| /* |
| * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io> |
| * Copyright (C) 2019 Collabora, Ltd. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include "compiler.h" |
| #include "midgard_ops.h" |
| #include "util/u_math.h" |
| #include "util/u_memory.h" |
| #include "midgard_quirks.h" |
| |
| struct phys_reg { |
| /* Physical register: 0-31 */ |
| unsigned reg; |
| |
| /* Byte offset into the physical register: 0-15 */ |
| unsigned offset; |
| |
| /* log2(bytes per component) for fast mul/div */ |
| unsigned shift; |
| }; |
| |
| /* Shift up by reg_offset and horizontally by dst_offset. */ |
| |
| static void |
| offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcshift, unsigned dstshift, unsigned dst_offset) |
| { |
| unsigned out[MIR_VEC_COMPONENTS]; |
| |
| signed reg_comp = reg_offset >> srcshift; |
| signed dst_comp = dst_offset >> dstshift; |
| |
| unsigned max_component = (16 >> srcshift) - 1; |
| |
| assert(reg_comp << srcshift == reg_offset); |
| assert(dst_comp << dstshift == dst_offset); |
| |
| for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) { |
| signed comp = MAX2(c - dst_comp, 0); |
| out[c] = MIN2(swizzle[comp] + reg_comp, max_component); |
| } |
| |
| memcpy(swizzle, out, sizeof(out)); |
| } |
| |
| /* Helper to return the default phys_reg for a given register */ |
| |
| static struct phys_reg |
| default_phys_reg(int reg, unsigned shift) |
| { |
| struct phys_reg r = { |
| .reg = reg, |
| .offset = 0, |
| .shift = shift |
| }; |
| |
| return r; |
| } |
| |
| /* Determine which physical register, swizzle, and mask a virtual |
| * register corresponds to */ |
| |
| static struct phys_reg |
| index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, unsigned shift) |
| { |
| /* Check for special cases */ |
| if (reg == ~0) |
| return default_phys_reg(REGISTER_UNUSED, shift); |
| else if (reg >= SSA_FIXED_MINIMUM) |
| return default_phys_reg(SSA_REG_FROM_FIXED(reg), shift); |
| else if (!l) |
| return default_phys_reg(REGISTER_UNUSED, shift); |
| |
| struct phys_reg r = { |
| .reg = l->solutions[reg] / 16, |
| .offset = l->solutions[reg] & 0xF, |
| .shift = shift |
| }; |
| |
| /* Report that we actually use this register, and return it */ |
| |
| if (r.reg < 16) |
| ctx->info->work_reg_count = MAX2(ctx->info->work_reg_count, r.reg + 1); |
| |
| return r; |
| } |
| |
| static void |
| set_class(unsigned *classes, unsigned node, unsigned class) |
| { |
| if (node < SSA_FIXED_MINIMUM && class != classes[node]) { |
| assert(classes[node] == REG_CLASS_WORK); |
| classes[node] = class; |
| } |
| } |
| |
| /* Special register classes impose special constraints on who can read their |
| * values, so check that */ |
| |
| static bool ASSERTED |
| check_read_class(unsigned *classes, unsigned tag, unsigned node) |
| { |
| /* Non-nodes are implicitly ok */ |
| if (node >= SSA_FIXED_MINIMUM) |
| return true; |
| |
| switch (classes[node]) { |
| case REG_CLASS_LDST: |
| return (tag == TAG_LOAD_STORE_4); |
| case REG_CLASS_TEXR: |
| return (tag == TAG_TEXTURE_4); |
| case REG_CLASS_TEXW: |
| return (tag != TAG_LOAD_STORE_4); |
| case REG_CLASS_WORK: |
| return IS_ALU(tag); |
| default: |
| unreachable("Invalid class"); |
| } |
| } |
| |
| static bool ASSERTED |
| check_write_class(unsigned *classes, unsigned tag, unsigned node) |
| { |
| /* Non-nodes are implicitly ok */ |
| if (node >= SSA_FIXED_MINIMUM) |
| return true; |
| |
| switch (classes[node]) { |
| case REG_CLASS_TEXR: |
| return true; |
| case REG_CLASS_TEXW: |
| return (tag == TAG_TEXTURE_4); |
| case REG_CLASS_LDST: |
| case REG_CLASS_WORK: |
| return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4); |
| default: |
| unreachable("Invalid class"); |
| } |
| } |
| |
| /* Prepass before RA to ensure special class restrictions are met. The idea is |
| * to create a bit field of types of instructions that read a particular index. |
| * Later, we'll add moves as appropriate and rewrite to specialize by type. */ |
| |
| static void |
| mark_node_class (unsigned *bitfield, unsigned node) |
| { |
| if (node < SSA_FIXED_MINIMUM) |
| BITSET_SET(bitfield, node); |
| } |
| |
| void |
| mir_lower_special_reads(compiler_context *ctx) |
| { |
| size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD); |
| |
| /* Bitfields for the various types of registers we could have. aluw can |
| * be written by either ALU or load/store */ |
| |
| unsigned *alur = calloc(sz, 1); |
| unsigned *aluw = calloc(sz, 1); |
| unsigned *brar = calloc(sz, 1); |
| unsigned *ldst = calloc(sz, 1); |
| unsigned *texr = calloc(sz, 1); |
| unsigned *texw = calloc(sz, 1); |
| |
| /* Pass #1 is analysis, a linear scan to fill out the bitfields */ |
| |
| mir_foreach_instr_global(ctx, ins) { |
| switch (ins->type) { |
| case TAG_ALU_4: |
| mark_node_class(aluw, ins->dest); |
| mark_node_class(alur, ins->src[0]); |
| mark_node_class(alur, ins->src[1]); |
| mark_node_class(alur, ins->src[2]); |
| |
| if (ins->compact_branch && ins->writeout) |
| mark_node_class(brar, ins->src[0]); |
| |
| break; |
| |
| case TAG_LOAD_STORE_4: |
| mark_node_class(aluw, ins->dest); |
| mark_node_class(ldst, ins->src[0]); |
| mark_node_class(ldst, ins->src[1]); |
| mark_node_class(ldst, ins->src[2]); |
| mark_node_class(ldst, ins->src[3]); |
| break; |
| |
| case TAG_TEXTURE_4: |
| mark_node_class(texr, ins->src[0]); |
| mark_node_class(texr, ins->src[1]); |
| mark_node_class(texr, ins->src[2]); |
| mark_node_class(texw, ins->dest); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Pass #2 is lowering now that we've analyzed all the classes. |
| * Conceptually, if an index is only marked for a single type of use, |
| * there is nothing to lower. If it is marked for different uses, we |
| * split up based on the number of types of uses. To do so, we divide |
| * into N distinct classes of use (where N>1 by definition), emit N-1 |
| * moves from the index to copies of the index, and finally rewrite N-1 |
| * of the types of uses to use the corresponding move */ |
| |
| unsigned spill_idx = ctx->temp_count; |
| |
| for (unsigned i = 0; i < ctx->temp_count; ++i) { |
| bool is_alur = BITSET_TEST(alur, i); |
| bool is_aluw = BITSET_TEST(aluw, i); |
| bool is_brar = BITSET_TEST(brar, i); |
| bool is_ldst = BITSET_TEST(ldst, i); |
| bool is_texr = BITSET_TEST(texr, i); |
| bool is_texw = BITSET_TEST(texw, i); |
| |
| /* Analyse to check how many distinct uses there are. ALU ops |
| * (alur) can read the results of the texture pipeline (texw) |
| * but not ldst or texr. Load/store ops (ldst) cannot read |
| * anything but load/store inputs. Texture pipeline cannot read |
| * anything but texture inputs. TODO: Simplify. */ |
| |
| bool collision = |
| (is_alur && (is_ldst || is_texr)) || |
| (is_ldst && (is_alur || is_texr || is_texw)) || |
| (is_texr && (is_alur || is_ldst || is_texw)) || |
| (is_texw && (is_aluw || is_ldst || is_texr)) || |
| (is_brar && is_texw); |
| |
| if (!collision) |
| continue; |
| |
| /* Use the index as-is as the work copy. Emit copies for |
| * special uses */ |
| |
| unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4}; |
| bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar }; |
| |
| for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) { |
| if (!collisions[j]) continue; |
| |
| /* When the hazard is from reading, we move and rewrite |
| * sources (typical case). When it's from writing, we |
| * flip the move and rewrite destinations (obscure, |
| * only from control flow -- impossible in SSA) */ |
| |
| bool hazard_write = (j == 2); |
| |
| unsigned idx = spill_idx++; |
| |
| /* Insert move before each read/write, depending on the |
| * hazard we're trying to account for */ |
| |
| mir_foreach_instr_global_safe(ctx, pre_use) { |
| if (pre_use->type != classes[j]) |
| continue; |
| |
| if (hazard_write) { |
| if (pre_use->dest != i) |
| continue; |
| |
| midgard_instruction m = v_mov(idx, i); |
| m.dest_type = pre_use->dest_type; |
| m.src_types[1] = m.dest_type; |
| m.mask = pre_use->mask; |
| |
| midgard_instruction *use = mir_next_op(pre_use); |
| assert(use); |
| mir_insert_instruction_before(ctx, use, m); |
| mir_rewrite_index_dst_single(pre_use, i, idx); |
| } else { |
| if (!mir_has_arg(pre_use, i)) |
| continue; |
| |
| idx = spill_idx++; |
| |
| midgard_instruction m = v_mov(i, idx); |
| m.mask = mir_from_bytemask(mir_round_bytemask_up( |
| mir_bytemask_of_read_components(pre_use, i), 32), 32); |
| mir_insert_instruction_before(ctx, pre_use, m); |
| mir_rewrite_index_src_single(pre_use, i, idx); |
| } |
| } |
| } |
| } |
| |
| free(alur); |
| free(aluw); |
| free(brar); |
| free(ldst); |
| free(texr); |
| free(texw); |
| } |
| |
| static void |
| mir_compute_interference( |
| compiler_context *ctx, |
| struct lcra_state *l) |
| { |
| /* First, we need liveness information to be computed per block */ |
| mir_compute_liveness(ctx); |
| |
| /* We need to force r1.w live throughout a blend shader */ |
| |
| if (ctx->inputs->is_blend) { |
| unsigned r1w = ~0; |
| |
| mir_foreach_block(ctx, _block) { |
| midgard_block *block = (midgard_block *) _block; |
| mir_foreach_instr_in_block_rev(block, ins) { |
| if (ins->writeout) |
| r1w = ins->dest; |
| } |
| |
| if (r1w != ~0) |
| break; |
| } |
| |
| mir_foreach_instr_global(ctx, ins) { |
| if (ins->dest < ctx->temp_count) |
| lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF); |
| } |
| } |
| |
| /* Now that every block has live_in/live_out computed, we can determine |
| * interference by walking each block linearly. Take live_out at the |
| * end of each block and walk the block backwards. */ |
| |
| mir_foreach_block(ctx, _blk) { |
| midgard_block *blk = (midgard_block *) _blk; |
| |
| /* The scalar and vector units run in parallel. We need to make |
| * sure they don't write to same portion of the register file |
| * otherwise the result is undefined. Add interferences to |
| * avoid this situation. |
| */ |
| util_dynarray_foreach(&blk->bundles, midgard_bundle, bundle) { |
| midgard_instruction *instrs[2][4]; |
| unsigned instr_count[2] = { 0, 0 }; |
| |
| for (unsigned i = 0; i < bundle->instruction_count; i++) { |
| if (bundle->instructions[i]->unit == UNIT_VMUL || |
| bundle->instructions[i]->unit == UNIT_SADD) |
| instrs[0][instr_count[0]++] = bundle->instructions[i]; |
| else |
| instrs[1][instr_count[1]++] = bundle->instructions[i]; |
| } |
| |
| for (unsigned i = 0; i < ARRAY_SIZE(instr_count); i++) { |
| for (unsigned j = 0; j < instr_count[i]; j++) { |
| midgard_instruction *ins_a = instrs[i][j]; |
| |
| if (ins_a->dest >= ctx->temp_count) continue; |
| |
| for (unsigned k = j + 1; k < instr_count[i]; k++) { |
| midgard_instruction *ins_b = instrs[i][k]; |
| |
| if (ins_b->dest >= ctx->temp_count) continue; |
| |
| lcra_add_node_interference(l, ins_b->dest, |
| mir_bytemask(ins_b), |
| ins_a->dest, |
| mir_bytemask(ins_a)); |
| } |
| } |
| } |
| } |
| |
| uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t)); |
| |
| mir_foreach_instr_in_block_rev(blk, ins) { |
| /* Mark all registers live after the instruction as |
| * interfering with the destination */ |
| |
| unsigned dest = ins->dest; |
| |
| if (dest < ctx->temp_count) { |
| for (unsigned i = 0; i < ctx->temp_count; ++i) { |
| if (live[i]) { |
| unsigned mask = mir_bytemask(ins); |
| lcra_add_node_interference(l, dest, mask, i, live[i]); |
| } |
| } |
| } |
| |
| /* Add blend shader interference: blend shaders might |
| * clobber r0-r3. */ |
| if (ins->compact_branch && ins->writeout) { |
| for (unsigned i = 0; i < ctx->temp_count; ++i) { |
| if (!live[i]) |
| continue; |
| |
| for (unsigned j = 0; j < 4; j++) { |
| lcra_add_node_interference(l, ctx->temp_count + j, |
| 0xFFFF, |
| i, live[i]); |
| } |
| } |
| } |
| |
| /* Update live_in */ |
| mir_liveness_ins_update(live, ins, ctx->temp_count); |
| } |
| |
| free(live); |
| } |
| } |
| |
| static bool |
| mir_is_64(midgard_instruction *ins) |
| { |
| if (nir_alu_type_get_type_size(ins->dest_type) == 64) |
| return true; |
| |
| mir_foreach_src(ins, v) { |
| if (nir_alu_type_get_type_size(ins->src_types[v]) == 64) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Determine if a shader needs a contiguous workgroup. This impacts register |
| * allocation. TODO: Optimize if barriers and local memory are unused. |
| */ |
| static bool |
| needs_contiguous_workgroup(compiler_context *ctx) |
| { |
| return gl_shader_stage_uses_workgroup(ctx->stage); |
| } |
| |
| /* |
| * Determine an upper-bound on the number of threads in a workgroup. The GL |
| * driver reports 128 for the maximum number of threads (the minimum-maximum in |
| * OpenGL ES 3.1), so we pessimistically assume 128 threads for variable |
| * workgroups. |
| */ |
| static unsigned |
| max_threads_per_workgroup(compiler_context *ctx) |
| { |
| if (ctx->nir->info.workgroup_size_variable) { |
| return 128; |
| } else { |
| return ctx->nir->info.workgroup_size[0] * |
| ctx->nir->info.workgroup_size[1] * |
| ctx->nir->info.workgroup_size[2]; |
| } |
| } |
| |
| /* |
| * Calculate the maximum number of work registers available to the shader. |
| * Architecturally, Midgard shaders may address up to 16 work registers, but |
| * various features impose other limits: |
| * |
| * 1. Blend shaders are limited to 8 registers by ABI. |
| * 2. If there are more than 8 register-mapped uniforms, then additional |
| * register-mapped uniforms use space that otherwise would be used for work |
| * registers. |
| * 3. If more than 4 registers are used, at most 128 threads may be spawned. If |
| * more than 8 registers are used, at most 64 threads may be spawned. These |
| * limits are architecturally visible in compute kernels that require an |
| * entire workgroup to be spawned at once (for barriers or local memory to |
| * work properly). |
| */ |
| static unsigned |
| max_work_registers(compiler_context *ctx) |
| { |
| if (ctx->inputs->is_blend) |
| return 8; |
| |
| unsigned rmu_vec4 = ctx->info->push.count / 4; |
| unsigned max_work_registers = (rmu_vec4 >= 8) ? (24 - rmu_vec4) : 16; |
| |
| if (needs_contiguous_workgroup(ctx)) { |
| unsigned threads = max_threads_per_workgroup(ctx); |
| assert(threads <= 128 && "maximum threads in ABI exceeded"); |
| |
| if (threads > 64) |
| max_work_registers = MIN2(max_work_registers, 8); |
| } |
| |
| return max_work_registers; |
| } |
| |
| /* This routine performs the actual register allocation. It should be succeeded |
| * by install_registers */ |
| |
| static struct lcra_state * |
| allocate_registers(compiler_context *ctx, bool *spilled) |
| { |
| int work_count = max_work_registers(ctx); |
| |
| /* No register allocation to do with no SSA */ |
| |
| if (!ctx->temp_count) |
| return NULL; |
| |
| /* Initialize LCRA. Allocate extra node at the end for r1-r3 for |
| * interference */ |
| |
| struct lcra_state *l = lcra_alloc_equations(ctx->temp_count + 4, 5); |
| unsigned node_r1 = ctx->temp_count + 1; |
| |
| /* Starts of classes, in bytes */ |
| l->class_start[REG_CLASS_WORK] = 16 * 0; |
| l->class_start[REG_CLASS_LDST] = 16 * 26; |
| l->class_start[REG_CLASS_TEXR] = 16 * 28; |
| l->class_start[REG_CLASS_TEXW] = 16 * 28; |
| |
| l->class_size[REG_CLASS_WORK] = 16 * work_count; |
| l->class_size[REG_CLASS_LDST] = 16 * 2; |
| l->class_size[REG_CLASS_TEXR] = 16 * 2; |
| l->class_size[REG_CLASS_TEXW] = 16 * 2; |
| |
| lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW); |
| |
| /* To save space on T*20, we don't have real texture registers. |
| * Instead, tex inputs reuse the load/store pipeline registers, and |
| * tex outputs use work r0/r1. Note we still use TEXR/TEXW classes, |
| * noting that this handles interferences and sizes correctly. */ |
| |
| if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) { |
| l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST]; |
| l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK]; |
| } |
| |
| unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count); |
| unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count); |
| unsigned *min_bound = calloc(sizeof(unsigned), ctx->temp_count); |
| |
| mir_foreach_instr_global(ctx, ins) { |
| /* Swizzles of 32-bit sources on 64-bit instructions need to be |
| * aligned to either bottom (xy) or top (zw). More general |
| * swizzle lowering should happen prior to scheduling (TODO), |
| * but once we get RA we shouldn't disrupt this further. Align |
| * sources of 64-bit instructions. */ |
| |
| if (ins->type == TAG_ALU_4 && mir_is_64(ins)) { |
| mir_foreach_src(ins, v) { |
| unsigned s = ins->src[v]; |
| |
| if (s < ctx->temp_count) |
| min_alignment[s] = MAX2(3, min_alignment[s]); |
| } |
| } |
| |
| if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->op)) { |
| mir_foreach_src(ins, v) { |
| unsigned s = ins->src[v]; |
| unsigned size = nir_alu_type_get_type_size(ins->src_types[v]); |
| |
| if (s < ctx->temp_count) |
| min_alignment[s] = MAX2((size == 64) ? 3 : 2, min_alignment[s]); |
| } |
| } |
| |
| /* Anything read as 16-bit needs proper alignment to ensure the |
| * resulting code can be packed. |
| */ |
| mir_foreach_src(ins, s) { |
| unsigned src_size = nir_alu_type_get_type_size(ins->src_types[s]); |
| if (src_size == 16 && ins->src[s] < SSA_FIXED_MINIMUM) |
| min_bound[ins->src[s]] = MAX2(min_bound[ins->src[s]], 8); |
| } |
| |
| /* Everything after this concerns only the destination, not the |
| * sources. |
| */ |
| if (ins->dest >= SSA_FIXED_MINIMUM) continue; |
| |
| unsigned size = nir_alu_type_get_type_size(ins->dest_type); |
| |
| if (ins->is_pack) |
| size = 32; |
| |
| /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */ |
| int comps1 = util_logbase2(ins->mask); |
| |
| int bytes = (comps1 + 1) * (size / 8); |
| |
| /* Use the largest class if there's ambiguity, this |
| * handles partial writes */ |
| |
| int dest = ins->dest; |
| found_class[dest] = MAX2(found_class[dest], bytes); |
| |
| min_alignment[dest] = |
| MAX2(min_alignment[dest], |
| (size == 16) ? 1 : /* (1 << 1) = 2-byte */ |
| (size == 32) ? 2 : /* (1 << 2) = 4-byte */ |
| (size == 64) ? 3 : /* (1 << 3) = 8-byte */ |
| 3); /* 8-bit todo */ |
| |
| /* We can't cross xy/zw boundaries. TODO: vec8 can */ |
| if (size == 16 && min_alignment[dest] != 4) |
| min_bound[dest] = 8; |
| |
| /* We don't have a swizzle for the conditional and we don't |
| * want to muck with the conditional itself, so just force |
| * alignment for now */ |
| |
| if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->op)) { |
| min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */ |
| |
| /* LCRA assumes bound >= alignment */ |
| min_bound[dest] = 16; |
| } |
| |
| /* Since ld/st swizzles and masks are 32-bit only, we need them |
| * aligned to enable final packing */ |
| if (ins->type == TAG_LOAD_STORE_4) |
| min_alignment[dest] = MAX2(min_alignment[dest], 2); |
| } |
| |
| for (unsigned i = 0; i < ctx->temp_count; ++i) { |
| lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2, |
| min_bound[i] ? min_bound[i] : 16); |
| lcra_restrict_range(l, i, found_class[i]); |
| } |
| |
| free(found_class); |
| free(min_alignment); |
| free(min_bound); |
| |
| /* Next, we'll determine semantic class. We default to zero (work). |
| * But, if we're used with a special operation, that will force us to a |
| * particular class. Each node must be assigned to exactly one class; a |
| * prepass before RA should have lowered what-would-have-been |
| * multiclass nodes into a series of moves to break it up into multiple |
| * nodes (TODO) */ |
| |
| mir_foreach_instr_global(ctx, ins) { |
| /* Check if this operation imposes any classes */ |
| |
| if (ins->type == TAG_LOAD_STORE_4) { |
| set_class(l->class, ins->src[0], REG_CLASS_LDST); |
| set_class(l->class, ins->src[1], REG_CLASS_LDST); |
| set_class(l->class, ins->src[2], REG_CLASS_LDST); |
| set_class(l->class, ins->src[3], REG_CLASS_LDST); |
| |
| if (OP_IS_VEC4_ONLY(ins->op)) { |
| lcra_restrict_range(l, ins->dest, 16); |
| lcra_restrict_range(l, ins->src[0], 16); |
| lcra_restrict_range(l, ins->src[1], 16); |
| lcra_restrict_range(l, ins->src[2], 16); |
| lcra_restrict_range(l, ins->src[3], 16); |
| } |
| } else if (ins->type == TAG_TEXTURE_4) { |
| set_class(l->class, ins->dest, REG_CLASS_TEXW); |
| set_class(l->class, ins->src[0], REG_CLASS_TEXR); |
| set_class(l->class, ins->src[1], REG_CLASS_TEXR); |
| set_class(l->class, ins->src[2], REG_CLASS_TEXR); |
| set_class(l->class, ins->src[3], REG_CLASS_TEXR); |
| } |
| } |
| |
| /* Check that the semantics of the class are respected */ |
| mir_foreach_instr_global(ctx, ins) { |
| assert(check_write_class(l->class, ins->type, ins->dest)); |
| assert(check_read_class(l->class, ins->type, ins->src[0])); |
| assert(check_read_class(l->class, ins->type, ins->src[1])); |
| assert(check_read_class(l->class, ins->type, ins->src[2])); |
| assert(check_read_class(l->class, ins->type, ins->src[3])); |
| } |
| |
| /* Mark writeout to r0, depth to r1.x, stencil to r1.y, |
| * render target to r1.z, unknown to r1.w */ |
| mir_foreach_instr_global(ctx, ins) { |
| if (!(ins->compact_branch && ins->writeout)) continue; |
| |
| if (ins->src[0] < ctx->temp_count) |
| l->solutions[ins->src[0]] = 0; |
| |
| if (ins->src[2] < ctx->temp_count) |
| l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_X * 4; |
| |
| if (ins->src[3] < ctx->temp_count) |
| l->solutions[ins->src[3]] = (16 * 1) + COMPONENT_Y * 4; |
| |
| if (ins->src[1] < ctx->temp_count) |
| l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4; |
| |
| if (ins->dest < ctx->temp_count) |
| l->solutions[ins->dest] = (16 * 1) + COMPONENT_W * 4; |
| } |
| |
| /* Destinations of instructions in a writeout block cannot be assigned |
| * to r1 unless they are actually used as r1 from the writeout itself, |
| * since the writes to r1 are special. A code sequence like: |
| * |
| * sadd.fmov r1.x, [...] |
| * vadd.fadd r0, r1, r2 |
| * [writeout branch] |
| * |
| * will misbehave since the r1.x write will be interpreted as a |
| * gl_FragDepth write so it won't show up correctly when r1 is read in |
| * the following segment. We model this as interference. |
| */ |
| |
| for (unsigned i = 0; i < 4; ++i) |
| l->solutions[ctx->temp_count + i] = (16 * i); |
| |
| mir_foreach_block(ctx, _blk) { |
| midgard_block *blk = (midgard_block *) _blk; |
| |
| mir_foreach_bundle_in_block(blk, v) { |
| /* We need at least a writeout and nonwriteout instruction */ |
| if (v->instruction_count < 2) |
| continue; |
| |
| /* Branches always come at the end */ |
| midgard_instruction *br = v->instructions[v->instruction_count - 1]; |
| |
| if (!br->writeout) |
| continue; |
| |
| for (signed i = v->instruction_count - 2; i >= 0; --i) { |
| midgard_instruction *ins = v->instructions[i]; |
| |
| if (ins->dest >= ctx->temp_count) |
| continue; |
| |
| bool used_as_r1 = (br->dest == ins->dest); |
| |
| mir_foreach_src(br, s) |
| used_as_r1 |= (s > 0) && (br->src[s] == ins->dest); |
| |
| if (!used_as_r1) |
| lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), node_r1, 0xFFFF); |
| } |
| } |
| } |
| |
| /* Precolour blend input to r0. Note writeout is necessarily at the end |
| * and blend shaders are single-RT only so there is only a single |
| * writeout block, so this cannot conflict with the writeout r0 (there |
| * is no need to have an intermediate move) */ |
| |
| if (ctx->blend_input != ~0) { |
| assert(ctx->blend_input < ctx->temp_count); |
| l->solutions[ctx->blend_input] = 0; |
| } |
| |
| /* Same for the dual-source blend input/output, except here we use r2, |
| * which is also set in the fragment shader. */ |
| |
| if (ctx->blend_src1 != ~0) { |
| assert(ctx->blend_src1 < ctx->temp_count); |
| l->solutions[ctx->blend_src1] = (16 * 2); |
| ctx->info->work_reg_count = MAX2(ctx->info->work_reg_count, 3); |
| } |
| |
| mir_compute_interference(ctx, l); |
| |
| *spilled = !lcra_solve(l); |
| return l; |
| } |
| |
| |
| /* Once registers have been decided via register allocation |
| * (allocate_registers), we need to rewrite the MIR to use registers instead of |
| * indices */ |
| |
| static void |
| install_registers_instr( |
| compiler_context *ctx, |
| struct lcra_state *l, |
| midgard_instruction *ins) |
| { |
| unsigned src_shift[MIR_SRC_COUNT]; |
| |
| for (unsigned i = 0; i < MIR_SRC_COUNT; ++i) { |
| src_shift[i] = |
| util_logbase2(nir_alu_type_get_type_size(ins->src_types[i]) / 8); |
| } |
| |
| unsigned dest_shift = |
| util_logbase2(nir_alu_type_get_type_size(ins->dest_type) / 8); |
| |
| switch (ins->type) { |
| case TAG_ALU_4: |
| case TAG_ALU_8: |
| case TAG_ALU_12: |
| case TAG_ALU_16: { |
| if (ins->compact_branch) |
| return; |
| |
| struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], src_shift[0]); |
| struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], src_shift[1]); |
| struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift); |
| |
| mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset); |
| |
| unsigned dest_offset = |
| GET_CHANNEL_COUNT(alu_opcode_props[ins->op].props) ? 0 : |
| dest.offset; |
| |
| offset_swizzle(ins->swizzle[0], src1.offset, src1.shift, dest.shift, dest_offset); |
| if (!ins->has_inline_constant) |
| offset_swizzle(ins->swizzle[1], src2.offset, src2.shift, dest.shift, dest_offset); |
| if (ins->src[0] != ~0) |
| ins->src[0] = SSA_FIXED_REGISTER(src1.reg); |
| if (ins->src[1] != ~0) |
| ins->src[1] = SSA_FIXED_REGISTER(src2.reg); |
| if (ins->dest != ~0) |
| ins->dest = SSA_FIXED_REGISTER(dest.reg); |
| break; |
| } |
| |
| case TAG_LOAD_STORE_4: { |
| /* Which physical register we read off depends on |
| * whether we are loading or storing -- think about the |
| * logical dataflow */ |
| |
| bool encodes_src = OP_IS_STORE(ins->op); |
| |
| if (encodes_src) { |
| struct phys_reg src = index_to_reg(ctx, l, ins->src[0], src_shift[0]); |
| assert(src.reg == 26 || src.reg == 27); |
| |
| ins->src[0] = SSA_FIXED_REGISTER(src.reg); |
| offset_swizzle(ins->swizzle[0], src.offset, src.shift, 0, 0); |
| } else { |
| struct phys_reg dst = index_to_reg(ctx, l, ins->dest, dest_shift); |
| |
| ins->dest = SSA_FIXED_REGISTER(dst.reg); |
| offset_swizzle(ins->swizzle[0], 0, 2, dest_shift, dst.offset); |
| mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset); |
| } |
| |
| /* We also follow up by actual arguments */ |
| |
| for (int i = 1; i <= 3; i++) { |
| unsigned src_index = ins->src[i]; |
| if (src_index != ~0) { |
| struct phys_reg src = index_to_reg(ctx, l, src_index, src_shift[i]); |
| unsigned component = src.offset >> src.shift; |
| assert(component << src.shift == src.offset); |
| ins->src[i] = SSA_FIXED_REGISTER(src.reg); |
| ins->swizzle[i][0] += component; |
| } |
| } |
| |
| break; |
| } |
| |
| case TAG_TEXTURE_4: { |
| if (ins->op == midgard_tex_op_barrier) |
| break; |
| |
| /* Grab RA results */ |
| struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift); |
| struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], src_shift[1]); |
| struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], src_shift[2]); |
| struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], src_shift[3]); |
| |
| /* First, install the texture coordinate */ |
| if (ins->src[1] != ~0) |
| ins->src[1] = SSA_FIXED_REGISTER(coord.reg); |
| offset_swizzle(ins->swizzle[1], coord.offset, coord.shift, dest.shift, 0); |
| |
| /* Next, install the destination */ |
| if (ins->dest != ~0) |
| ins->dest = SSA_FIXED_REGISTER(dest.reg); |
| offset_swizzle(ins->swizzle[0], 0, 2, dest.shift, |
| dest_shift == 1 ? dest.offset % 8 : |
| dest.offset); |
| mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset); |
| |
| /* If there is a register LOD/bias, use it */ |
| if (ins->src[2] != ~0) { |
| assert(!(lod.offset & 3)); |
| ins->src[2] = SSA_FIXED_REGISTER(lod.reg); |
| ins->swizzle[2][0] = lod.offset / 4; |
| } |
| |
| /* If there is an offset register, install it */ |
| if (ins->src[3] != ~0) { |
| ins->src[3] = SSA_FIXED_REGISTER(offset.reg); |
| ins->swizzle[3][0] = offset.offset / 4; |
| } |
| |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| static void |
| install_registers(compiler_context *ctx, struct lcra_state *l) |
| { |
| mir_foreach_instr_global(ctx, ins) |
| install_registers_instr(ctx, l, ins); |
| } |
| |
| |
| /* If register allocation fails, find the best spill node */ |
| |
| static signed |
| mir_choose_spill_node( |
| compiler_context *ctx, |
| struct lcra_state *l) |
| { |
| /* We can't spill a previously spilled value or an unspill */ |
| |
| mir_foreach_instr_global(ctx, ins) { |
| if (ins->no_spill & (1 << l->spill_class)) { |
| lcra_set_node_spill_cost(l, ins->dest, -1); |
| |
| if (l->spill_class != REG_CLASS_WORK) { |
| mir_foreach_src(ins, s) |
| lcra_set_node_spill_cost(l, ins->src[s], -1); |
| } |
| } |
| } |
| |
| return lcra_get_best_spill_node(l); |
| } |
| |
| /* Once we've chosen a spill node, spill it */ |
| |
| static void |
| mir_spill_register( |
| compiler_context *ctx, |
| unsigned spill_node, |
| unsigned spill_class, |
| unsigned *spill_count) |
| { |
| if (spill_class == REG_CLASS_WORK && ctx->inputs->is_blend) |
| unreachable("Blend shader spilling is currently unimplemented"); |
| |
| unsigned spill_index = ctx->temp_count; |
| |
| /* We have a spill node, so check the class. Work registers |
| * legitimately spill to TLS, but special registers just spill to work |
| * registers */ |
| |
| bool is_special = spill_class != REG_CLASS_WORK; |
| bool is_special_w = spill_class == REG_CLASS_TEXW; |
| |
| /* Allocate TLS slot (maybe) */ |
| unsigned spill_slot = !is_special ? (*spill_count)++ : 0; |
| |
| /* For special reads, figure out how many bytes we need */ |
| unsigned read_bytemask = 0; |
| |
| /* If multiple instructions write to this destination, we'll have to |
| * fill from TLS before writing */ |
| unsigned write_count = 0; |
| |
| mir_foreach_instr_global_safe(ctx, ins) { |
| read_bytemask |= mir_bytemask_of_read_components(ins, spill_node); |
| if (ins->dest == spill_node) |
| ++write_count; |
| } |
| |
| /* For TLS, replace all stores to the spilled node. For |
| * special reads, just keep as-is; the class will be demoted |
| * implicitly. For special writes, spill to a work register */ |
| |
| if (!is_special || is_special_w) { |
| if (is_special_w) |
| spill_slot = spill_index++; |
| |
| unsigned last_id = ~0; |
| unsigned last_fill = ~0; |
| unsigned last_spill_index = ~0; |
| midgard_instruction *last_spill = NULL; |
| |
| mir_foreach_block(ctx, _block) { |
| midgard_block *block = (midgard_block *) _block; |
| mir_foreach_instr_in_block_safe(block, ins) { |
| if (ins->dest != spill_node) continue; |
| |
| /* Note: it's important to match the mask of the spill |
| * with the mask of the instruction whose destination |
| * we're spilling, or otherwise we'll read invalid |
| * components and can fail RA in a subsequent iteration |
| */ |
| |
| if (is_special_w) { |
| midgard_instruction st = v_mov(spill_node, spill_slot); |
| st.no_spill |= (1 << spill_class); |
| st.mask = ins->mask; |
| st.dest_type = st.src_types[1] = ins->dest_type; |
| |
| /* Hint: don't rewrite this node */ |
| st.hint = true; |
| |
| mir_insert_instruction_after_scheduled(ctx, block, ins, st); |
| } else { |
| unsigned bundle = ins->bundle_id; |
| unsigned dest = (bundle == last_id)? last_spill_index : spill_index++; |
| |
| unsigned bytemask = mir_bytemask(ins); |
| unsigned write_mask = mir_from_bytemask(mir_round_bytemask_up( |
| bytemask, 32), 32); |
| |
| if (write_count > 1 && bytemask != 0xFFFF && bundle != last_fill) { |
| midgard_instruction read = |
| v_load_store_scratch(dest, spill_slot, false, 0xF); |
| mir_insert_instruction_before_scheduled(ctx, block, ins, read); |
| write_mask = 0xF; |
| last_fill = bundle; |
| } |
| |
| ins->dest = dest; |
| ins->no_spill |= (1 << spill_class); |
| |
| bool move = false; |
| |
| /* In the same bundle, reads of the destination |
| * of the spilt instruction need to be direct */ |
| midgard_instruction *it = ins; |
| while ((it = list_first_entry(&it->link, midgard_instruction, link)) |
| && (it->bundle_id == bundle)) { |
| |
| if (!mir_has_arg(it, spill_node)) continue; |
| |
| mir_rewrite_index_src_single(it, spill_node, dest); |
| |
| /* The spilt instruction will write to |
| * a work register for `it` to read but |
| * the spill needs an LD/ST register */ |
| move = true; |
| } |
| |
| if (move) |
| dest = spill_index++; |
| |
| if (last_id == bundle) { |
| last_spill->mask |= write_mask; |
| u_foreach_bit(c, write_mask) |
| last_spill->swizzle[0][c] = c; |
| } else { |
| midgard_instruction st = |
| v_load_store_scratch(dest, spill_slot, true, write_mask); |
| last_spill = mir_insert_instruction_after_scheduled(ctx, block, ins, st); |
| } |
| |
| if (move) { |
| midgard_instruction mv = v_mov(ins->dest, dest); |
| mv.no_spill |= (1 << spill_class); |
| |
| mir_insert_instruction_after_scheduled(ctx, block, ins, mv); |
| } |
| |
| last_id = bundle; |
| last_spill_index = ins->dest; |
| } |
| |
| if (!is_special) |
| ctx->spills++; |
| } |
| } |
| } |
| |
| /* Insert a load from TLS before the first consecutive |
| * use of the node, rewriting to use spilled indices to |
| * break up the live range. Or, for special, insert a |
| * move. Ironically the latter *increases* register |
| * pressure, but the two uses of the spilling mechanism |
| * are somewhat orthogonal. (special spilling is to use |
| * work registers to back special registers; TLS |
| * spilling is to use memory to back work registers) */ |
| |
| mir_foreach_block(ctx, _block) { |
| midgard_block *block = (midgard_block *) _block; |
| mir_foreach_instr_in_block(block, ins) { |
| /* We can't rewrite the moves used to spill in the |
| * first place. These moves are hinted. */ |
| if (ins->hint) continue; |
| |
| /* If we don't use the spilled value, nothing to do */ |
| if (!mir_has_arg(ins, spill_node)) continue; |
| |
| unsigned index = 0; |
| |
| if (!is_special_w) { |
| index = ++spill_index; |
| |
| midgard_instruction *before = ins; |
| midgard_instruction st; |
| |
| if (is_special) { |
| /* Move */ |
| st = v_mov(spill_node, index); |
| st.no_spill |= (1 << spill_class); |
| } else { |
| /* TLS load */ |
| st = v_load_store_scratch(index, spill_slot, false, 0xF); |
| } |
| |
| /* Mask the load based on the component count |
| * actually needed to prevent RA loops */ |
| |
| st.mask = mir_from_bytemask(mir_round_bytemask_up( |
| read_bytemask, 32), 32); |
| |
| mir_insert_instruction_before_scheduled(ctx, block, before, st); |
| } else { |
| /* Special writes already have their move spilled in */ |
| index = spill_slot; |
| } |
| |
| |
| /* Rewrite to use */ |
| mir_rewrite_index_src_single(ins, spill_node, index); |
| |
| if (!is_special) |
| ctx->fills++; |
| } |
| } |
| |
| /* Reset hints */ |
| |
| mir_foreach_instr_global(ctx, ins) { |
| ins->hint = false; |
| } |
| } |
| |
| static void |
| mir_demote_uniforms(compiler_context *ctx, unsigned new_cutoff) |
| { |
| unsigned uniforms = ctx->info->push.count / 4; |
| unsigned old_work_count = 16 - MAX2(uniforms - 8, 0); |
| unsigned work_count = 16 - MAX2((new_cutoff - 8), 0); |
| |
| unsigned min_demote = SSA_FIXED_REGISTER(old_work_count); |
| unsigned max_demote = SSA_FIXED_REGISTER(work_count); |
| |
| mir_foreach_block(ctx, _block) { |
| midgard_block *block = (midgard_block *) _block; |
| mir_foreach_instr_in_block(block, ins) { |
| mir_foreach_src(ins, i) { |
| if (ins->src[i] < min_demote || ins->src[i] >= max_demote) |
| continue; |
| |
| midgard_instruction *before = ins; |
| |
| unsigned temp = make_compiler_temp(ctx); |
| unsigned idx = (23 - SSA_REG_FROM_FIXED(ins->src[i])) * 4; |
| assert(idx < ctx->info->push.count); |
| |
| ctx->ubo_mask |= BITSET_BIT(ctx->info->push.words[idx].ubo); |
| |
| midgard_instruction ld = { |
| .type = TAG_LOAD_STORE_4, |
| .mask = 0xF, |
| .dest = temp, |
| .dest_type = ins->src_types[i], |
| .src = { ~0, ~0, ~0, ~0 }, |
| .swizzle = SWIZZLE_IDENTITY_4, |
| .op = midgard_op_ld_ubo_128, |
| .load_store = { |
| .index_reg = REGISTER_LDST_ZERO, |
| }, |
| .constants.u32[0] = ctx->info->push.words[idx].offset |
| }; |
| |
| midgard_pack_ubo_index_imm(&ld.load_store, |
| ctx->info->push.words[idx].ubo); |
| |
| mir_insert_instruction_before_scheduled(ctx, block, before, ld); |
| |
| mir_rewrite_index_src_single(ins, ins->src[i], temp); |
| } |
| } |
| } |
| |
| ctx->info->push.count = MIN2(ctx->info->push.count, new_cutoff * 4); |
| } |
| |
| /* Run register allocation in a loop, spilling until we succeed */ |
| |
| void |
| mir_ra(compiler_context *ctx) |
| { |
| struct lcra_state *l = NULL; |
| bool spilled = false; |
| int iter_count = 1000; /* max iterations */ |
| |
| /* Number of 128-bit slots in memory we've spilled into */ |
| unsigned spill_count = DIV_ROUND_UP(ctx->info->tls_size, 16); |
| |
| |
| mir_create_pipeline_registers(ctx); |
| |
| do { |
| if (spilled) { |
| signed spill_node = mir_choose_spill_node(ctx, l); |
| unsigned uniforms = ctx->info->push.count / 4; |
| |
| /* It's a lot cheaper to demote uniforms to get more |
| * work registers than to spill to TLS. */ |
| if (l->spill_class == REG_CLASS_WORK && uniforms > 8) { |
| mir_demote_uniforms(ctx, MAX2(uniforms - 4, 8)); |
| } else if (spill_node == -1) { |
| fprintf(stderr, "ERROR: Failed to choose spill node\n"); |
| lcra_free(l); |
| return; |
| } else { |
| mir_spill_register(ctx, spill_node, l->spill_class, &spill_count); |
| } |
| } |
| |
| mir_squeeze_index(ctx); |
| mir_invalidate_liveness(ctx); |
| |
| if (l) { |
| lcra_free(l); |
| l = NULL; |
| } |
| |
| l = allocate_registers(ctx, &spilled); |
| } while(spilled && ((iter_count--) > 0)); |
| |
| if (iter_count <= 0) { |
| fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n"); |
| assert(0); |
| } |
| |
| /* Report spilling information. spill_count is in 128-bit slots (vec4 x |
| * fp32), but tls_size is in bytes, so multiply by 16 */ |
| |
| ctx->info->tls_size = spill_count * 16; |
| |
| install_registers(ctx, l); |
| |
| lcra_free(l); |
| } |