| /* |
| * Copyright © 2017 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "common/intel_decoder.h" |
| #include "intel_disasm.h" |
| #include "util/macros.h" |
| #include "util/u_math.h" /* Needed for ROUND_DOWN_TO */ |
| |
| #include <string.h> |
| |
| void |
| intel_batch_decode_ctx_init(struct intel_batch_decode_ctx *ctx, |
| const struct brw_isa_info *isa, |
| const struct intel_device_info *devinfo, |
| FILE *fp, enum intel_batch_decode_flags flags, |
| const char *xml_path, |
| struct intel_batch_decode_bo (*get_bo)(void *, |
| bool, |
| uint64_t), |
| unsigned (*get_state_size)(void *, uint64_t, |
| uint64_t), |
| void *user_data) |
| { |
| memset(ctx, 0, sizeof(*ctx)); |
| |
| ctx->isa = isa; |
| ctx->devinfo = *devinfo; |
| ctx->get_bo = get_bo; |
| ctx->get_state_size = get_state_size; |
| ctx->user_data = user_data; |
| ctx->fp = fp; |
| ctx->flags = flags; |
| ctx->max_vbo_decoded_lines = -1; /* No limit! */ |
| ctx->engine = INTEL_ENGINE_CLASS_RENDER; |
| |
| if (xml_path == NULL) |
| ctx->spec = intel_spec_load(devinfo); |
| else |
| ctx->spec = intel_spec_load_from_path(devinfo, xml_path); |
| } |
| |
| void |
| intel_batch_decode_ctx_finish(struct intel_batch_decode_ctx *ctx) |
| { |
| intel_spec_destroy(ctx->spec); |
| } |
| |
| #define CSI "\e[" |
| #define RED_COLOR CSI "31m" |
| #define BLUE_HEADER CSI "0;44m" CSI "1;37m" |
| #define GREEN_HEADER CSI "1;42m" |
| #define NORMAL CSI "0m" |
| |
| static void |
| ctx_print_group(struct intel_batch_decode_ctx *ctx, |
| struct intel_group *group, |
| uint64_t address, const void *map) |
| { |
| intel_print_group(ctx->fp, group, address, map, 0, |
| (ctx->flags & INTEL_BATCH_DECODE_IN_COLOR) != 0); |
| } |
| |
| static struct intel_batch_decode_bo |
| ctx_get_bo(struct intel_batch_decode_ctx *ctx, bool ppgtt, uint64_t addr) |
| { |
| if (intel_spec_get_gen(ctx->spec) >= intel_make_gen(8,0)) { |
| /* On Broadwell and above, we have 48-bit addresses which consume two |
| * dwords. Some packets require that these get stored in a "canonical |
| * form" which means that bit 47 is sign-extended through the upper |
| * bits. In order to correctly handle those aub dumps, we need to mask |
| * off the top 16 bits. |
| */ |
| addr &= (~0ull >> 16); |
| } |
| |
| struct intel_batch_decode_bo bo = ctx->get_bo(ctx->user_data, ppgtt, addr); |
| |
| if (intel_spec_get_gen(ctx->spec) >= intel_make_gen(8,0)) |
| bo.addr &= (~0ull >> 16); |
| |
| /* We may actually have an offset into the bo */ |
| if (bo.map != NULL) { |
| assert(bo.addr <= addr); |
| uint64_t offset = addr - bo.addr; |
| bo.map += offset; |
| bo.addr += offset; |
| bo.size -= offset; |
| } |
| |
| return bo; |
| } |
| |
| static int |
| update_count(struct intel_batch_decode_ctx *ctx, |
| uint64_t address, |
| uint64_t base_address, |
| unsigned element_dwords, |
| unsigned guess) |
| { |
| unsigned size = 0; |
| |
| if (ctx->get_state_size) |
| size = ctx->get_state_size(ctx->user_data, address, base_address); |
| |
| if (size > 0) |
| return size / (sizeof(uint32_t) * element_dwords); |
| |
| /* In the absence of any information, just guess arbitrarily. */ |
| return guess; |
| } |
| |
| static void |
| ctx_disassemble_program(struct intel_batch_decode_ctx *ctx, |
| uint32_t ksp, const char *type) |
| { |
| uint64_t addr = ctx->instruction_base + ksp; |
| struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, addr); |
| if (!bo.map) |
| return; |
| |
| fprintf(ctx->fp, "\nReferenced %s:\n", type); |
| intel_disassemble(ctx->isa, bo.map, 0, ctx->fp); |
| } |
| |
| /* Heuristic to determine whether a uint32_t is probably actually a float |
| * (http://stackoverflow.com/a/2953466) |
| */ |
| |
| static bool |
| probably_float(uint32_t bits) |
| { |
| int exp = ((bits & 0x7f800000U) >> 23) - 127; |
| uint32_t mant = bits & 0x007fffff; |
| |
| /* +- 0.0 */ |
| if (exp == -127 && mant == 0) |
| return true; |
| |
| /* +- 1 billionth to 1 billion */ |
| if (-30 <= exp && exp <= 30) |
| return true; |
| |
| /* some value with only a few binary digits */ |
| if ((mant & 0x0000ffff) == 0) |
| return true; |
| |
| return false; |
| } |
| |
| static void |
| ctx_print_buffer(struct intel_batch_decode_ctx *ctx, |
| struct intel_batch_decode_bo bo, |
| uint32_t read_length, |
| uint32_t pitch, |
| int max_lines) |
| { |
| const uint32_t *dw_end = |
| bo.map + ROUND_DOWN_TO(MIN2(bo.size, read_length), 4); |
| |
| int column_count = 0, pitch_col_count = 0, line_count = -1; |
| for (const uint32_t *dw = bo.map; dw < dw_end; dw++) { |
| if (pitch_col_count * 4 == pitch || column_count == 8) { |
| fprintf(ctx->fp, "\n"); |
| column_count = 0; |
| if (pitch_col_count * 4 == pitch) |
| pitch_col_count = 0; |
| line_count++; |
| |
| if (max_lines >= 0 && line_count >= max_lines) |
| break; |
| } |
| fprintf(ctx->fp, column_count == 0 ? " " : " "); |
| |
| if ((ctx->flags & INTEL_BATCH_DECODE_FLOATS) && probably_float(*dw)) |
| fprintf(ctx->fp, " %8.2f", *(float *) dw); |
| else |
| fprintf(ctx->fp, " 0x%08x", *dw); |
| |
| column_count++; |
| pitch_col_count++; |
| } |
| fprintf(ctx->fp, "\n"); |
| } |
| |
| static struct intel_group * |
| intel_ctx_find_instruction(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| return intel_spec_find_instruction(ctx->spec, ctx->engine, p); |
| } |
| |
| static void |
| handle_state_base_address(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| |
| uint64_t surface_base = 0, dynamic_base = 0, instruction_base = 0; |
| bool surface_modify = 0, dynamic_modify = 0, instruction_modify = 0; |
| |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Surface State Base Address") == 0) { |
| surface_base = iter.raw_value; |
| } else if (strcmp(iter.name, "Dynamic State Base Address") == 0) { |
| dynamic_base = iter.raw_value; |
| } else if (strcmp(iter.name, "Instruction Base Address") == 0) { |
| instruction_base = iter.raw_value; |
| } else if (strcmp(iter.name, "Surface State Base Address Modify Enable") == 0) { |
| surface_modify = iter.raw_value; |
| } else if (strcmp(iter.name, "Dynamic State Base Address Modify Enable") == 0) { |
| dynamic_modify = iter.raw_value; |
| } else if (strcmp(iter.name, "Instruction Base Address Modify Enable") == 0) { |
| instruction_modify = iter.raw_value; |
| } |
| } |
| |
| if (dynamic_modify) |
| ctx->dynamic_base = dynamic_base; |
| |
| if (surface_modify) |
| ctx->surface_base = surface_base; |
| |
| if (instruction_modify) |
| ctx->instruction_base = instruction_base; |
| } |
| |
| static void |
| handle_binding_table_pool_alloc(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| |
| uint64_t bt_pool_base = 0; |
| bool bt_pool_enable = false; |
| |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Binding Table Pool Base Address") == 0) { |
| bt_pool_base = iter.raw_value; |
| } else if (strcmp(iter.name, "Binding Table Pool Enable") == 0) { |
| bt_pool_enable = iter.raw_value; |
| } |
| } |
| |
| if (bt_pool_enable || ctx->devinfo.verx10 >= 125) { |
| ctx->bt_pool_base = bt_pool_base; |
| } else { |
| ctx->bt_pool_base = 0; |
| } |
| } |
| |
| static void |
| dump_binding_table(struct intel_batch_decode_ctx *ctx, |
| uint32_t offset, int count) |
| { |
| struct intel_group *strct = |
| intel_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE"); |
| if (strct == NULL) { |
| fprintf(ctx->fp, "did not find RENDER_SURFACE_STATE info\n"); |
| return; |
| } |
| |
| /* Most platforms use a 16-bit pointer with 32B alignment in bits 15:5. */ |
| uint32_t btp_alignment = 32; |
| uint32_t btp_pointer_bits = 16; |
| |
| if (ctx->devinfo.verx10 >= 125) { |
| /* The pointer is now 21-bit with 32B alignment in bits 20:5. */ |
| btp_pointer_bits = 21; |
| } else if (ctx->use_256B_binding_tables) { |
| /* When 256B binding tables are enabled, we have to shift the offset |
| * which is stored in bits 15:5 but interpreted as bits 18:8 of the |
| * actual offset. The effective pointer is 19-bit with 256B alignment. |
| */ |
| offset <<= 3; |
| btp_pointer_bits = 19; |
| btp_alignment = 256; |
| } |
| |
| const uint64_t bt_pool_base = ctx->bt_pool_base ? ctx->bt_pool_base : |
| ctx->surface_base; |
| |
| if (count < 0) { |
| count = update_count(ctx, bt_pool_base + offset, |
| bt_pool_base, 1, 8); |
| } |
| |
| if (offset % btp_alignment != 0 || offset >= (1u << btp_pointer_bits)) { |
| fprintf(ctx->fp, " invalid binding table pointer\n"); |
| return; |
| } |
| |
| struct intel_batch_decode_bo bind_bo = |
| ctx_get_bo(ctx, true, bt_pool_base + offset); |
| |
| if (bind_bo.map == NULL) { |
| fprintf(ctx->fp, " binding table unavailable\n"); |
| return; |
| } |
| |
| const uint32_t *pointers = bind_bo.map; |
| for (int i = 0; i < count; i++) { |
| if (pointers[i] == 0) |
| continue; |
| |
| uint64_t addr = ctx->surface_base + pointers[i]; |
| struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, addr); |
| uint32_t size = strct->dw_length * 4; |
| |
| if (pointers[i] % 32 != 0 || |
| addr < bo.addr || addr + size >= bo.addr + bo.size) { |
| fprintf(ctx->fp, "pointer %u: 0x%08x <not valid>\n", i, pointers[i]); |
| continue; |
| } |
| |
| fprintf(ctx->fp, "pointer %u: 0x%08x\n", i, pointers[i]); |
| ctx_print_group(ctx, strct, addr, bo.map + (addr - bo.addr)); |
| } |
| } |
| |
| static void |
| dump_samplers(struct intel_batch_decode_ctx *ctx, uint32_t offset, int count) |
| { |
| struct intel_group *strct = intel_spec_find_struct(ctx->spec, "SAMPLER_STATE"); |
| uint64_t state_addr = ctx->dynamic_base + offset; |
| |
| assert(count > 0); |
| |
| struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, state_addr); |
| const void *state_map = bo.map; |
| |
| if (state_map == NULL) { |
| fprintf(ctx->fp, " samplers unavailable\n"); |
| return; |
| } |
| |
| if (offset % 32 != 0) { |
| fprintf(ctx->fp, " invalid sampler state pointer\n"); |
| return; |
| } |
| |
| const unsigned sampler_state_size = strct->dw_length * 4; |
| |
| if (count * sampler_state_size >= bo.size) { |
| fprintf(ctx->fp, " sampler state ends after bo ends\n"); |
| assert(!"sampler state ends after bo ends"); |
| return; |
| } |
| |
| for (int i = 0; i < count; i++) { |
| fprintf(ctx->fp, "sampler state %d\n", i); |
| ctx_print_group(ctx, strct, state_addr, state_map); |
| state_addr += sampler_state_size; |
| state_map += sampler_state_size; |
| } |
| } |
| |
| static void |
| handle_interface_descriptor_data(struct intel_batch_decode_ctx *ctx, |
| struct intel_group *desc, const uint32_t *p) |
| { |
| uint64_t ksp = 0; |
| uint32_t sampler_offset = 0, sampler_count = 0; |
| uint32_t binding_table_offset = 0, binding_entry_count = 0; |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, desc, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Kernel Start Pointer") == 0) { |
| ksp = strtoll(iter.value, NULL, 16); |
| } else if (strcmp(iter.name, "Sampler State Pointer") == 0) { |
| sampler_offset = strtol(iter.value, NULL, 16); |
| } else if (strcmp(iter.name, "Sampler Count") == 0) { |
| sampler_count = strtol(iter.value, NULL, 10); |
| } else if (strcmp(iter.name, "Binding Table Pointer") == 0) { |
| binding_table_offset = strtol(iter.value, NULL, 16); |
| } else if (strcmp(iter.name, "Binding Table Entry Count") == 0) { |
| binding_entry_count = strtol(iter.value, NULL, 10); |
| } |
| } |
| |
| ctx_disassemble_program(ctx, ksp, "compute shader"); |
| fprintf(ctx->fp, "\n"); |
| |
| if (sampler_count) |
| dump_samplers(ctx, sampler_offset, sampler_count); |
| if (binding_entry_count) |
| dump_binding_table(ctx, binding_table_offset, binding_entry_count); |
| } |
| |
| static void |
| handle_media_interface_descriptor_load(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| struct intel_group *desc = |
| intel_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA"); |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| uint32_t descriptor_offset = 0; |
| int descriptor_count = 0; |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) { |
| descriptor_offset = strtol(iter.value, NULL, 16); |
| } else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) { |
| descriptor_count = |
| strtol(iter.value, NULL, 16) / (desc->dw_length * 4); |
| } |
| } |
| |
| uint64_t desc_addr = ctx->dynamic_base + descriptor_offset; |
| struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, desc_addr); |
| const void *desc_map = bo.map; |
| |
| if (desc_map == NULL) { |
| fprintf(ctx->fp, " interface descriptors unavailable\n"); |
| return; |
| } |
| |
| for (int i = 0; i < descriptor_count; i++) { |
| fprintf(ctx->fp, "descriptor %d: %08x\n", i, descriptor_offset); |
| |
| ctx_print_group(ctx, desc, desc_addr, desc_map); |
| |
| handle_interface_descriptor_data(ctx, desc, desc_map); |
| |
| desc_map += desc->dw_length; |
| desc_addr += desc->dw_length * 4; |
| } |
| } |
| |
| static void |
| handle_compute_walker(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Interface Descriptor") == 0) { |
| handle_interface_descriptor_data(ctx, iter.struct_desc, |
| &iter.p[iter.start_bit / 32]); |
| } |
| } |
| } |
| |
| static void |
| handle_3dstate_vertex_buffers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| struct intel_group *vbs = intel_spec_find_struct(ctx->spec, "VERTEX_BUFFER_STATE"); |
| |
| struct intel_batch_decode_bo vb = {}; |
| uint32_t vb_size = 0; |
| int index = -1; |
| int pitch = -1; |
| bool ready = false; |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (iter.struct_desc != vbs) |
| continue; |
| |
| struct intel_field_iterator vbs_iter; |
| intel_field_iterator_init(&vbs_iter, vbs, &iter.p[iter.start_bit / 32], 0, false); |
| while (intel_field_iterator_next(&vbs_iter)) { |
| if (strcmp(vbs_iter.name, "Vertex Buffer Index") == 0) { |
| index = vbs_iter.raw_value; |
| } else if (strcmp(vbs_iter.name, "Buffer Pitch") == 0) { |
| pitch = vbs_iter.raw_value; |
| } else if (strcmp(vbs_iter.name, "Buffer Starting Address") == 0) { |
| vb = ctx_get_bo(ctx, true, vbs_iter.raw_value); |
| } else if (strcmp(vbs_iter.name, "Buffer Size") == 0) { |
| vb_size = vbs_iter.raw_value; |
| ready = true; |
| } else if (strcmp(vbs_iter.name, "End Address") == 0) { |
| if (vb.map && vbs_iter.raw_value >= vb.addr) |
| vb_size = (vbs_iter.raw_value + 1) - vb.addr; |
| else |
| vb_size = 0; |
| ready = true; |
| } |
| |
| if (!ready) |
| continue; |
| |
| fprintf(ctx->fp, "vertex buffer %d, size %d\n", index, vb_size); |
| |
| if (vb.map == NULL) { |
| fprintf(ctx->fp, " buffer contents unavailable\n"); |
| continue; |
| } |
| |
| if (vb.map == 0 || vb_size == 0) |
| continue; |
| |
| ctx_print_buffer(ctx, vb, vb_size, pitch, ctx->max_vbo_decoded_lines); |
| |
| vb.map = NULL; |
| vb_size = 0; |
| index = -1; |
| pitch = -1; |
| ready = false; |
| } |
| } |
| } |
| |
| static void |
| handle_3dstate_index_buffer(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| |
| struct intel_batch_decode_bo ib = {}; |
| uint32_t ib_size = 0; |
| uint32_t format = 0; |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Index Format") == 0) { |
| format = iter.raw_value; |
| } else if (strcmp(iter.name, "Buffer Starting Address") == 0) { |
| ib = ctx_get_bo(ctx, true, iter.raw_value); |
| } else if (strcmp(iter.name, "Buffer Size") == 0) { |
| ib_size = iter.raw_value; |
| } |
| } |
| |
| if (ib.map == NULL) { |
| fprintf(ctx->fp, " buffer contents unavailable\n"); |
| return; |
| } |
| |
| const void *m = ib.map; |
| const void *ib_end = ib.map + MIN2(ib.size, ib_size); |
| for (int i = 0; m < ib_end && i < 10; i++) { |
| switch (format) { |
| case 0: |
| fprintf(ctx->fp, "%3d ", *(uint8_t *)m); |
| m += 1; |
| break; |
| case 1: |
| fprintf(ctx->fp, "%3d ", *(uint16_t *)m); |
| m += 2; |
| break; |
| case 2: |
| fprintf(ctx->fp, "%3d ", *(uint32_t *)m); |
| m += 4; |
| break; |
| } |
| } |
| |
| if (m < ib_end) |
| fprintf(ctx->fp, "..."); |
| fprintf(ctx->fp, "\n"); |
| } |
| |
| static void |
| decode_single_ksp(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| |
| uint64_t ksp = 0; |
| bool is_simd8 = ctx->devinfo.ver >= 11; /* vertex shaders on Gfx8+ only */ |
| bool is_enabled = true; |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Kernel Start Pointer") == 0) { |
| ksp = iter.raw_value; |
| } else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) { |
| is_simd8 = iter.raw_value; |
| } else if (strcmp(iter.name, "Dispatch Mode") == 0) { |
| is_simd8 = strcmp(iter.value, "SIMD8") == 0; |
| } else if (strcmp(iter.name, "Dispatch Enable") == 0) { |
| is_simd8 = strcmp(iter.value, "SIMD8") == 0; |
| } else if (strcmp(iter.name, "Enable") == 0) { |
| is_enabled = iter.raw_value; |
| } |
| } |
| |
| const char *type = |
| strcmp(inst->name, "VS_STATE") == 0 ? "vertex shader" : |
| strcmp(inst->name, "GS_STATE") == 0 ? "geometry shader" : |
| strcmp(inst->name, "SF_STATE") == 0 ? "strips and fans shader" : |
| strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" : |
| strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation evaluation shader" : |
| strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation control shader" : |
| strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") : |
| strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") : |
| NULL; |
| |
| if (is_enabled) { |
| ctx_disassemble_program(ctx, ksp, type); |
| fprintf(ctx->fp, "\n"); |
| } |
| } |
| |
| static void |
| decode_mesh_task_ksp(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| |
| uint64_t ksp = 0; |
| uint64_t local_x_maximum = 0; |
| uint64_t threads = 0; |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Kernel Start Pointer") == 0) { |
| ksp = iter.raw_value; |
| } else if (strcmp(iter.name, "Local X Maximum") == 0) { |
| local_x_maximum = iter.raw_value; |
| } else if (strcmp(iter.name, "Number of Threads in GPGPU Thread Group") == 0) { |
| threads = iter.raw_value; |
| } |
| } |
| |
| const char *type = |
| strcmp(inst->name, "3DSTATE_MESH_SHADER") == 0 ? "mesh shader" : |
| strcmp(inst->name, "3DSTATE_TASK_SHADER") == 0 ? "task shader" : |
| NULL; |
| |
| if (threads && local_x_maximum) { |
| ctx_disassemble_program(ctx, ksp, type); |
| fprintf(ctx->fp, "\n"); |
| } |
| } |
| |
| static void |
| decode_ps_kern(struct intel_batch_decode_ctx *ctx, |
| struct intel_group *inst, const uint32_t *p) |
| { |
| bool single_ksp = ctx->devinfo.ver == 4; |
| uint64_t ksp[3] = {0, 0, 0}; |
| bool enabled[3] = {false, false, false}; |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (strncmp(iter.name, "Kernel Start Pointer ", |
| strlen("Kernel Start Pointer ")) == 0) { |
| int idx = iter.name[strlen("Kernel Start Pointer ")] - '0'; |
| ksp[idx] = strtol(iter.value, NULL, 16); |
| } else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) { |
| enabled[0] = strcmp(iter.value, "true") == 0; |
| } else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) { |
| enabled[1] = strcmp(iter.value, "true") == 0; |
| } else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) { |
| enabled[2] = strcmp(iter.value, "true") == 0; |
| } |
| } |
| |
| if (single_ksp) |
| ksp[1] = ksp[2] = ksp[0]; |
| |
| /* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */ |
| if (enabled[0] + enabled[1] + enabled[2] == 1) { |
| if (enabled[1]) { |
| ksp[1] = ksp[0]; |
| ksp[0] = 0; |
| } else if (enabled[2]) { |
| ksp[2] = ksp[0]; |
| ksp[0] = 0; |
| } |
| } else { |
| uint64_t tmp = ksp[1]; |
| ksp[1] = ksp[2]; |
| ksp[2] = tmp; |
| } |
| |
| if (enabled[0]) |
| ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader"); |
| if (enabled[1]) |
| ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader"); |
| if (enabled[2]) |
| ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader"); |
| |
| if (enabled[0] || enabled[1] || enabled[2]) |
| fprintf(ctx->fp, "\n"); |
| } |
| |
| static void |
| decode_ps_kernels(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| decode_ps_kern(ctx, inst, p); |
| } |
| |
| static void |
| decode_3dstate_constant_all(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| struct intel_group *inst = |
| intel_spec_find_instruction(ctx->spec, ctx->engine, p); |
| struct intel_group *body = |
| intel_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_ALL_DATA"); |
| |
| uint32_t read_length[4] = {0}; |
| struct intel_batch_decode_bo buffer[4]; |
| memset(buffer, 0, sizeof(buffer)); |
| |
| struct intel_field_iterator outer; |
| intel_field_iterator_init(&outer, inst, p, 0, false); |
| int idx = 0; |
| while (intel_field_iterator_next(&outer)) { |
| if (outer.struct_desc != body) |
| continue; |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32], |
| 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (!strcmp(iter.name, "Pointer To Constant Buffer")) { |
| buffer[idx] = ctx_get_bo(ctx, true, iter.raw_value); |
| } else if (!strcmp(iter.name, "Constant Buffer Read Length")) { |
| read_length[idx] = iter.raw_value; |
| } |
| } |
| idx++; |
| } |
| |
| for (int i = 0; i < 4; i++) { |
| if (read_length[i] == 0 || buffer[i].map == NULL) |
| continue; |
| |
| unsigned size = read_length[i] * 32; |
| fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size); |
| |
| ctx_print_buffer(ctx, buffer[i], size, 0, -1); |
| } |
| } |
| |
| static void |
| decode_3dstate_constant(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| struct intel_group *body = |
| intel_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY"); |
| |
| uint32_t read_length[4] = {0}; |
| uint64_t read_addr[4] = {0}; |
| |
| struct intel_field_iterator outer; |
| intel_field_iterator_init(&outer, inst, p, 0, false); |
| while (intel_field_iterator_next(&outer)) { |
| if (outer.struct_desc != body) |
| continue; |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32], |
| 0, false); |
| |
| while (intel_field_iterator_next(&iter)) { |
| int idx; |
| if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) { |
| read_length[idx] = iter.raw_value; |
| } else if (sscanf(iter.name, "Buffer[%d]", &idx) == 1) { |
| read_addr[idx] = iter.raw_value; |
| } |
| } |
| |
| for (int i = 0; i < 4; i++) { |
| if (read_length[i] == 0) |
| continue; |
| |
| struct intel_batch_decode_bo buffer = ctx_get_bo(ctx, true, read_addr[i]); |
| if (!buffer.map) { |
| fprintf(ctx->fp, "constant buffer %d unavailable\n", i); |
| continue; |
| } |
| |
| unsigned size = read_length[i] * 32; |
| fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size); |
| |
| ctx_print_buffer(ctx, buffer, size, 0, -1); |
| } |
| } |
| } |
| |
| static void |
| decode_gfx4_constant_buffer(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| uint64_t read_length = 0, read_addr = 0, valid = 0; |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| |
| while (intel_field_iterator_next(&iter)) { |
| if (!strcmp(iter.name, "Buffer Length")) { |
| read_length = iter.raw_value; |
| } else if (!strcmp(iter.name, "Valid")) { |
| valid = iter.raw_value; |
| } else if (!strcmp(iter.name, "Buffer Starting Address")) { |
| read_addr = iter.raw_value; |
| } |
| } |
| |
| if (!valid) |
| return; |
| |
| struct intel_batch_decode_bo buffer = ctx_get_bo(ctx, true, read_addr); |
| if (!buffer.map) { |
| fprintf(ctx->fp, "constant buffer unavailable\n"); |
| return; |
| } |
| unsigned size = (read_length + 1) * 16 * sizeof(float); |
| fprintf(ctx->fp, "constant buffer size %u\n", size); |
| |
| ctx_print_buffer(ctx, buffer, size, 0, -1); |
| } |
| |
| |
| static void |
| decode_gfx4_3dstate_binding_table_pointers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| fprintf(ctx->fp, "VS Binding Table:\n"); |
| dump_binding_table(ctx, p[1], -1); |
| |
| fprintf(ctx->fp, "GS Binding Table:\n"); |
| dump_binding_table(ctx, p[2], -1); |
| |
| if (ctx->devinfo.ver < 6) { |
| fprintf(ctx->fp, "CLIP Binding Table:\n"); |
| dump_binding_table(ctx, p[3], -1); |
| fprintf(ctx->fp, "SF Binding Table:\n"); |
| dump_binding_table(ctx, p[4], -1); |
| fprintf(ctx->fp, "PS Binding Table:\n"); |
| dump_binding_table(ctx, p[5], -1); |
| } else { |
| fprintf(ctx->fp, "PS Binding Table:\n"); |
| dump_binding_table(ctx, p[3], -1); |
| } |
| } |
| |
| static void |
| decode_3dstate_binding_table_pointers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| dump_binding_table(ctx, p[1], -1); |
| } |
| |
| static void |
| decode_3dstate_sampler_state_pointers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| dump_samplers(ctx, p[1], 1); |
| } |
| |
| static void |
| decode_3dstate_sampler_state_pointers_gfx6(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| dump_samplers(ctx, p[1], 1); |
| dump_samplers(ctx, p[2], 1); |
| dump_samplers(ctx, p[3], 1); |
| } |
| |
| static bool |
| str_ends_with(const char *str, const char *end) |
| { |
| int offset = strlen(str) - strlen(end); |
| if (offset < 0) |
| return false; |
| |
| return strcmp(str + offset, end) == 0; |
| } |
| |
| static void |
| decode_dynamic_state(struct intel_batch_decode_ctx *ctx, |
| const char *struct_type, uint32_t state_offset, |
| int count) |
| { |
| uint64_t state_addr = ctx->dynamic_base + state_offset; |
| struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, state_addr); |
| const void *state_map = bo.map; |
| |
| if (state_map == NULL) { |
| fprintf(ctx->fp, " dynamic %s state unavailable\n", struct_type); |
| return; |
| } |
| |
| struct intel_group *state = intel_spec_find_struct(ctx->spec, struct_type); |
| if (strcmp(struct_type, "BLEND_STATE") == 0) { |
| /* Blend states are different from the others because they have a header |
| * struct called BLEND_STATE which is followed by a variable number of |
| * BLEND_STATE_ENTRY structs. |
| */ |
| fprintf(ctx->fp, "%s\n", struct_type); |
| ctx_print_group(ctx, state, state_addr, state_map); |
| |
| state_addr += state->dw_length * 4; |
| state_map += state->dw_length * 4; |
| |
| struct_type = "BLEND_STATE_ENTRY"; |
| state = intel_spec_find_struct(ctx->spec, struct_type); |
| } |
| |
| count = update_count(ctx, ctx->dynamic_base + state_offset, |
| ctx->dynamic_base, state->dw_length, count); |
| |
| for (int i = 0; i < count; i++) { |
| fprintf(ctx->fp, "%s %d\n", struct_type, i); |
| ctx_print_group(ctx, state, state_addr, state_map); |
| |
| state_addr += state->dw_length * 4; |
| state_map += state->dw_length * 4; |
| } |
| } |
| |
| static void |
| decode_dynamic_state_pointers(struct intel_batch_decode_ctx *ctx, |
| const char *struct_type, const uint32_t *p, |
| int count) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| |
| uint32_t state_offset = 0; |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (str_ends_with(iter.name, "Pointer") || !strncmp(iter.name, "Pointer", 7)) { |
| state_offset = iter.raw_value; |
| break; |
| } |
| } |
| decode_dynamic_state(ctx, struct_type, state_offset, count); |
| } |
| |
| static void |
| decode_3dstate_viewport_state_pointers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| uint32_t state_offset = 0; |
| bool clip = false, sf = false, cc = false; |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (!strcmp(iter.name, "CLIP Viewport State Change")) |
| clip = iter.raw_value; |
| if (!strcmp(iter.name, "SF Viewport State Change")) |
| sf = iter.raw_value; |
| if (!strcmp(iter.name, "CC Viewport State Change")) |
| cc = iter.raw_value; |
| else if (!strcmp(iter.name, "Pointer to CLIP_VIEWPORT") && clip) { |
| state_offset = iter.raw_value; |
| decode_dynamic_state(ctx, "CLIP_VIEWPORT", state_offset, 1); |
| } |
| else if (!strcmp(iter.name, "Pointer to SF_VIEWPORT") && sf) { |
| state_offset = iter.raw_value; |
| decode_dynamic_state(ctx, "SF_VIEWPORT", state_offset, 1); |
| } |
| else if (!strcmp(iter.name, "Pointer to CC_VIEWPORT") && cc) { |
| state_offset = iter.raw_value; |
| decode_dynamic_state(ctx, "CC_VIEWPORT", state_offset, 1); |
| } |
| } |
| } |
| |
| static void |
| decode_3dstate_viewport_state_pointers_cc(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| decode_dynamic_state_pointers(ctx, "CC_VIEWPORT", p, 4); |
| } |
| |
| static void |
| decode_3dstate_viewport_state_pointers_sf_clip(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| decode_dynamic_state_pointers(ctx, "SF_CLIP_VIEWPORT", p, 4); |
| } |
| |
| static void |
| decode_3dstate_blend_state_pointers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| decode_dynamic_state_pointers(ctx, "BLEND_STATE", p, 1); |
| } |
| |
| static void |
| decode_3dstate_cc_state_pointers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| if (ctx->devinfo.ver != 6) { |
| decode_dynamic_state_pointers(ctx, "COLOR_CALC_STATE", p, 1); |
| return; |
| } |
| |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| |
| uint32_t state_offset = 0; |
| bool blend_change = false, ds_change = false, cc_change = false; |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (!strcmp(iter.name, "BLEND_STATE Change")) |
| blend_change = iter.raw_value; |
| else if (!strcmp(iter.name, "DEPTH_STENCIL_STATE Change")) |
| ds_change = iter.raw_value; |
| else if (!strcmp(iter.name, "Color Calc State Pointer Valid")) |
| cc_change = iter.raw_value; |
| else if (!strcmp(iter.name, "Pointer to DEPTH_STENCIL_STATE") && ds_change) { |
| state_offset = iter.raw_value; |
| decode_dynamic_state(ctx, "DEPTH_STENCIL_STATE", state_offset, 1); |
| } |
| else if (!strcmp(iter.name, "Pointer to BLEND_STATE") && blend_change) { |
| state_offset = iter.raw_value; |
| decode_dynamic_state(ctx, "BLEND_STATE", state_offset, 1); |
| } |
| else if (!strcmp(iter.name, "Color Calc State Pointer") && cc_change) { |
| state_offset = iter.raw_value; |
| decode_dynamic_state(ctx, "COLOR_CALC_STATE", state_offset, 1); |
| } |
| } |
| } |
| |
| static void |
| decode_3dstate_ds_state_pointers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| decode_dynamic_state_pointers(ctx, "DEPTH_STENCIL_STATE", p, 1); |
| } |
| |
| static void |
| decode_3dstate_scissor_state_pointers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| decode_dynamic_state_pointers(ctx, "SCISSOR_RECT", p, 1); |
| } |
| |
| static void |
| decode_3dstate_slice_table_state_pointers(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *p) |
| { |
| decode_dynamic_state_pointers(ctx, "SLICE_HASH_TABLE", p, 1); |
| } |
| |
| static void |
| handle_gt_mode(struct intel_batch_decode_ctx *ctx, |
| uint32_t reg_addr, uint32_t val) |
| { |
| struct intel_group *reg = intel_spec_find_register(ctx->spec, reg_addr); |
| |
| assert(intel_group_get_length(reg, &val) == 1); |
| |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, reg, &val, 0, false); |
| |
| uint32_t bt_alignment; |
| bool bt_alignment_mask = 0; |
| |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Binding Table Alignment") == 0) { |
| bt_alignment = iter.raw_value; |
| } else if (strcmp(iter.name, "Binding Table Alignment Mask") == 0) { |
| bt_alignment_mask = iter.raw_value; |
| } |
| } |
| |
| if (bt_alignment_mask) |
| ctx->use_256B_binding_tables = bt_alignment; |
| } |
| |
| struct reg_handler { |
| const char *name; |
| void (*handler)(struct intel_batch_decode_ctx *ctx, |
| uint32_t reg_addr, uint32_t val); |
| } reg_handlers[] = { |
| { "GT_MODE", handle_gt_mode } |
| }; |
| |
| static void |
| decode_load_register_imm(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| struct intel_group *inst = intel_ctx_find_instruction(ctx, p); |
| const unsigned length = intel_group_get_length(inst, p); |
| assert(length & 1); |
| const unsigned nr_regs = (length - 1) / 2; |
| |
| for (unsigned i = 0; i < nr_regs; i++) { |
| struct intel_group *reg = intel_spec_find_register(ctx->spec, p[i * 2 + 1]); |
| if (reg != NULL) { |
| fprintf(ctx->fp, "register %s (0x%x): 0x%x\n", |
| reg->name, reg->register_offset, p[2]); |
| ctx_print_group(ctx, reg, reg->register_offset, &p[2]); |
| |
| for (unsigned i = 0; i < ARRAY_SIZE(reg_handlers); i++) { |
| if (strcmp(reg->name, reg_handlers[i].name) == 0) |
| reg_handlers[i].handler(ctx, p[1], p[2]); |
| } |
| } |
| } |
| } |
| |
| static void |
| decode_vs_state(struct intel_batch_decode_ctx *ctx, uint32_t offset) |
| { |
| struct intel_group *strct = |
| intel_spec_find_struct(ctx->spec, "VS_STATE"); |
| if (strct == NULL) { |
| fprintf(ctx->fp, "did not find VS_STATE info\n"); |
| return; |
| } |
| |
| struct intel_batch_decode_bo bind_bo = |
| ctx_get_bo(ctx, true, offset); |
| |
| if (bind_bo.map == NULL) { |
| fprintf(ctx->fp, " vs state unavailable\n"); |
| return; |
| } |
| |
| ctx_print_group(ctx, strct, offset, bind_bo.map); |
| |
| uint64_t ksp = 0; |
| bool is_enabled = true; |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, strct, bind_bo.map, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Kernel Start Pointer") == 0) { |
| ksp = iter.raw_value; |
| } else if (strcmp(iter.name, "Enable") == 0) { |
| is_enabled = iter.raw_value; |
| } |
| } |
| if (is_enabled) { |
| ctx_disassemble_program(ctx, ksp, "vertex shader"); |
| fprintf(ctx->fp, "\n"); |
| } |
| } |
| |
| static void |
| decode_gs_state(struct intel_batch_decode_ctx *ctx, uint32_t offset) |
| { |
| struct intel_group *strct = |
| intel_spec_find_struct(ctx->spec, "GS_STATE"); |
| if (strct == NULL) { |
| fprintf(ctx->fp, "did not find GS_STATE info\n"); |
| return; |
| } |
| |
| struct intel_batch_decode_bo bind_bo = |
| ctx_get_bo(ctx, true, offset); |
| |
| if (bind_bo.map == NULL) { |
| fprintf(ctx->fp, " gs state unavailable\n"); |
| return; |
| } |
| |
| ctx_print_group(ctx, strct, offset, bind_bo.map); |
| } |
| |
| static void |
| decode_clip_state(struct intel_batch_decode_ctx *ctx, uint32_t offset) |
| { |
| struct intel_group *strct = |
| intel_spec_find_struct(ctx->spec, "CLIP_STATE"); |
| if (strct == NULL) { |
| fprintf(ctx->fp, "did not find CLIP_STATE info\n"); |
| return; |
| } |
| |
| struct intel_batch_decode_bo bind_bo = |
| ctx_get_bo(ctx, true, offset); |
| |
| if (bind_bo.map == NULL) { |
| fprintf(ctx->fp, " clip state unavailable\n"); |
| return; |
| } |
| |
| ctx_print_group(ctx, strct, offset, bind_bo.map); |
| |
| struct intel_group *vp_strct = |
| intel_spec_find_struct(ctx->spec, "CLIP_VIEWPORT"); |
| if (vp_strct == NULL) { |
| fprintf(ctx->fp, "did not find CLIP_VIEWPORT info\n"); |
| return; |
| } |
| uint32_t clip_vp_offset = ((uint32_t *)bind_bo.map)[6] & ~0x3; |
| struct intel_batch_decode_bo vp_bo = |
| ctx_get_bo(ctx, true, clip_vp_offset); |
| if (vp_bo.map == NULL) { |
| fprintf(ctx->fp, " clip vp state unavailable\n"); |
| return; |
| } |
| ctx_print_group(ctx, vp_strct, clip_vp_offset, vp_bo.map); |
| } |
| |
| static void |
| decode_sf_state(struct intel_batch_decode_ctx *ctx, uint32_t offset) |
| { |
| struct intel_group *strct = |
| intel_spec_find_struct(ctx->spec, "SF_STATE"); |
| if (strct == NULL) { |
| fprintf(ctx->fp, "did not find SF_STATE info\n"); |
| return; |
| } |
| |
| struct intel_batch_decode_bo bind_bo = |
| ctx_get_bo(ctx, true, offset); |
| |
| if (bind_bo.map == NULL) { |
| fprintf(ctx->fp, " sf state unavailable\n"); |
| return; |
| } |
| |
| ctx_print_group(ctx, strct, offset, bind_bo.map); |
| |
| struct intel_group *vp_strct = |
| intel_spec_find_struct(ctx->spec, "SF_VIEWPORT"); |
| if (vp_strct == NULL) { |
| fprintf(ctx->fp, "did not find SF_VIEWPORT info\n"); |
| return; |
| } |
| |
| uint32_t sf_vp_offset = ((uint32_t *)bind_bo.map)[5] & ~0x3; |
| struct intel_batch_decode_bo vp_bo = |
| ctx_get_bo(ctx, true, sf_vp_offset); |
| if (vp_bo.map == NULL) { |
| fprintf(ctx->fp, " sf vp state unavailable\n"); |
| return; |
| } |
| ctx_print_group(ctx, vp_strct, sf_vp_offset, vp_bo.map); |
| } |
| |
| static void |
| decode_wm_state(struct intel_batch_decode_ctx *ctx, uint32_t offset) |
| { |
| struct intel_group *strct = |
| intel_spec_find_struct(ctx->spec, "WM_STATE"); |
| if (strct == NULL) { |
| fprintf(ctx->fp, "did not find WM_STATE info\n"); |
| return; |
| } |
| |
| struct intel_batch_decode_bo bind_bo = |
| ctx_get_bo(ctx, true, offset); |
| |
| if (bind_bo.map == NULL) { |
| fprintf(ctx->fp, " wm state unavailable\n"); |
| return; |
| } |
| |
| ctx_print_group(ctx, strct, offset, bind_bo.map); |
| |
| decode_ps_kern(ctx, strct, bind_bo.map); |
| } |
| |
| static void |
| decode_cc_state(struct intel_batch_decode_ctx *ctx, uint32_t offset) |
| { |
| struct intel_group *strct = |
| intel_spec_find_struct(ctx->spec, "COLOR_CALC_STATE"); |
| if (strct == NULL) { |
| fprintf(ctx->fp, "did not find COLOR_CALC_STATE info\n"); |
| return; |
| } |
| |
| struct intel_batch_decode_bo bind_bo = |
| ctx_get_bo(ctx, true, offset); |
| |
| if (bind_bo.map == NULL) { |
| fprintf(ctx->fp, " cc state unavailable\n"); |
| return; |
| } |
| |
| ctx_print_group(ctx, strct, offset, bind_bo.map); |
| |
| struct intel_group *vp_strct = |
| intel_spec_find_struct(ctx->spec, "CC_VIEWPORT"); |
| if (vp_strct == NULL) { |
| fprintf(ctx->fp, "did not find CC_VIEWPORT info\n"); |
| return; |
| } |
| uint32_t cc_vp_offset = ((uint32_t *)bind_bo.map)[4] & ~0x3; |
| struct intel_batch_decode_bo vp_bo = |
| ctx_get_bo(ctx, true, cc_vp_offset); |
| if (vp_bo.map == NULL) { |
| fprintf(ctx->fp, " cc vp state unavailable\n"); |
| return; |
| } |
| ctx_print_group(ctx, vp_strct, cc_vp_offset, vp_bo.map); |
| } |
| static void |
| decode_pipelined_pointers(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| fprintf(ctx->fp, "VS State Table:\n"); |
| decode_vs_state(ctx, p[1]); |
| if (p[2] & 1) { |
| fprintf(ctx->fp, "GS State Table:\n"); |
| decode_gs_state(ctx, p[2] & ~1); |
| } |
| fprintf(ctx->fp, "Clip State Table:\n"); |
| decode_clip_state(ctx, p[3] & ~1); |
| fprintf(ctx->fp, "SF State Table:\n"); |
| decode_sf_state(ctx, p[4]); |
| fprintf(ctx->fp, "WM State Table:\n"); |
| decode_wm_state(ctx, p[5]); |
| fprintf(ctx->fp, "CC State Table:\n"); |
| decode_cc_state(ctx, p[6]); |
| } |
| |
| static void |
| decode_cps_pointers(struct intel_batch_decode_ctx *ctx, const uint32_t *p) |
| { |
| decode_dynamic_state_pointers(ctx, "CPS_STATE", p, 1); |
| } |
| |
| struct custom_decoder { |
| const char *cmd_name; |
| void (*decode)(struct intel_batch_decode_ctx *ctx, const uint32_t *p); |
| } custom_decoders[] = { |
| { "STATE_BASE_ADDRESS", handle_state_base_address }, |
| { "3DSTATE_BINDING_TABLE_POOL_ALLOC", handle_binding_table_pool_alloc }, |
| { "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load }, |
| { "COMPUTE_WALKER", handle_compute_walker }, |
| { "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers }, |
| { "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer }, |
| { "3DSTATE_VS", decode_single_ksp }, |
| { "3DSTATE_GS", decode_single_ksp }, |
| { "3DSTATE_DS", decode_single_ksp }, |
| { "3DSTATE_HS", decode_single_ksp }, |
| { "3DSTATE_PS", decode_ps_kernels }, |
| { "3DSTATE_WM", decode_ps_kernels }, |
| { "3DSTATE_MESH_SHADER", decode_mesh_task_ksp }, |
| { "3DSTATE_TASK_SHADER", decode_mesh_task_ksp }, |
| { "3DSTATE_CONSTANT_VS", decode_3dstate_constant }, |
| { "3DSTATE_CONSTANT_GS", decode_3dstate_constant }, |
| { "3DSTATE_CONSTANT_PS", decode_3dstate_constant }, |
| { "3DSTATE_CONSTANT_HS", decode_3dstate_constant }, |
| { "3DSTATE_CONSTANT_DS", decode_3dstate_constant }, |
| { "3DSTATE_CONSTANT_ALL", decode_3dstate_constant_all }, |
| |
| { "3DSTATE_BINDING_TABLE_POINTERS", decode_gfx4_3dstate_binding_table_pointers }, |
| { "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers }, |
| { "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers }, |
| { "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers }, |
| { "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers }, |
| { "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers }, |
| |
| { "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers }, |
| { "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers }, |
| { "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers }, |
| { "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers }, |
| { "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers }, |
| { "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gfx6 }, |
| |
| { "3DSTATE_VIEWPORT_STATE_POINTERS", decode_3dstate_viewport_state_pointers }, |
| { "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc }, |
| { "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip }, |
| { "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers }, |
| { "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers }, |
| { "3DSTATE_DEPTH_STENCIL_STATE_POINTERS", decode_3dstate_ds_state_pointers }, |
| { "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers }, |
| { "3DSTATE_SLICE_TABLE_STATE_POINTERS", decode_3dstate_slice_table_state_pointers }, |
| { "MI_LOAD_REGISTER_IMM", decode_load_register_imm }, |
| { "3DSTATE_PIPELINED_POINTERS", decode_pipelined_pointers }, |
| { "3DSTATE_CPS_POINTERS", decode_cps_pointers }, |
| { "CONSTANT_BUFFER", decode_gfx4_constant_buffer }, |
| }; |
| |
| void |
| intel_print_batch(struct intel_batch_decode_ctx *ctx, |
| const uint32_t *batch, uint32_t batch_size, |
| uint64_t batch_addr, bool from_ring) |
| { |
| const uint32_t *p, *end = batch + batch_size / sizeof(uint32_t); |
| int length; |
| struct intel_group *inst; |
| const char *reset_color = ctx->flags & INTEL_BATCH_DECODE_IN_COLOR ? NORMAL : ""; |
| |
| if (ctx->n_batch_buffer_start >= 100) { |
| fprintf(ctx->fp, "%s0x%08"PRIx64": Max batch buffer jumps exceeded%s\n", |
| (ctx->flags & INTEL_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "", |
| (ctx->flags & INTEL_BATCH_DECODE_OFFSETS) ? batch_addr : 0, |
| reset_color); |
| return; |
| } |
| |
| ctx->n_batch_buffer_start++; |
| |
| for (p = batch; p < end; p += length) { |
| inst = intel_ctx_find_instruction(ctx, p); |
| length = intel_group_get_length(inst, p); |
| assert(inst == NULL || length > 0); |
| length = MAX2(1, length); |
| |
| uint64_t offset; |
| if (ctx->flags & INTEL_BATCH_DECODE_OFFSETS) |
| offset = batch_addr + ((char *)p - (char *)batch); |
| else |
| offset = 0; |
| |
| if (inst == NULL) { |
| fprintf(ctx->fp, "%s0x%08"PRIx64": unknown instruction %08x%s\n", |
| (ctx->flags & INTEL_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "", |
| offset, p[0], reset_color); |
| |
| for (int i=1; i < length; i++) { |
| fprintf(ctx->fp, "%s0x%08"PRIx64": -- %08x%s\n", |
| (ctx->flags & INTEL_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "", |
| offset + i * 4, p[i], reset_color); |
| } |
| |
| continue; |
| } |
| |
| const char *color; |
| const char *inst_name = intel_group_get_name(inst); |
| if (ctx->flags & INTEL_BATCH_DECODE_IN_COLOR) { |
| reset_color = NORMAL; |
| if (ctx->flags & INTEL_BATCH_DECODE_FULL) { |
| if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0 || |
| strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) |
| color = GREEN_HEADER; |
| else |
| color = BLUE_HEADER; |
| } else { |
| color = NORMAL; |
| } |
| } else { |
| color = ""; |
| reset_color = ""; |
| } |
| |
| fprintf(ctx->fp, "%s0x%08"PRIx64"%s: 0x%08x: %-80s%s\n", color, offset, |
| ctx->acthd && offset == ctx->acthd ? " (ACTHD)" : "", p[0], |
| inst_name, reset_color); |
| |
| if (ctx->flags & INTEL_BATCH_DECODE_FULL) { |
| ctx_print_group(ctx, inst, offset, p); |
| |
| for (int i = 0; i < ARRAY_SIZE(custom_decoders); i++) { |
| if (strcmp(inst_name, custom_decoders[i].cmd_name) == 0) { |
| custom_decoders[i].decode(ctx, p); |
| break; |
| } |
| } |
| } |
| |
| if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) { |
| uint64_t next_batch_addr = 0; |
| bool ppgtt = false; |
| bool second_level = false; |
| bool predicate = false; |
| struct intel_field_iterator iter; |
| intel_field_iterator_init(&iter, inst, p, 0, false); |
| while (intel_field_iterator_next(&iter)) { |
| if (strcmp(iter.name, "Batch Buffer Start Address") == 0) { |
| next_batch_addr = iter.raw_value; |
| } else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) { |
| second_level = iter.raw_value; |
| } else if (strcmp(iter.name, "Address Space Indicator") == 0) { |
| ppgtt = iter.raw_value; |
| } else if (strcmp(iter.name, "Predication Enable") == 0) { |
| predicate = iter.raw_value; |
| } |
| } |
| |
| if (!predicate) { |
| struct intel_batch_decode_bo next_batch = ctx_get_bo(ctx, ppgtt, next_batch_addr); |
| |
| if (next_batch.map == NULL) { |
| fprintf(ctx->fp, "Secondary batch at 0x%08"PRIx64" unavailable\n", |
| next_batch_addr); |
| } else { |
| intel_print_batch(ctx, next_batch.map, next_batch.size, |
| next_batch.addr, false); |
| } |
| if (second_level) { |
| /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts |
| * like a subroutine call. Commands that come afterwards get |
| * processed once the 2nd level batch buffer returns with |
| * MI_BATCH_BUFFER_END. |
| */ |
| continue; |
| } else if (!from_ring) { |
| /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts |
| * like a goto. Nothing after it will ever get processed. In |
| * order to prevent the recursion from growing, we just reset the |
| * loop and continue; |
| */ |
| break; |
| } |
| } |
| } else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) { |
| break; |
| } |
| } |
| |
| ctx->n_batch_buffer_start--; |
| } |