].props & unit) |
| return true; |
| |
| /* FADD x, x can run on any adder or any multiplier */ |
| if (mir_is_add_2(ins)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Net change in liveness if an instruction were scheduled. Loosely based on |
| * ir3's scheduler. */ |
| |
| static int |
| mir_live_effect(uint16_t *liveness, midgard_instruction *ins, bool destructive) |
| { |
| /* TODO: what if dest is used multiple times? */ |
| int free_live = 0; |
| |
| if (ins->dest < SSA_FIXED_MINIMUM) { |
| unsigned bytemask = mir_bytemask(ins); |
| bytemask = util_next_power_of_two(bytemask + 1) - 1; |
| free_live += util_bitcount(liveness[ins->dest] & bytemask); |
| |
| if (destructive) |
| liveness[ins->dest] &= ~bytemask; |
| } |
| |
| int new_live = 0; |
| |
| mir_foreach_src(ins, s) { |
| unsigned S = ins->src[s]; |
| |
| bool dupe = false; |
| |
| for (unsigned q = 0; q < s; ++q) |
| dupe |= (ins->src[q] == S); |
| |
| if (dupe) |
| continue; |
| |
| if (S < SSA_FIXED_MINIMUM) { |
| unsigned bytemask = mir_bytemask_of_read_components(ins, S); |
| bytemask = util_next_power_of_two(bytemask + 1) - 1; |
| |
| /* Count only the new components */ |
| new_live += util_bitcount(bytemask & ~(liveness[S])); |
| |
| if (destructive) |
| liveness[S] |= bytemask; |
| } |
| } |
| |
| return new_live - free_live; |
| } |
| |
| static midgard_instruction * |
| mir_choose_instruction( |
| midgard_instruction **instructions, |
| uint16_t *liveness, |
| BITSET_WORD *worklist, unsigned count, |
| struct midgard_predicate *predicate) |
| { |
| /* Parse the predicate */ |
| unsigned tag = predicate->tag; |
| unsigned unit = predicate->unit; |
| bool scalar = (unit != ~0) && (unit & UNITS_SCALAR); |
| bool no_cond = predicate->no_cond; |
| |
| unsigned mask = predicate->mask; |
| unsigned dest = predicate->dest; |
| bool needs_dest = mask & 0xF; |
| |
| /* Iterate to find the best instruction satisfying the predicate */ |
| unsigned i; |
| |
| signed best_index = -1; |
| signed best_effect = INT_MAX; |
| bool best_conditional = false; |
| |
| /* Enforce a simple metric limiting distance to keep down register |
| * pressure. TOOD: replace with liveness tracking for much better |
| * results */ |
| |
| unsigned max_active = 0; |
| unsigned max_distance = 36; |
| |
| #ifndef NDEBUG |
| /* Force in-order scheduling */ |
| if (midgard_debug & MIDGARD_DBG_INORDER) |
| max_distance = 1; |
| #endif |
| |
| BITSET_FOREACH_SET(i, worklist, count) { |
| max_active = MAX2(max_active, i); |
| } |
| |
| BITSET_FOREACH_SET(i, worklist, count) { |
| if ((max_active - i) >= max_distance) |
| continue; |
| |
| if (tag != ~0 && instructions[i]->type != tag) |
| continue; |
| |
| bool alu = (instructions[i]->type == TAG_ALU_4); |
| bool ldst = (instructions[i]->type == TAG_LOAD_STORE_4); |
| |
| bool branch = alu && (unit == ALU_ENAB_BR_COMPACT); |
| bool is_move = alu && |
| (instructions[i]->op == midgard_alu_op_imov || |
| instructions[i]->op == midgard_alu_op_fmov); |
| |
| if (predicate->exclude != ~0 && instructions[i]->dest == predicate->exclude) |
| continue; |
| |
| if (alu && !branch && unit != ~0 && !(mir_has_unit(instructions[i], unit))) |
| continue; |
| |
| /* 0: don't care, 1: no moves, 2: only moves */ |
| if (predicate->move_mode && ((predicate->move_mode - 1) != is_move)) |
| continue; |
| |
| if (branch && !instructions[i]->compact_branch) |
| continue; |
| |
| if (alu && scalar && !mir_is_scalar(instructions[i])) |
| continue; |
| |
| if (alu && predicate->constants && !mir_adjust_constants(instructions[i], predicate, false)) |
| continue; |
| |
| if (needs_dest && instructions[i]->dest != dest) |
| continue; |
| |
| if (mask && ((~instructions[i]->mask) & mask)) |
| continue; |
| |
| if (instructions[i]->mask & predicate->no_mask) |
| continue; |
| |
| if (ldst && mir_pipeline_count(instructions[i]) + predicate->pipeline_count > 2) |
| continue; |
| |
| bool st_vary_a32 = (instructions[i]->op == midgard_op_st_vary_32); |
| |
| if (ldst && predicate->any_non_st_vary_a32 && st_vary_a32) |
| continue; |
| |
| if (ldst && predicate->any_st_vary_a32 && !st_vary_a32) |
| continue; |
| |
| bool conditional = alu && !branch && OP_IS_CSEL(instructions[i]->op); |
| conditional |= (branch && instructions[i]->branch.conditional); |
| |
| if (conditional && no_cond) |
| continue; |
| |
| int effect = mir_live_effect(liveness, instructions[i], false); |
| |
| if (effect > best_effect) |
| continue; |
| |
| if (effect == best_effect && (signed) i < best_index) |
| continue; |
| |
| best_effect = effect; |
| best_index = i; |
| best_conditional = conditional; |
| } |
| |
| /* Did we find anything? */ |
| |
| if (best_index < 0) |
| return NULL; |
| |
| /* If we found something, remove it from the worklist */ |
| assert(best_index < count); |
| midgard_instruction *I = instructions[best_index]; |
| |
| if (predicate->destructive) { |
| BITSET_CLEAR(worklist, best_index); |
| |
| if (I->type == TAG_ALU_4) |
| mir_adjust_constants(instructions[best_index], predicate, true); |
| |
| if (I->type == TAG_LOAD_STORE_4) { |
| predicate->pipeline_count += mir_pipeline_count(instructions[best_index]); |
| |
| if (instructions[best_index]->op == midgard_op_st_vary_32) |
| predicate->any_st_vary_a32 = true; |
| else |
| predicate->any_non_st_vary_a32 = true; |
| } |
| |
| if (I->type == TAG_ALU_4) |
| mir_adjust_unit(instructions[best_index], unit); |
| |
| /* Once we schedule a conditional, we can't again */ |
| predicate->no_cond |= best_conditional; |
| mir_live_effect(liveness, instructions[best_index], true); |
| } |
| |
| return I; |
| } |
| |
| /* Still, we don't choose instructions in a vacuum. We need a way to choose the |
| * best bundle type (ALU, load/store, texture). Nondestructive. */ |
| |
| static unsigned |
| mir_choose_bundle( |
| midgard_instruction **instructions, |
| uint16_t *liveness, |
| BITSET_WORD *worklist, unsigned count, |
| unsigned num_ldst) |
| { |
| /* At the moment, our algorithm is very simple - use the bundle of the |
| * best instruction, regardless of what else could be scheduled |
| * alongside it. This is not optimal but it works okay for in-order */ |
| |
| struct midgard_predicate predicate = { |
| .tag = ~0, |
| .unit = ~0, |
| .destructive = false, |
| .exclude = ~0 |
| }; |
| |
| midgard_instruction *chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate); |
| |
| if (chosen && chosen->type == TAG_LOAD_STORE_4 && !(num_ldst % 2)) { |
| /* Try to schedule load/store ops in pairs */ |
| |
| predicate.exclude = chosen->dest; |
| predicate.tag = TAG_LOAD_STORE_4; |
| |
| chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate); |
| if (chosen) |
| return TAG_LOAD_STORE_4; |
| |
| predicate.tag = ~0; |
| |
| chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate); |
| assert(chosen == NULL || chosen->type != TAG_LOAD_STORE_4); |
| |
| if (chosen) |
| return chosen->type; |
| else |
| return TAG_LOAD_STORE_4; |
| } |
| |
| if (chosen) |
| return chosen->type; |
| else |
| return ~0; |
| } |
| |
| /* We want to choose an ALU instruction filling a given unit */ |
| static void |
| mir_choose_alu(midgard_instruction **slot, |
| midgard_instruction **instructions, |
| uint16_t *liveness, |
| BITSET_WORD *worklist, unsigned len, |
| struct midgard_predicate *predicate, |
| unsigned unit) |
| { |
| /* Did we already schedule to this slot? */ |
| if ((*slot) != NULL) |
| return; |
| |
| /* Try to schedule something, if not */ |
| predicate->unit = unit; |
| *slot = mir_choose_instruction(instructions, liveness, worklist, len, predicate); |
| |
| /* Store unit upon scheduling */ |
| if (*slot && !((*slot)->compact_branch)) |
| (*slot)->unit = unit; |
| } |
| |
| /* When we are scheduling a branch/csel, we need the consumed condition in the |
| * same block as a pipeline register. There are two options to enable this: |
| * |
| * - Move the conditional into the bundle. Preferred, but only works if the |
| * conditional is used only once and is from this block. |
| * - Copy the conditional. |
| * |
| * We search for the conditional. If it's in this block, single-use, and |
| * without embedded constants, we schedule it immediately. Otherwise, we |
| * schedule a move for it. |
| * |
| * mir_comparison_mobile is a helper to find the moveable condition. |
| */ |
| |
| static unsigned |
| mir_comparison_mobile( |
| compiler_context *ctx, |
| midgard_instruction **instructions, |
| struct midgard_predicate *predicate, |
| unsigned count, |
| unsigned cond) |
| { |
| if (!mir_single_use(ctx, cond)) |
| return ~0; |
| |
| unsigned ret = ~0; |
| |
| for (unsigned i = 0; i < count; ++i) { |
| if (instructions[i]->dest != cond) |
| continue; |
| |
| /* Must fit in an ALU bundle */ |
| if (instructions[i]->type != TAG_ALU_4) |
| return ~0; |
| |
| /* If it would itself require a condition, that's recursive */ |
| if (OP_IS_CSEL(instructions[i]->op)) |
| return ~0; |
| |
| /* We'll need to rewrite to .w but that doesn't work for vector |
| * ops that don't replicate (ball/bany), so bail there */ |
| |
| if (GET_CHANNEL_COUNT(alu_opcode_props[instructions[i]->op].props)) |
| return ~0; |
| |
| /* Ensure it will fit with constants */ |
| |
| if (!mir_adjust_constants(instructions[i], predicate, false)) |
| return ~0; |
| |
| /* Ensure it is written only once */ |
| |
| if (ret != ~0) |
| return ~0; |
| else |
| ret = i; |
| } |
| |
| /* Inject constants now that we are sure we want to */ |
| if (ret != ~0) |
| mir_adjust_constants(instructions[ret], predicate, true); |
| |
| return ret; |
| } |
| |
| /* Using the information about the moveable conditional itself, we either pop |
| * that condition off the worklist for use now, or create a move to |
| * artificially schedule instead as a fallback */ |
| |
| static midgard_instruction * |
| mir_schedule_comparison( |
| compiler_context *ctx, |
| midgard_instruction **instructions, |
| struct midgard_predicate *predicate, |
| BITSET_WORD *worklist, unsigned count, |
| unsigned cond, bool vector, unsigned *swizzle, |
| midgard_instruction *user) |
| { |
| /* TODO: swizzle when scheduling */ |
| unsigned comp_i = |
| (!vector && (swizzle[0] == 0)) ? |
| mir_comparison_mobile(ctx, instructions, predicate, count, cond) : ~0; |
| |
| /* If we can, schedule the condition immediately */ |
| if ((comp_i != ~0) && BITSET_TEST(worklist, comp_i)) { |
| assert(comp_i < count); |
| BITSET_CLEAR(worklist, comp_i); |
| return instructions[comp_i]; |
| } |
| |
| /* Otherwise, we insert a move */ |
| |
| midgard_instruction mov = v_mov(cond, cond); |
| mov.mask = vector ? 0xF : 0x1; |
| memcpy(mov.swizzle[1], swizzle, sizeof(mov.swizzle[1])); |
| |
| return mir_insert_instruction_before(ctx, user, mov); |
| } |
| |
| /* Most generally, we need instructions writing to r31 in the appropriate |
| * components */ |
| |
| static midgard_instruction * |
| mir_schedule_condition(compiler_context *ctx, |
| struct midgard_predicate *predicate, |
| BITSET_WORD *worklist, unsigned count, |
| midgard_instruction **instructions, |
| midgard_instruction *last) |
| { |
| /* For a branch, the condition is the only argument; for csel, third */ |
| bool branch = last->compact_branch; |
| unsigned condition_index = branch ? 0 : 2; |
| |
| /* csel_v is vector; otherwise, conditions are scalar */ |
| bool vector = !branch && OP_IS_CSEL_V(last->op); |
| |
| /* Grab the conditional instruction */ |
| |
| midgard_instruction *cond = mir_schedule_comparison( |
| ctx, instructions, predicate, worklist, count, last->src[condition_index], |
| vector, last->swizzle[condition_index], last); |
| |
| /* We have exclusive reign over this (possibly move) conditional |
| * instruction. We can rewrite into a pipeline conditional register */ |
| |
| predicate->exclude = cond->dest; |
| cond->dest = SSA_FIXED_REGISTER(31); |
| |
| if (!vector) { |
| cond->mask = (1 << COMPONENT_W); |
| |
| mir_foreach_src(cond, s) { |
| if (cond->src[s] == ~0) |
| continue; |
| |
| for (unsigned q = 0; q < 4; ++q) |
| cond->swizzle[s][q + COMPONENT_W] = cond->swizzle[s][q]; |
| } |
| } |
| |
| /* Schedule the unit: csel is always in the latter pipeline, so a csel |
| * condition must be in the former pipeline stage (vmul/sadd), |
| * depending on scalar/vector of the instruction itself. A branch must |
| * be written from the latter pipeline stage and a branch condition is |
| * always scalar, so it is always in smul (exception: ball/bany, which |
| * will be vadd) */ |
| |
| if (branch) |
| cond->unit = UNIT_SMUL; |
| else |
| cond->unit = vector ? UNIT_VMUL : UNIT_SADD; |
| |
| return cond; |
| } |
| |
| /* Schedules a single bundle of the given type */ |
| |
| static midgard_bundle |
| mir_schedule_texture( |
| midgard_instruction **instructions, |
| uint16_t *liveness, |
| BITSET_WORD *worklist, unsigned len, |
| bool is_vertex) |
| { |
| struct midgard_predicate predicate = { |
| .tag = TAG_TEXTURE_4, |
| .destructive = true, |
| .exclude = ~0 |
| }; |
| |
| midgard_instruction *ins = |
| mir_choose_instruction(instructions, liveness, worklist, len, &predicate); |
| |
| mir_update_worklist(worklist, len, instructions, ins); |
| |
| struct midgard_bundle out = { |
| .tag = ins->op == midgard_tex_op_barrier ? |
| TAG_TEXTURE_4_BARRIER : |
| (ins->op == midgard_tex_op_fetch) || is_vertex ? |
| TAG_TEXTURE_4_VTX : TAG_TEXTURE_4, |
| .instruction_count = 1, |
| .instructions = { ins } |
| }; |
| |
| return out; |
| } |
| |
| static midgard_bundle |
| mir_schedule_ldst( |
| midgard_instruction **instructions, |
| uint16_t *liveness, |
| BITSET_WORD *worklist, unsigned len, |
| unsigned *num_ldst) |
| { |
| struct midgard_predicate predicate = { |
| .tag = TAG_LOAD_STORE_4, |
| .destructive = true, |
| .exclude = ~0 |
| }; |
| |
| /* Try to pick two load/store ops. Second not gauranteed to exist */ |
| |
| midgard_instruction *ins = |
| mir_choose_instruction(instructions, liveness, worklist, len, &predicate); |
| |
| midgard_instruction *pair = |
| mir_choose_instruction(instructions, liveness, worklist, len, &predicate); |
| |
| assert(ins != NULL); |
| |
| struct midgard_bundle out = { |
| .tag = TAG_LOAD_STORE_4, |
| .instruction_count = pair ? 2 : 1, |
| .instructions = { ins, pair } |
| }; |
| |
| *num_ldst -= out.instruction_count; |
| |
| /* We have to update the worklist atomically, since the two |
| * instructions run concurrently (TODO: verify it's not pipelined) */ |
| |
| mir_update_worklist(worklist, len, instructions, ins); |
| mir_update_worklist(worklist, len, instructions, pair); |
| |
| return out; |
| } |
| |
| static void |
| mir_schedule_zs_write( |
| compiler_context *ctx, |
| struct midgard_predicate *predicate, |
| midgard_instruction **instructions, |
| uint16_t *liveness, |
| BITSET_WORD *worklist, unsigned len, |
| midgard_instruction *branch, |
| midgard_instruction **smul, |
| midgard_instruction **vadd, |
| midgard_instruction **vlut, |
| bool stencil) |
| { |
| bool success = false; |
| unsigned idx = stencil ? 3 : 2; |
| unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(1) : branch->src[idx]; |
| |
| predicate->dest = src; |
| predicate->mask = 0x1; |
| |
| midgard_instruction **units[] = { smul, vadd, vlut }; |
| unsigned unit_names[] = { UNIT_SMUL, UNIT_VADD, UNIT_VLUT }; |
| |
| for (unsigned i = 0; i < 3; ++i) { |
| if (*(units[i])) |
| continue; |
| |
| predicate->unit = unit_names[i]; |
| midgard_instruction *ins = |
| mir_choose_instruction(instructions, liveness, worklist, len, predicate); |
| |
| if (ins) { |
| ins->unit = unit_names[i]; |
| *(units[i]) = ins; |
| success |= true; |
| break; |
| } |
| } |
| |
| predicate->dest = predicate->mask = 0; |
| |
| if (success) |
| return; |
| |
| midgard_instruction *mov = ralloc(ctx, midgard_instruction); |
| *mov = v_mov(src, make_compiler_temp(ctx)); |
| mov->mask = 0x1; |
| |
| branch->src[idx] = mov->dest; |
| |
| if (stencil) { |
| unsigned swizzle = (branch->src[0] == ~0) ? COMPONENT_Y : COMPONENT_X; |
| |
| for (unsigned c = 0; c < 16; ++c) |
| mov->swizzle[1][c] = swizzle; |
| } |
| |
| for (unsigned i = 0; i < 3; ++i) { |
| if (!(*(units[i]))) { |
| *(units[i]) = mov; |
| mov->unit = unit_names[i]; |
| return; |
| } |
| } |
| |
| unreachable("Could not schedule Z/S move to any unit"); |
| } |
| |
| static midgard_bundle |
| mir_schedule_alu( |
| compiler_context *ctx, |
| midgard_instruction **instructions, |
| uint16_t *liveness, |
| BITSET_WORD *worklist, unsigned len) |
| { |
| struct midgard_bundle bundle = {}; |
| |
| unsigned bytes_emitted = sizeof(bundle.control); |
| |
| struct midgard_predicate predicate = { |
| .tag = TAG_ALU_4, |
| .destructive = true, |
| .exclude = ~0, |
| .constants = &bundle.constants |
| }; |
| |
| midgard_instruction *vmul = NULL; |
| midgard_instruction *vadd = NULL; |
| midgard_instruction *vlut = NULL; |
| midgard_instruction *smul = NULL; |
| midgard_instruction *sadd = NULL; |
| midgard_instruction *branch = NULL; |
| |
| mir_choose_alu(&branch, instructions, liveness, worklist, len, &predicate, ALU_ENAB_BR_COMPACT); |
| mir_update_worklist(worklist, len, instructions, branch); |
| unsigned writeout = branch ? branch->writeout : 0; |
| |
| if (branch && branch->branch.conditional) { |
| midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, branch); |
| |
| if (cond->unit == UNIT_VADD) |
| vadd = cond; |
| else if (cond->unit == UNIT_SMUL) |
| smul = cond; |
| else |
| unreachable("Bad condition"); |
| } |
| |
| /* If we have a render target reference, schedule a move for it. Since |
| * this will be in sadd, we boost this to prevent scheduling csel into |
| * smul */ |
| |
| if (writeout && (branch->constants.u32[0] || ctx->inputs->is_blend)) { |
| sadd = ralloc(ctx, midgard_instruction); |
| *sadd = v_mov(~0, make_compiler_temp(ctx)); |
| sadd->unit = UNIT_SADD; |
| sadd->mask = 0x1; |
| sadd->has_inline_constant = true; |
| sadd->inline_constant = branch->constants.u32[0]; |
| branch->src[1] = sadd->dest; |
| branch->src_types[1] = sadd->dest_type; |
| } |
| |
| if (writeout) { |
| /* Propagate up */ |
| bundle.last_writeout = branch->last_writeout; |
| |
| /* Mask off any conditionals. |
| * This prevents csel and csel_v being scheduled into smul |
| * since we might not have room for a conditional in vmul/sadd. |
| * This is important because both writeout and csel have same-bundle |
| * requirements on their dependencies. */ |
| predicate.no_cond = true; |
| } |
| |
| /* Set r1.w to the return address so we can return from blend shaders */ |
| if (writeout) { |
| vadd = ralloc(ctx, midgard_instruction); |
| *vadd = v_mov(~0, make_compiler_temp(ctx)); |
| |
| if (!ctx->inputs->is_blend) { |
| vadd->op = midgard_alu_op_iadd; |
| vadd->src[0] = SSA_FIXED_REGISTER(31); |
| vadd->src_types[0] = nir_type_uint32; |
| |
| for (unsigned c = 0; c < 16; ++c) |
| vadd->swizzle[0][c] = COMPONENT_X; |
| |
| vadd->has_inline_constant = true; |
| vadd->inline_constant = 0; |
| } else { |
| vadd->src[1] = SSA_FIXED_REGISTER(1); |
| vadd->src_types[0] = nir_type_uint32; |
| |
| for (unsigned c = 0; c < 16; ++c) |
| vadd->swizzle[1][c] = COMPONENT_W; |
| } |
| |
| vadd->unit = UNIT_VADD; |
| vadd->mask = 0x1; |
| branch->dest = vadd->dest; |
| branch->dest_type = vadd->dest_type; |
| } |
| |
| if (writeout & PAN_WRITEOUT_Z) |
| mir_schedule_zs_write(ctx, &predicate, instructions, liveness, worklist, len, branch, &smul, &vadd, &vlut, false); |
| |
| if (writeout & PAN_WRITEOUT_S) |
| mir_schedule_zs_write(ctx, &predicate, instructions, liveness, worklist, len, branch, &smul, &vadd, &vlut, true); |
| |
| mir_choose_alu(&smul, instructions, liveness, worklist, len, &predicate, UNIT_SMUL); |
| |
| for (unsigned mode = 1; mode < 3; ++mode) { |
| predicate.move_mode = mode; |
| predicate.no_mask = writeout ? (1 << 3) : 0; |
| mir_choose_alu(&vlut, instructions, liveness, worklist, len, &predicate, UNIT_VLUT); |
| predicate.no_mask = 0; |
| mir_choose_alu(&vadd, instructions, liveness, worklist, len, &predicate, UNIT_VADD); |
| } |
| |
| /* Reset */ |
| predicate.move_mode = 0; |
| |
| mir_update_worklist(worklist, len, instructions, vlut); |
| mir_update_worklist(worklist, len, instructions, vadd); |
| mir_update_worklist(worklist, len, instructions, smul); |
| |
| bool vadd_csel = vadd && OP_IS_CSEL(vadd->op); |
| bool smul_csel = smul && OP_IS_CSEL(smul->op); |
| |
| if (vadd_csel || smul_csel) { |
| midgard_instruction *ins = vadd_csel ? vadd : smul; |
| midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, ins); |
| |
| if (cond->unit == UNIT_VMUL) |
| vmul = cond; |
| else if (cond->unit == UNIT_SADD) |
| sadd = cond; |
| else |
| unreachable("Bad condition"); |
| } |
| |
| /* Stage 2, let's schedule sadd before vmul for writeout */ |
| mir_choose_alu(&sadd, instructions, liveness, worklist, len, &predicate, UNIT_SADD); |
| |
| /* Check if writeout reads its own register */ |
| |
| if (writeout) { |
| midgard_instruction *stages[] = { sadd, vadd, smul, vlut }; |
| unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : branch->src[0]; |
| unsigned writeout_mask = 0x0; |
| bool bad_writeout = false; |
| |
| for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) { |
| if (!stages[i]) |
| continue; |
| |
| if (stages[i]->dest != src) |
| continue; |
| |
| writeout_mask |= stages[i]->mask; |
| bad_writeout |= mir_has_arg(stages[i], branch->src[0]); |
| } |
| |
| /* It's possible we'll be able to schedule something into vmul |
| * to fill r0. Let's peak into the future, trying to schedule |
| * vmul specially that way. */ |
| |
| unsigned full_mask = 0xF; |
| |
| if (!bad_writeout && writeout_mask != full_mask) { |
| predicate.unit = UNIT_VMUL; |
| predicate.dest = src; |
| predicate.mask = writeout_mask ^ full_mask; |
| |
| struct midgard_instruction *peaked = |
| mir_choose_instruction(instructions, liveness, worklist, len, &predicate); |
| |
| if (peaked) { |
| vmul = peaked; |
| vmul->unit = UNIT_VMUL; |
| writeout_mask |= predicate.mask; |
| assert(writeout_mask == full_mask); |
| } |
| |
| /* Cleanup */ |
| predicate.dest = predicate.mask = 0; |
| } |
| |
| /* Finally, add a move if necessary */ |
| if (bad_writeout || writeout_mask != full_mask) { |
| unsigned temp = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : make_compiler_temp(ctx); |
| |
| vmul = ralloc(ctx, midgard_instruction); |
| *vmul = v_mov(src, temp); |
| vmul->unit = UNIT_VMUL; |
| vmul->mask = full_mask ^ writeout_mask; |
| |
| /* Rewrite to use our temp */ |
| |
| for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) { |
| if (stages[i]) { |
| mir_rewrite_index_dst_single(stages[i], src, temp); |
| mir_rewrite_index_src_single(stages[i], src, temp); |
| } |
| } |
| |
| mir_rewrite_index_src_single(branch, src, temp); |
| } |
| } |
| |
| mir_choose_alu(&vmul, instructions, liveness, worklist, len, &predicate, UNIT_VMUL); |
| |
| mir_update_worklist(worklist, len, instructions, vmul); |
| mir_update_worklist(worklist, len, instructions, sadd); |
| |
| bundle.has_embedded_constants = predicate.constant_mask != 0; |
| |
| unsigned padding = 0; |
| |
| /* Now that we have finished scheduling, build up the bundle */ |
| midgard_instruction *stages[] = { vmul, sadd, vadd, smul, vlut, branch }; |
| |
| for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) { |
| if (stages[i]) { |
| bundle.control |= stages[i]->unit; |
| bytes_emitted += bytes_for_instruction(stages[i]); |
| bundle.instructions[bundle.instruction_count++] = stages[i]; |
| |
| /* If we branch, we can't spill to TLS since the store |
| * instruction will never get executed. We could try to |
| * break the bundle but this is probably easier for |
| * now. */ |
| |
| if (branch) |
| stages[i]->no_spill |= (1 << REG_CLASS_WORK); |
| } |
| } |
| |
| /* Pad ALU op to nearest word */ |
| |
| if (bytes_emitted & 15) { |
| padding = 16 - (bytes_emitted & 15); |
| bytes_emitted += padding; |
| } |
| |
| /* Constants must always be quadwords */ |
| if (bundle.has_embedded_constants) |
| bytes_emitted += 16; |
| |
| /* Size ALU instruction for tag */ |
| bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1; |
| |
| bool tilebuf_wait = branch && branch->compact_branch && |
| branch->branch.target_type == TARGET_TILEBUF_WAIT; |
| |
| /* MRT capable GPUs use a special writeout procedure */ |
| if ((writeout || tilebuf_wait) && !(ctx->quirks & MIDGARD_NO_UPPER_ALU)) |
| bundle.tag += 4; |
| |
| bundle.padding = padding; |
| bundle.control |= bundle.tag; |
| |
| return bundle; |
| } |
| |
| /* Schedule a single block by iterating its instruction to create bundles. |
| * While we go, tally about the bundle sizes to compute the block size. */ |
| |
| |
| static void |
| schedule_block(compiler_context *ctx, midgard_block *block) |
| { |
| /* Copy list to dynamic array */ |
| unsigned len = 0; |
| midgard_instruction **instructions = flatten_mir(block, &len); |
| |
| if (!len) |
| return; |
| |
| /* Calculate dependencies and initial worklist */ |
| unsigned node_count = ctx->temp_count + 1; |
| mir_create_dependency_graph(instructions, len, node_count); |
| |
| /* Allocate the worklist */ |
| size_t sz = BITSET_WORDS(len) * sizeof(BITSET_WORD); |
| BITSET_WORD *worklist = calloc(sz, 1); |
| uint16_t *liveness = calloc(node_count, 2); |
| mir_initialize_worklist(worklist, instructions, len); |
| |
| /* Count the number of load/store instructions so we know when it's |
| * worth trying to schedule them in pairs. */ |
| unsigned num_ldst = 0; |
| for (unsigned i = 0; i < len; ++i) { |
| if (instructions[i]->type == TAG_LOAD_STORE_4) |
| ++num_ldst; |
| } |
| |
| struct util_dynarray bundles; |
| util_dynarray_init(&bundles, NULL); |
| |
| block->quadword_count = 0; |
| |
| for (;;) { |
| unsigned tag = mir_choose_bundle(instructions, liveness, worklist, len, num_ldst); |
| midgard_bundle bundle; |
| |
| if (tag == TAG_TEXTURE_4) |
| bundle = mir_schedule_texture(instructions, liveness, worklist, len, ctx->stage != MESA_SHADER_FRAGMENT); |
| else if (tag == TAG_LOAD_STORE_4) |
| bundle = mir_schedule_ldst(instructions, liveness, worklist, len, &num_ldst); |
| else if (tag == TAG_ALU_4) |
| bundle = mir_schedule_alu(ctx, instructions, liveness, worklist, len); |
| else |
| break; |
| |
| for (unsigned i = 0; i < bundle.instruction_count; ++i) |
| bundle.instructions[i]->bundle_id = |
| ctx->quadword_count + block->quadword_count; |
| |
| util_dynarray_append(&bundles, midgard_bundle, bundle); |
| block->quadword_count += midgard_tag_props[bundle.tag].size; |
| } |
| |
| assert(num_ldst == 0); |
| |
| /* We emitted bundles backwards; copy into the block in reverse-order */ |
| |
| util_dynarray_init(&block->bundles, block); |
| util_dynarray_foreach_reverse(&bundles, midgard_bundle, bundle) { |
| util_dynarray_append(&block->bundles, midgard_bundle, *bundle); |
| } |
| util_dynarray_fini(&bundles); |
| |
| block->scheduled = true; |
| ctx->quadword_count += block->quadword_count; |
| |
| /* Reorder instructions to match bundled. First remove existing |
| * instructions and then recreate the list */ |
| |
| mir_foreach_instr_in_block_safe(block, ins) { |
| list_del(&ins->link); |
| } |
| |
| mir_foreach_instr_in_block_scheduled_rev(block, ins) { |
| list_add(&ins->link, &block->base.instructions); |
| } |
| |
| free(instructions); /* Allocated by flatten_mir() */ |
| free(worklist); |
| free(liveness); |
| } |
| |
| /* Insert moves to ensure we can register allocate load/store registers */ |
| static void |
| mir_lower_ldst(compiler_context *ctx) |
| { |
| mir_foreach_instr_global_safe(ctx, I) { |
| if (I->type != TAG_LOAD_STORE_4) continue; |
| |
| mir_foreach_src(I, s) { |
| if (s == 0) continue; |
| if (I->src[s] == ~0) continue; |
| if (I->swizzle[s][0] == 0) continue; |
| |
| unsigned temp = make_compiler_temp(ctx); |
| midgard_instruction mov = v_mov(I->src[s], temp); |
| mov.mask = 0x1; |
| mov.dest_type = I->src_types[s]; |
| for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c) |
| mov.swizzle[1][c] = I->swizzle[s][0]; |
| |
| mir_insert_instruction_before(ctx, I, mov); |
| I->src[s] = mov.dest; |
| I->swizzle[s][0] = 0; |
| } |
| } |
| } |
| |
| /* Insert moves to ensure we can register allocate blend writeout */ |
| static void |
| mir_lower_blend_input(compiler_context *ctx) |
| { |
| mir_foreach_block(ctx, _blk) { |
| midgard_block *blk = (midgard_block *) _blk; |
| |
| if (list_is_empty(&blk->base.instructions)) |
| continue; |
| |
| midgard_instruction *I = mir_last_in_block(blk); |
| |
| if (!I || I->type != TAG_ALU_4 || !I->writeout) |
| continue; |
| |
| mir_foreach_src(I, s) { |
| unsigned src = I->src[s]; |
| |
| if (src >= ctx->temp_count) |
| continue; |
| |
| if (!_blk->live_out[src]) |
| continue; |
| |
| unsigned temp = make_compiler_temp(ctx); |
| midgard_instruction mov = v_mov(src, temp); |
| mov.mask = 0xF; |
| mov.dest_type = nir_type_uint32; |
| mir_insert_instruction_before(ctx, I, mov); |
| I->src[s] = mov.dest; |
| } |
| } |
| } |
| |
| void |
| midgard_schedule_program(compiler_context *ctx) |
| { |
| mir_lower_ldst(ctx); |
| midgard_promote_uniforms(ctx); |
| |
| /* Must be lowered right before scheduling */ |
| mir_squeeze_index(ctx); |
| mir_lower_special_reads(ctx); |
| |
| if (ctx->stage == MESA_SHADER_FRAGMENT) { |
| mir_invalidate_liveness(ctx); |
| mir_compute_liveness(ctx); |
| mir_lower_blend_input(ctx); |
| } |
| |
| mir_squeeze_index(ctx); |
| |
| /* Lowering can introduce some dead moves */ |
| |
| mir_foreach_block(ctx, _block) { |
| midgard_block *block = (midgard_block *) _block; |
| midgard_opt_dead_move_eliminate(ctx, block); |
| schedule_block(ctx, block); |
| } |
| } |