blob: 31507e43409e4bd6405b4bbddc0ad031a1302fce [file] [log] [blame]
/*
* Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
* Copyright (C) 2019 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "midgard_ops.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "midgard_quirks.h"
struct phys_reg {
/* Physical register: 0-31 */
unsigned reg;
/* Byte offset into the physical register: 0-15 */
unsigned offset;
/* log2(bytes per component) for fast mul/div */
unsigned shift;
};
/* Shift up by reg_offset and horizontally by dst_offset. */
static void
offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcshift, unsigned dstshift, unsigned dst_offset)
{
unsigned out[MIR_VEC_COMPONENTS];
signed reg_comp = reg_offset >> srcshift;
signed dst_comp = dst_offset >> dstshift;
unsigned max_component = (16 >> srcshift) - 1;
assert(reg_comp << srcshift == reg_offset);
assert(dst_comp << dstshift == dst_offset);
for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
signed comp = MAX2(c - dst_comp, 0);
out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
}
memcpy(swizzle, out, sizeof(out));
}
/* Helper to return the default phys_reg for a given register */
static struct phys_reg
default_phys_reg(int reg, unsigned shift)
{
struct phys_reg r = {
.reg = reg,
.offset = 0,
.shift = shift
};
return r;
}
/* Determine which physical register, swizzle, and mask a virtual
* register corresponds to */
static struct phys_reg
index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, unsigned shift)
{
/* Check for special cases */
if (reg == ~0)
return default_phys_reg(REGISTER_UNUSED, shift);
else if (reg >= SSA_FIXED_MINIMUM)
return default_phys_reg(SSA_REG_FROM_FIXED(reg), shift);
else if (!l)
return default_phys_reg(REGISTER_UNUSED, shift);
struct phys_reg r = {
.reg = l->solutions[reg] / 16,
.offset = l->solutions[reg] & 0xF,
.shift = shift
};
/* Report that we actually use this register, and return it */
if (r.reg < 16)
ctx->info->work_reg_count = MAX2(ctx->info->work_reg_count, r.reg + 1);
return r;
}
static void
set_class(unsigned *classes, unsigned node, unsigned class)
{
if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
assert(classes[node] == REG_CLASS_WORK);
classes[node] = class;
}
}
/* Special register classes impose special constraints on who can read their
* values, so check that */
static bool ASSERTED
check_read_class(unsigned *classes, unsigned tag, unsigned node)
{
/* Non-nodes are implicitly ok */
if (node >= SSA_FIXED_MINIMUM)
return true;
switch (classes[node]) {
case REG_CLASS_LDST:
return (tag == TAG_LOAD_STORE_4);
case REG_CLASS_TEXR:
return (tag == TAG_TEXTURE_4);
case REG_CLASS_TEXW:
return (tag != TAG_LOAD_STORE_4);
case REG_CLASS_WORK:
return IS_ALU(tag);
default:
unreachable("Invalid class");
}
}
static bool ASSERTED
check_write_class(unsigned *classes, unsigned tag, unsigned node)
{
/* Non-nodes are implicitly ok */
if (node >= SSA_FIXED_MINIMUM)
return true;
switch (classes[node]) {
case REG_CLASS_TEXR:
return true;
case REG_CLASS_TEXW:
return (tag == TAG_TEXTURE_4);
case REG_CLASS_LDST:
case REG_CLASS_WORK:
return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
default:
unreachable("Invalid class");
}
}
/* Prepass before RA to ensure special class restrictions are met. The idea is
* to create a bit field of types of instructions that read a particular index.
* Later, we'll add moves as appropriate and rewrite to specialize by type. */
static void
mark_node_class (unsigned *bitfield, unsigned node)
{
if (node < SSA_FIXED_MINIMUM)
BITSET_SET(bitfield, node);
}
void
mir_lower_special_reads(compiler_context *ctx)
{
size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
/* Bitfields for the various types of registers we could have. aluw can
* be written by either ALU or load/store */
unsigned *alur = calloc(sz, 1);
unsigned *aluw = calloc(sz, 1);
unsigned *brar = calloc(sz, 1);
unsigned *ldst = calloc(sz, 1);
unsigned *texr = calloc(sz, 1);
unsigned *texw = calloc(sz, 1);
/* Pass #1 is analysis, a linear scan to fill out the bitfields */
mir_foreach_instr_global(ctx, ins) {
switch (ins->type) {
case TAG_ALU_4:
mark_node_class(aluw, ins->dest);
mark_node_class(alur, ins->src[0]);
mark_node_class(alur, ins->src[1]);
mark_node_class(alur, ins->src[2]);
if (ins->compact_branch && ins->writeout)
mark_node_class(brar, ins->src[0]);
break;
case TAG_LOAD_STORE_4:
mark_node_class(aluw, ins->dest);
mark_node_class(ldst, ins->src[0]);
mark_node_class(ldst, ins->src[1]);
mark_node_class(ldst, ins->src[2]);
mark_node_class(ldst, ins->src[3]);
break;
case TAG_TEXTURE_4:
mark_node_class(texr, ins->src[0]);
mark_node_class(texr, ins->src[1]);
mark_node_class(texr, ins->src[2]);
mark_node_class(texw, ins->dest);
break;
default:
break;
}
}
/* Pass #2 is lowering now that we've analyzed all the classes.
* Conceptually, if an index is only marked for a single type of use,
* there is nothing to lower. If it is marked for different uses, we
* split up based on the number of types of uses. To do so, we divide
* into N distinct classes of use (where N>1 by definition), emit N-1
* moves from the index to copies of the index, and finally rewrite N-1
* of the types of uses to use the corresponding move */
unsigned spill_idx = ctx->temp_count;
for (unsigned i = 0; i < ctx->temp_count; ++i) {
bool is_alur = BITSET_TEST(alur, i);
bool is_aluw = BITSET_TEST(aluw, i);
bool is_brar = BITSET_TEST(brar, i);
bool is_ldst = BITSET_TEST(ldst, i);
bool is_texr = BITSET_TEST(texr, i);
bool is_texw = BITSET_TEST(texw, i);
/* Analyse to check how many distinct uses there are. ALU ops
* (alur) can read the results of the texture pipeline (texw)
* but not ldst or texr. Load/store ops (ldst) cannot read
* anything but load/store inputs. Texture pipeline cannot read
* anything but texture inputs. TODO: Simplify. */
bool collision =
(is_alur && (is_ldst || is_texr)) ||
(is_ldst && (is_alur || is_texr || is_texw)) ||
(is_texr && (is_alur || is_ldst || is_texw)) ||
(is_texw && (is_aluw || is_ldst || is_texr)) ||
(is_brar && is_texw);
if (!collision)
continue;
/* Use the index as-is as the work copy. Emit copies for
* special uses */
unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
if (!collisions[j]) continue;
/* When the hazard is from reading, we move and rewrite
* sources (typical case). When it's from writing, we
* flip the move and rewrite destinations (obscure,
* only from control flow -- impossible in SSA) */
bool hazard_write = (j == 2);
unsigned idx = spill_idx++;
/* Insert move before each read/write, depending on the
* hazard we're trying to account for */
mir_foreach_instr_global_safe(ctx, pre_use) {
if (pre_use->type != classes[j])
continue;
if (hazard_write) {
if (pre_use->dest != i)
continue;
midgard_instruction m = v_mov(idx, i);
m.dest_type = pre_use->dest_type;
m.src_types[1] = m.dest_type;
m.mask = pre_use->mask;
midgard_instruction *use = mir_next_op(pre_use);
assert(use);
mir_insert_instruction_before(ctx, use, m);
mir_rewrite_index_dst_single(pre_use, i, idx);
} else {
if (!mir_has_arg(pre_use, i))
continue;
idx = spill_idx++;
midgard_instruction m = v_mov(i, idx);
m.mask = mir_from_bytemask(mir_round_bytemask_up(
mir_bytemask_of_read_components(pre_use, i), 32), 32);
mir_insert_instruction_before(ctx, pre_use, m);
mir_rewrite_index_src_single(pre_use, i, idx);
}
}
}
}
free(alur);
free(aluw);
free(brar);
free(ldst);
free(texr);
free(texw);
}
static void
mir_compute_interference(
compiler_context *ctx,
struct lcra_state *l)
{
/* First, we need liveness information to be computed per block */
mir_compute_liveness(ctx);
/* We need to force r1.w live throughout a blend shader */
if (ctx->inputs->is_blend) {
unsigned r1w = ~0;
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
mir_foreach_instr_in_block_rev(block, ins) {
if (ins->writeout)
r1w = ins->dest;
}
if (r1w != ~0)
break;
}
mir_foreach_instr_global(ctx, ins) {
if (ins->dest < ctx->temp_count)
lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF);
}
}
/* Now that every block has live_in/live_out computed, we can determine
* interference by walking each block linearly. Take live_out at the
* end of each block and walk the block backwards. */
mir_foreach_block(ctx, _blk) {
midgard_block *blk = (midgard_block *) _blk;
/* The scalar and vector units run in parallel. We need to make
* sure they don't write to same portion of the register file
* otherwise the result is undefined. Add interferences to
* avoid this situation.
*/
util_dynarray_foreach(&blk->bundles, midgard_bundle, bundle) {
midgard_instruction *instrs[2][4];
unsigned instr_count[2] = { 0, 0 };
for (unsigned i = 0; i < bundle->instruction_count; i++) {
if (bundle->instructions[i]->unit == UNIT_VMUL ||
bundle->instructions[i]->unit == UNIT_SADD)
instrs[0][instr_count[0]++] = bundle->instructions[i];
else
instrs[1][instr_count[1]++] = bundle->instructions[i];
}
for (unsigned i = 0; i < ARRAY_SIZE(instr_count); i++) {
for (unsigned j = 0; j < instr_count[i]; j++) {
midgard_instruction *ins_a = instrs[i][j];
if (ins_a->dest >= ctx->temp_count) continue;
for (unsigned k = j + 1; k < instr_count[i]; k++) {
midgard_instruction *ins_b = instrs[i][k];
if (ins_b->dest >= ctx->temp_count) continue;
lcra_add_node_interference(l, ins_b->dest,
mir_bytemask(ins_b),
ins_a->dest,
mir_bytemask(ins_a));
}
}
}
}
uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t));
mir_foreach_instr_in_block_rev(blk, ins) {
/* Mark all registers live after the instruction as
* interfering with the destination */
unsigned dest = ins->dest;
if (dest < ctx->temp_count) {
for (unsigned i = 0; i < ctx->temp_count; ++i) {
if (live[i]) {
unsigned mask = mir_bytemask(ins);
lcra_add_node_interference(l, dest, mask, i, live[i]);
}
}
}
/* Add blend shader interference: blend shaders might
* clobber r0-r3. */
if (ins->compact_branch && ins->writeout) {
for (unsigned i = 0; i < ctx->temp_count; ++i) {
if (!live[i])
continue;
for (unsigned j = 0; j < 4; j++) {
lcra_add_node_interference(l, ctx->temp_count + j,
0xFFFF,
i, live[i]);
}
}
}
/* Update live_in */
mir_liveness_ins_update(live, ins, ctx->temp_count);
}
free(live);
}
}
static bool
mir_is_64(midgard_instruction *ins)
{
if (nir_alu_type_get_type_size(ins->dest_type) == 64)
return true;
mir_foreach_src(ins, v) {
if (nir_alu_type_get_type_size(ins->src_types[v]) == 64)
return true;
}
return false;
}
/*
* Determine if a shader needs a contiguous workgroup. This impacts register
* allocation. TODO: Optimize if barriers and local memory are unused.
*/
static bool
needs_contiguous_workgroup(compiler_context *ctx)
{
return gl_shader_stage_uses_workgroup(ctx->stage);
}
/*
* Determine an upper-bound on the number of threads in a workgroup. The GL
* driver reports 128 for the maximum number of threads (the minimum-maximum in
* OpenGL ES 3.1), so we pessimistically assume 128 threads for variable
* workgroups.
*/
static unsigned
max_threads_per_workgroup(compiler_context *ctx)
{
if (ctx->nir->info.workgroup_size_variable) {
return 128;
} else {
return ctx->nir->info.workgroup_size[0] *
ctx->nir->info.workgroup_size[1] *
ctx->nir->info.workgroup_size[2];
}
}
/*
* Calculate the maximum number of work registers available to the shader.
* Architecturally, Midgard shaders may address up to 16 work registers, but
* various features impose other limits:
*
* 1. Blend shaders are limited to 8 registers by ABI.
* 2. If there are more than 8 register-mapped uniforms, then additional
* register-mapped uniforms use space that otherwise would be used for work
* registers.
* 3. If more than 4 registers are used, at most 128 threads may be spawned. If
* more than 8 registers are used, at most 64 threads may be spawned. These
* limits are architecturally visible in compute kernels that require an
* entire workgroup to be spawned at once (for barriers or local memory to
* work properly).
*/
static unsigned
max_work_registers(compiler_context *ctx)
{
if (ctx->inputs->is_blend)
return 8;
unsigned rmu_vec4 = ctx->info->push.count / 4;
unsigned max_work_registers = (rmu_vec4 >= 8) ? (24 - rmu_vec4) : 16;
if (needs_contiguous_workgroup(ctx)) {
unsigned threads = max_threads_per_workgroup(ctx);
assert(threads <= 128 && "maximum threads in ABI exceeded");
if (threads > 64)
max_work_registers = MIN2(max_work_registers, 8);
}
return max_work_registers;
}
/* This routine performs the actual register allocation. It should be succeeded
* by install_registers */
static struct lcra_state *
allocate_registers(compiler_context *ctx, bool *spilled)
{
int work_count = max_work_registers(ctx);
/* No register allocation to do with no SSA */
if (!ctx->temp_count)
return NULL;
/* Initialize LCRA. Allocate extra node at the end for r1-r3 for
* interference */
struct lcra_state *l = lcra_alloc_equations(ctx->temp_count + 4, 5);
unsigned node_r1 = ctx->temp_count + 1;
/* Starts of classes, in bytes */
l->class_start[REG_CLASS_WORK] = 16 * 0;
l->class_start[REG_CLASS_LDST] = 16 * 26;
l->class_start[REG_CLASS_TEXR] = 16 * 28;
l->class_start[REG_CLASS_TEXW] = 16 * 28;
l->class_size[REG_CLASS_WORK] = 16 * work_count;
l->class_size[REG_CLASS_LDST] = 16 * 2;
l->class_size[REG_CLASS_TEXR] = 16 * 2;
l->class_size[REG_CLASS_TEXW] = 16 * 2;
lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
/* To save space on T*20, we don't have real texture registers.
* Instead, tex inputs reuse the load/store pipeline registers, and
* tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
* noting that this handles interferences and sizes correctly. */
if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
}
unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
unsigned *min_bound = calloc(sizeof(unsigned), ctx->temp_count);
mir_foreach_instr_global(ctx, ins) {
/* Swizzles of 32-bit sources on 64-bit instructions need to be
* aligned to either bottom (xy) or top (zw). More general
* swizzle lowering should happen prior to scheduling (TODO),
* but once we get RA we shouldn't disrupt this further. Align
* sources of 64-bit instructions. */
if (ins->type == TAG_ALU_4 && mir_is_64(ins)) {
mir_foreach_src(ins, v) {
unsigned s = ins->src[v];
if (s < ctx->temp_count)
min_alignment[s] = MAX2(3, min_alignment[s]);
}
}
if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->op)) {
mir_foreach_src(ins, v) {
unsigned s = ins->src[v];
unsigned size = nir_alu_type_get_type_size(ins->src_types[v]);
if (s < ctx->temp_count)
min_alignment[s] = MAX2((size == 64) ? 3 : 2, min_alignment[s]);
}
}
/* Anything read as 16-bit needs proper alignment to ensure the
* resulting code can be packed.
*/
mir_foreach_src(ins, s) {
unsigned src_size = nir_alu_type_get_type_size(ins->src_types[s]);
if (src_size == 16 && ins->src[s] < SSA_FIXED_MINIMUM)
min_bound[ins->src[s]] = MAX2(min_bound[ins->src[s]], 8);
}
/* Everything after this concerns only the destination, not the
* sources.
*/
if (ins->dest >= SSA_FIXED_MINIMUM) continue;
unsigned size = nir_alu_type_get_type_size(ins->dest_type);
if (ins->is_pack)
size = 32;
/* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
int comps1 = util_logbase2(ins->mask);
int bytes = (comps1 + 1) * (size / 8);
/* Use the largest class if there's ambiguity, this
* handles partial writes */
int dest = ins->dest;
found_class[dest] = MAX2(found_class[dest], bytes);
min_alignment[dest] =
MAX2(min_alignment[dest],
(size == 16) ? 1 : /* (1 << 1) = 2-byte */
(size == 32) ? 2 : /* (1 << 2) = 4-byte */
(size == 64) ? 3 : /* (1 << 3) = 8-byte */
3); /* 8-bit todo */
/* We can't cross xy/zw boundaries. TODO: vec8 can */
if (size == 16 && min_alignment[dest] != 4)
min_bound[dest] = 8;
/* We don't have a swizzle for the conditional and we don't
* want to muck with the conditional itself, so just force
* alignment for now */
if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->op)) {
min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
/* LCRA assumes bound >= alignment */
min_bound[dest] = 16;
}
/* Since ld/st swizzles and masks are 32-bit only, we need them
* aligned to enable final packing */
if (ins->type == TAG_LOAD_STORE_4)
min_alignment[dest] = MAX2(min_alignment[dest], 2);
}
for (unsigned i = 0; i < ctx->temp_count; ++i) {
lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2,
min_bound[i] ? min_bound[i] : 16);
lcra_restrict_range(l, i, found_class[i]);
}
free(found_class);
free(min_alignment);
free(min_bound);
/* Next, we'll determine semantic class. We default to zero (work).
* But, if we're used with a special operation, that will force us to a
* particular class. Each node must be assigned to exactly one class; a
* prepass before RA should have lowered what-would-have-been
* multiclass nodes into a series of moves to break it up into multiple
* nodes (TODO) */
mir_foreach_instr_global(ctx, ins) {
/* Check if this operation imposes any classes */
if (ins->type == TAG_LOAD_STORE_4) {
set_class(l->class, ins->src[0], REG_CLASS_LDST);
set_class(l->class, ins->src[1], REG_CLASS_LDST);
set_class(l->class, ins->src[2], REG_CLASS_LDST);
set_class(l->class, ins->src[3], REG_CLASS_LDST);
if (OP_IS_VEC4_ONLY(ins->op)) {
lcra_restrict_range(l, ins->dest, 16);
lcra_restrict_range(l, ins->src[0], 16);
lcra_restrict_range(l, ins->src[1], 16);
lcra_restrict_range(l, ins->src[2], 16);
lcra_restrict_range(l, ins->src[3], 16);
}
} else if (ins->type == TAG_TEXTURE_4) {
set_class(l->class, ins->dest, REG_CLASS_TEXW);
set_class(l->class, ins->src[0], REG_CLASS_TEXR);
set_class(l->class, ins->src[1], REG_CLASS_TEXR);
set_class(l->class, ins->src[2], REG_CLASS_TEXR);
set_class(l->class, ins->src[3], REG_CLASS_TEXR);
}
}
/* Check that the semantics of the class are respected */
mir_foreach_instr_global(ctx, ins) {
assert(check_write_class(l->class, ins->type, ins->dest));
assert(check_read_class(l->class, ins->type, ins->src[0]));
assert(check_read_class(l->class, ins->type, ins->src[1]));
assert(check_read_class(l->class, ins->type, ins->src[2]));
assert(check_read_class(l->class, ins->type, ins->src[3]));
}
/* Mark writeout to r0, depth to r1.x, stencil to r1.y,
* render target to r1.z, unknown to r1.w */
mir_foreach_instr_global(ctx, ins) {
if (!(ins->compact_branch && ins->writeout)) continue;
if (ins->src[0] < ctx->temp_count)
l->solutions[ins->src[0]] = 0;
if (ins->src[2] < ctx->temp_count)
l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_X * 4;
if (ins->src[3] < ctx->temp_count)
l->solutions[ins->src[3]] = (16 * 1) + COMPONENT_Y * 4;
if (ins->src[1] < ctx->temp_count)
l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
if (ins->dest < ctx->temp_count)
l->solutions[ins->dest] = (16 * 1) + COMPONENT_W * 4;
}
/* Destinations of instructions in a writeout block cannot be assigned
* to r1 unless they are actually used as r1 from the writeout itself,
* since the writes to r1 are special. A code sequence like:
*
* sadd.fmov r1.x, [...]
* vadd.fadd r0, r1, r2
* [writeout branch]
*
* will misbehave since the r1.x write will be interpreted as a
* gl_FragDepth write so it won't show up correctly when r1 is read in
* the following segment. We model this as interference.
*/
for (unsigned i = 0; i < 4; ++i)
l->solutions[ctx->temp_count + i] = (16 * i);
mir_foreach_block(ctx, _blk) {
midgard_block *blk = (midgard_block *) _blk;
mir_foreach_bundle_in_block(blk, v) {
/* We need at least a writeout and nonwriteout instruction */
if (v->instruction_count < 2)
continue;
/* Branches always come at the end */
midgard_instruction *br = v->instructions[v->instruction_count - 1];
if (!br->writeout)
continue;
for (signed i = v->instruction_count - 2; i >= 0; --i) {
midgard_instruction *ins = v->instructions[i];
if (ins->dest >= ctx->temp_count)
continue;
bool used_as_r1 = (br->dest == ins->dest);
mir_foreach_src(br, s)
used_as_r1 |= (s > 0) && (br->src[s] == ins->dest);
if (!used_as_r1)
lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), node_r1, 0xFFFF);
}
}
}
/* Precolour blend input to r0. Note writeout is necessarily at the end
* and blend shaders are single-RT only so there is only a single
* writeout block, so this cannot conflict with the writeout r0 (there
* is no need to have an intermediate move) */
if (ctx->blend_input != ~0) {
assert(ctx->blend_input < ctx->temp_count);
l->solutions[ctx->blend_input] = 0;
}
/* Same for the dual-source blend input/output, except here we use r2,
* which is also set in the fragment shader. */
if (ctx->blend_src1 != ~0) {
assert(ctx->blend_src1 < ctx->temp_count);
l->solutions[ctx->blend_src1] = (16 * 2);
ctx->info->work_reg_count = MAX2(ctx->info->work_reg_count, 3);
}
mir_compute_interference(ctx, l);
*spilled = !lcra_solve(l);
return l;
}
/* Once registers have been decided via register allocation
* (allocate_registers), we need to rewrite the MIR to use registers instead of
* indices */
static void
install_registers_instr(
compiler_context *ctx,
struct lcra_state *l,
midgard_instruction *ins)
{
unsigned src_shift[MIR_SRC_COUNT];
for (unsigned i = 0; i < MIR_SRC_COUNT; ++i) {
src_shift[i] =
util_logbase2(nir_alu_type_get_type_size(ins->src_types[i]) / 8);
}
unsigned dest_shift =
util_logbase2(nir_alu_type_get_type_size(ins->dest_type) / 8);
switch (ins->type) {
case TAG_ALU_4:
case TAG_ALU_8:
case TAG_ALU_12:
case TAG_ALU_16: {
if (ins->compact_branch)
return;
struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
unsigned dest_offset =
GET_CHANNEL_COUNT(alu_opcode_props[ins->op].props) ? 0 :
dest.offset;
offset_swizzle(ins->swizzle[0], src1.offset, src1.shift, dest.shift, dest_offset);
if (!ins->has_inline_constant)
offset_swizzle(ins->swizzle[1], src2.offset, src2.shift, dest.shift, dest_offset);
if (ins->src[0] != ~0)
ins->src[0] = SSA_FIXED_REGISTER(src1.reg);
if (ins->src[1] != ~0)
ins->src[1] = SSA_FIXED_REGISTER(src2.reg);
if (ins->dest != ~0)
ins->dest = SSA_FIXED_REGISTER(dest.reg);
break;
}
case TAG_LOAD_STORE_4: {
/* Which physical register we read off depends on
* whether we are loading or storing -- think about the
* logical dataflow */
bool encodes_src = OP_IS_STORE(ins->op);
if (encodes_src) {
struct phys_reg src = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
assert(src.reg == 26 || src.reg == 27);
ins->src[0] = SSA_FIXED_REGISTER(src.reg);
offset_swizzle(ins->swizzle[0], src.offset, src.shift, 0, 0);
} else {
struct phys_reg dst = index_to_reg(ctx, l, ins->dest, dest_shift);
ins->dest = SSA_FIXED_REGISTER(dst.reg);
offset_swizzle(ins->swizzle[0], 0, 2, dest_shift, dst.offset);
mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
}
/* We also follow up by actual arguments */
for (int i = 1; i <= 3; i++) {
unsigned src_index = ins->src[i];
if (src_index != ~0) {
struct phys_reg src = index_to_reg(ctx, l, src_index, src_shift[i]);
unsigned component = src.offset >> src.shift;
assert(component << src.shift == src.offset);
ins->src[i] = SSA_FIXED_REGISTER(src.reg);
ins->swizzle[i][0] += component;
}
}
break;
}
case TAG_TEXTURE_4: {
if (ins->op == midgard_tex_op_barrier)
break;
/* Grab RA results */
struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], src_shift[2]);
struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], src_shift[3]);
/* First, install the texture coordinate */
if (ins->src[1] != ~0)
ins->src[1] = SSA_FIXED_REGISTER(coord.reg);
offset_swizzle(ins->swizzle[1], coord.offset, coord.shift, dest.shift, 0);
/* Next, install the destination */
if (ins->dest != ~0)
ins->dest = SSA_FIXED_REGISTER(dest.reg);
offset_swizzle(ins->swizzle[0], 0, 2, dest.shift,
dest_shift == 1 ? dest.offset % 8 :
dest.offset);
mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
/* If there is a register LOD/bias, use it */
if (ins->src[2] != ~0) {
assert(!(lod.offset & 3));
ins->src[2] = SSA_FIXED_REGISTER(lod.reg);
ins->swizzle[2][0] = lod.offset / 4;
}
/* If there is an offset register, install it */
if (ins->src[3] != ~0) {
ins->src[3] = SSA_FIXED_REGISTER(offset.reg);
ins->swizzle[3][0] = offset.offset / 4;
}
break;
}
default:
break;
}
}
static void
install_registers(compiler_context *ctx, struct lcra_state *l)
{
mir_foreach_instr_global(ctx, ins)
install_registers_instr(ctx, l, ins);
}
/* If register allocation fails, find the best spill node */
static signed
mir_choose_spill_node(
compiler_context *ctx,
struct lcra_state *l)
{
/* We can't spill a previously spilled value or an unspill */
mir_foreach_instr_global(ctx, ins) {
if (ins->no_spill & (1 << l->spill_class)) {
lcra_set_node_spill_cost(l, ins->dest, -1);
if (l->spill_class != REG_CLASS_WORK) {
mir_foreach_src(ins, s)
lcra_set_node_spill_cost(l, ins->src[s], -1);
}
}
}
return lcra_get_best_spill_node(l);
}
/* Once we've chosen a spill node, spill it */
static void
mir_spill_register(
compiler_context *ctx,
unsigned spill_node,
unsigned spill_class,
unsigned *spill_count)
{
if (spill_class == REG_CLASS_WORK && ctx->inputs->is_blend)
unreachable("Blend shader spilling is currently unimplemented");
unsigned spill_index = ctx->temp_count;
/* We have a spill node, so check the class. Work registers
* legitimately spill to TLS, but special registers just spill to work
* registers */
bool is_special = spill_class != REG_CLASS_WORK;
bool is_special_w = spill_class == REG_CLASS_TEXW;
/* Allocate TLS slot (maybe) */
unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
/* For special reads, figure out how many bytes we need */
unsigned read_bytemask = 0;
/* If multiple instructions write to this destination, we'll have to
* fill from TLS before writing */
unsigned write_count = 0;
mir_foreach_instr_global_safe(ctx, ins) {
read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
if (ins->dest == spill_node)
++write_count;
}
/* For TLS, replace all stores to the spilled node. For
* special reads, just keep as-is; the class will be demoted
* implicitly. For special writes, spill to a work register */
if (!is_special || is_special_w) {
if (is_special_w)
spill_slot = spill_index++;
unsigned last_id = ~0;
unsigned last_fill = ~0;
unsigned last_spill_index = ~0;
midgard_instruction *last_spill = NULL;
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
mir_foreach_instr_in_block_safe(block, ins) {
if (ins->dest != spill_node) continue;
/* Note: it's important to match the mask of the spill
* with the mask of the instruction whose destination
* we're spilling, or otherwise we'll read invalid
* components and can fail RA in a subsequent iteration
*/
if (is_special_w) {
midgard_instruction st = v_mov(spill_node, spill_slot);
st.no_spill |= (1 << spill_class);
st.mask = ins->mask;
st.dest_type = st.src_types[1] = ins->dest_type;
/* Hint: don't rewrite this node */
st.hint = true;
mir_insert_instruction_after_scheduled(ctx, block, ins, st);
} else {
unsigned bundle = ins->bundle_id;
unsigned dest = (bundle == last_id)? last_spill_index : spill_index++;
unsigned bytemask = mir_bytemask(ins);
unsigned write_mask = mir_from_bytemask(mir_round_bytemask_up(
bytemask, 32), 32);
if (write_count > 1 && bytemask != 0xFFFF && bundle != last_fill) {
midgard_instruction read =
v_load_store_scratch(dest, spill_slot, false, 0xF);
mir_insert_instruction_before_scheduled(ctx, block, ins, read);
write_mask = 0xF;
last_fill = bundle;
}
ins->dest = dest;
ins->no_spill |= (1 << spill_class);
bool move = false;
/* In the same bundle, reads of the destination
* of the spilt instruction need to be direct */
midgard_instruction *it = ins;
while ((it = list_first_entry(&it->link, midgard_instruction, link))
&& (it->bundle_id == bundle)) {
if (!mir_has_arg(it, spill_node)) continue;
mir_rewrite_index_src_single(it, spill_node, dest);
/* The spilt instruction will write to
* a work register for `it` to read but
* the spill needs an LD/ST register */
move = true;
}
if (move)
dest = spill_index++;
if (last_id == bundle) {
last_spill->mask |= write_mask;
u_foreach_bit(c, write_mask)
last_spill->swizzle[0][c] = c;
} else {
midgard_instruction st =
v_load_store_scratch(dest, spill_slot, true, write_mask);
last_spill = mir_insert_instruction_after_scheduled(ctx, block, ins, st);
}
if (move) {
midgard_instruction mv = v_mov(ins->dest, dest);
mv.no_spill |= (1 << spill_class);
mir_insert_instruction_after_scheduled(ctx, block, ins, mv);
}
last_id = bundle;
last_spill_index = ins->dest;
}
if (!is_special)
ctx->spills++;
}
}
}
/* Insert a load from TLS before the first consecutive
* use of the node, rewriting to use spilled indices to
* break up the live range. Or, for special, insert a
* move. Ironically the latter *increases* register
* pressure, but the two uses of the spilling mechanism
* are somewhat orthogonal. (special spilling is to use
* work registers to back special registers; TLS
* spilling is to use memory to back work registers) */
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
mir_foreach_instr_in_block(block, ins) {
/* We can't rewrite the moves used to spill in the
* first place. These moves are hinted. */
if (ins->hint) continue;
/* If we don't use the spilled value, nothing to do */
if (!mir_has_arg(ins, spill_node)) continue;
unsigned index = 0;
if (!is_special_w) {
index = ++spill_index;
midgard_instruction *before = ins;
midgard_instruction st;
if (is_special) {
/* Move */
st = v_mov(spill_node, index);
st.no_spill |= (1 << spill_class);
} else {
/* TLS load */
st = v_load_store_scratch(index, spill_slot, false, 0xF);
}
/* Mask the load based on the component count
* actually needed to prevent RA loops */
st.mask = mir_from_bytemask(mir_round_bytemask_up(
read_bytemask, 32), 32);
mir_insert_instruction_before_scheduled(ctx, block, before, st);
} else {
/* Special writes already have their move spilled in */
index = spill_slot;
}
/* Rewrite to use */
mir_rewrite_index_src_single(ins, spill_node, index);
if (!is_special)
ctx->fills++;
}
}
/* Reset hints */
mir_foreach_instr_global(ctx, ins) {
ins->hint = false;
}
}
static void
mir_demote_uniforms(compiler_context *ctx, unsigned new_cutoff)
{
unsigned uniforms = ctx->info->push.count / 4;
unsigned old_work_count = 16 - MAX2(uniforms - 8, 0);
unsigned work_count = 16 - MAX2((new_cutoff - 8), 0);
unsigned min_demote = SSA_FIXED_REGISTER(old_work_count);
unsigned max_demote = SSA_FIXED_REGISTER(work_count);
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
mir_foreach_instr_in_block(block, ins) {
mir_foreach_src(ins, i) {
if (ins->src[i] < min_demote || ins->src[i] >= max_demote)
continue;
midgard_instruction *before = ins;
unsigned temp = make_compiler_temp(ctx);
unsigned idx = (23 - SSA_REG_FROM_FIXED(ins->src[i])) * 4;
assert(idx < ctx->info->push.count);
ctx->ubo_mask |= BITSET_BIT(ctx->info->push.words[idx].ubo);
midgard_instruction ld = {
.type = TAG_LOAD_STORE_4,
.mask = 0xF,
.dest = temp,
.dest_type = ins->src_types[i],
.src = { ~0, ~0, ~0, ~0 },
.swizzle = SWIZZLE_IDENTITY_4,
.op = midgard_op_ld_ubo_128,
.load_store = {
.index_reg = REGISTER_LDST_ZERO,
},
.constants.u32[0] = ctx->info->push.words[idx].offset
};
midgard_pack_ubo_index_imm(&ld.load_store,
ctx->info->push.words[idx].ubo);
mir_insert_instruction_before_scheduled(ctx, block, before, ld);
mir_rewrite_index_src_single(ins, ins->src[i], temp);
}
}
}
ctx->info->push.count = MIN2(ctx->info->push.count, new_cutoff * 4);
}
/* Run register allocation in a loop, spilling until we succeed */
void
mir_ra(compiler_context *ctx)
{
struct lcra_state *l = NULL;
bool spilled = false;
int iter_count = 1000; /* max iterations */
/* Number of 128-bit slots in memory we've spilled into */
unsigned spill_count = DIV_ROUND_UP(ctx->info->tls_size, 16);
mir_create_pipeline_registers(ctx);
do {
if (spilled) {
signed spill_node = mir_choose_spill_node(ctx, l);
unsigned uniforms = ctx->info->push.count / 4;
/* It's a lot cheaper to demote uniforms to get more
* work registers than to spill to TLS. */
if (l->spill_class == REG_CLASS_WORK && uniforms > 8) {
mir_demote_uniforms(ctx, MAX2(uniforms - 4, 8));
} else if (spill_node == -1) {
fprintf(stderr, "ERROR: Failed to choose spill node\n");
lcra_free(l);
return;
} else {
mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
}
}
mir_squeeze_index(ctx);
mir_invalidate_liveness(ctx);
if (l) {
lcra_free(l);
l = NULL;
}
l = allocate_registers(ctx, &spilled);
} while(spilled && ((iter_count--) > 0));
if (iter_count <= 0) {
fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
assert(0);
}
/* Report spilling information. spill_count is in 128-bit slots (vec4 x
* fp32), but tls_size is in bytes, so multiply by 16 */
ctx->info->tls_size = spill_count * 16;
install_registers(ctx, l);
lcra_free(l);
}