blob: e017dc72b03df231e4959ac8037966923e64aaa0 [file] [log] [blame]
/*
* Copyright © 2014-2017 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "util/format/u_format.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "util/u_upload_mgr.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_parse.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "nir/tgsi_to_nir.h"
#include "compiler/v3d_compiler.h"
#include "v3d_context.h"
#include "broadcom/cle/v3d_packet_v33_pack.h"
static struct v3d_compiled_shader *
v3d_get_compiled_shader(struct v3d_context *v3d,
struct v3d_key *key, size_t key_size);
static void
v3d_setup_shared_precompile_key(struct v3d_uncompiled_shader *uncompiled,
struct v3d_key *key);
static gl_varying_slot
v3d_get_slot_for_driver_location(nir_shader *s, uint32_t driver_location)
{
nir_foreach_shader_out_variable(var, s) {
if (var->data.driver_location == driver_location) {
return var->data.location;
}
}
return -1;
}
/**
* Precomputes the TRANSFORM_FEEDBACK_OUTPUT_DATA_SPEC array for the shader.
*
* A shader can have 16 of these specs, and each one of them can write up to
* 16 dwords. Since we allow a total of 64 transform feedback output
* components (not 16 vectors), we have to group the writes of multiple
* varyings together in a single data spec.
*/
static void
v3d_set_transform_feedback_outputs(struct v3d_uncompiled_shader *so,
const struct pipe_stream_output_info *stream_output)
{
if (!stream_output->num_outputs)
return;
struct v3d_varying_slot slots[PIPE_MAX_SO_OUTPUTS * 4];
int slot_count = 0;
for (int buffer = 0; buffer < PIPE_MAX_SO_BUFFERS; buffer++) {
uint32_t buffer_offset = 0;
uint32_t vpm_start = slot_count;
for (int i = 0; i < stream_output->num_outputs; i++) {
const struct pipe_stream_output *output =
&stream_output->output[i];
if (output->output_buffer != buffer)
continue;
/* We assume that the SO outputs appear in increasing
* order in the buffer.
*/
assert(output->dst_offset >= buffer_offset);
/* Pad any undefined slots in the output */
for (int j = buffer_offset; j < output->dst_offset; j++) {
slots[slot_count] =
v3d_slot_from_slot_and_component(VARYING_SLOT_POS, 0);
slot_count++;
buffer_offset++;
}
/* Set the coordinate shader up to output the
* components of this varying.
*/
for (int j = 0; j < output->num_components; j++) {
gl_varying_slot slot =
v3d_get_slot_for_driver_location(so->base.ir.nir, output->register_index);
slots[slot_count] =
v3d_slot_from_slot_and_component(slot,
output->start_component + j);
slot_count++;
buffer_offset++;
}
}
uint32_t vpm_size = slot_count - vpm_start;
if (!vpm_size)
continue;
uint32_t vpm_start_offset = vpm_start + 6;
while (vpm_size) {
uint32_t write_size = MIN2(vpm_size, 1 << 4);
struct V3D33_TRANSFORM_FEEDBACK_OUTPUT_DATA_SPEC unpacked = {
/* We need the offset from the coordinate shader's VPM
* output block, which has the [X, Y, Z, W, Xs, Ys]
* values at the start.
*/
.first_shaded_vertex_value_to_output = vpm_start_offset,
.number_of_consecutive_vertex_values_to_output_as_32_bit_values = write_size,
.output_buffer_to_write_to = buffer,
};
/* GFXH-1559 */
assert(unpacked.first_shaded_vertex_value_to_output != 8 ||
so->num_tf_specs != 0);
assert(so->num_tf_specs != ARRAY_SIZE(so->tf_specs));
V3D33_TRANSFORM_FEEDBACK_OUTPUT_DATA_SPEC_pack(NULL,
(void *)&so->tf_specs[so->num_tf_specs],
&unpacked);
/* If point size is being written by the shader, then
* all the VPM start offsets are shifted up by one.
* We won't know that until the variant is compiled,
* though.
*/
unpacked.first_shaded_vertex_value_to_output++;
/* GFXH-1559 */
assert(unpacked.first_shaded_vertex_value_to_output != 8 ||
so->num_tf_specs != 0);
V3D33_TRANSFORM_FEEDBACK_OUTPUT_DATA_SPEC_pack(NULL,
(void *)&so->tf_specs_psiz[so->num_tf_specs],
&unpacked);
so->num_tf_specs++;
vpm_start_offset += write_size;
vpm_size -= write_size;
}
so->base.stream_output.stride[buffer] =
stream_output->stride[buffer];
}
so->num_tf_outputs = slot_count;
so->tf_outputs = ralloc_array(so->base.ir.nir, struct v3d_varying_slot,
slot_count);
memcpy(so->tf_outputs, slots, sizeof(*slots) * slot_count);
}
static int
type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static void
precompile_all_outputs(nir_shader *s,
struct v3d_varying_slot *outputs,
uint8_t *num_outputs)
{
nir_foreach_shader_out_variable(var, s) {
const int array_len = MAX2(glsl_get_length(var->type), 1);
for (int j = 0; j < array_len; j++) {
const int slot = var->data.location + j;
const int num_components =
glsl_get_components(var->type);
for (int i = 0; i < num_components; i++) {
const int swiz = var->data.location_frac + i;
outputs[(*num_outputs)++] =
v3d_slot_from_slot_and_component(slot,
swiz);
}
}
}
}
/**
* Precompiles a shader variant at shader state creation time if
* V3D_DEBUG=precompile is set. Used for shader-db
* (https://gitlab.freedesktop.org/mesa/shader-db)
*/
static void
v3d_shader_precompile(struct v3d_context *v3d,
struct v3d_uncompiled_shader *so)
{
nir_shader *s = so->base.ir.nir;
if (s->info.stage == MESA_SHADER_FRAGMENT) {
struct v3d_fs_key key = {
.base.shader_state = so,
};
nir_foreach_shader_out_variable(var, s) {
if (var->data.location == FRAG_RESULT_COLOR) {
key.cbufs |= 1 << 0;
} else if (var->data.location >= FRAG_RESULT_DATA0) {
key.cbufs |= 1 << (var->data.location -
FRAG_RESULT_DATA0);
}
}
key.logicop_func = PIPE_LOGICOP_COPY;
v3d_setup_shared_precompile_key(so, &key.base);
v3d_get_compiled_shader(v3d, &key.base, sizeof(key));
} else if (s->info.stage == MESA_SHADER_GEOMETRY) {
struct v3d_gs_key key = {
.base.shader_state = so,
.base.is_last_geometry_stage = true,
};
v3d_setup_shared_precompile_key(so, &key.base);
precompile_all_outputs(s,
key.used_outputs,
&key.num_used_outputs);
v3d_get_compiled_shader(v3d, &key.base, sizeof(key));
/* Compile GS bin shader: only position (XXX: include TF) */
key.is_coord = true;
key.num_used_outputs = 0;
for (int i = 0; i < 4; i++) {
key.used_outputs[key.num_used_outputs++] =
v3d_slot_from_slot_and_component(VARYING_SLOT_POS,
i);
}
v3d_get_compiled_shader(v3d, &key.base, sizeof(key));
} else {
assert(s->info.stage == MESA_SHADER_VERTEX);
struct v3d_vs_key key = {
.base.shader_state = so,
/* Emit fixed function outputs */
.base.is_last_geometry_stage = true,
};
v3d_setup_shared_precompile_key(so, &key.base);
precompile_all_outputs(s,
key.used_outputs,
&key.num_used_outputs);
v3d_get_compiled_shader(v3d, &key.base, sizeof(key));
/* Compile VS bin shader: only position (XXX: include TF) */
key.is_coord = true;
key.num_used_outputs = 0;
for (int i = 0; i < 4; i++) {
key.used_outputs[key.num_used_outputs++] =
v3d_slot_from_slot_and_component(VARYING_SLOT_POS,
i);
}
v3d_get_compiled_shader(v3d, &key.base, sizeof(key));
}
}
static void *
v3d_uncompiled_shader_create(struct pipe_context *pctx,
enum pipe_shader_ir type, void *ir)
{
struct v3d_context *v3d = v3d_context(pctx);
struct v3d_uncompiled_shader *so = CALLOC_STRUCT(v3d_uncompiled_shader);
if (!so)
return NULL;
so->program_id = v3d->next_uncompiled_program_id++;
nir_shader *s;
if (type == PIPE_SHADER_IR_NIR) {
/* The backend takes ownership of the NIR shader on state
* creation.
*/
s = ir;
} else {
assert(type == PIPE_SHADER_IR_TGSI);
if (V3D_DBG(TGSI)) {
fprintf(stderr, "prog %d TGSI:\n",
so->program_id);
tgsi_dump(ir, 0);
fprintf(stderr, "\n");
}
s = tgsi_to_nir(ir, pctx->screen, false);
}
if (s->info.stage != MESA_SHADER_VERTEX &&
s->info.stage != MESA_SHADER_GEOMETRY) {
NIR_PASS(_, s, nir_lower_io,
nir_var_shader_in | nir_var_shader_out,
type_size, (nir_lower_io_options)0);
}
NIR_PASS(_, s, nir_lower_regs_to_ssa);
NIR_PASS(_, s, nir_normalize_cubemap_coords);
NIR_PASS(_, s, nir_lower_load_const_to_scalar);
v3d_optimize_nir(NULL, s, true);
NIR_PASS(_, s, nir_lower_var_copies);
/* Get rid of split copies */
v3d_optimize_nir(NULL, s, false);
NIR_PASS(_, s, nir_remove_dead_variables, nir_var_function_temp, NULL);
/* Garbage collect dead instructions */
nir_sweep(s);
so->base.type = PIPE_SHADER_IR_NIR;
so->base.ir.nir = s;
if (V3D_DBG(NIR) || v3d_debug_flag_for_shader_stage(s->info.stage)) {
fprintf(stderr, "%s prog %d NIR:\n",
gl_shader_stage_name(s->info.stage),
so->program_id);
nir_print_shader(s, stderr);
fprintf(stderr, "\n");
}
if (V3D_DBG(PRECOMPILE))
v3d_shader_precompile(v3d, so);
return so;
}
static void
v3d_shader_debug_output(const char *message, void *data)
{
struct pipe_context *ctx = data;
util_debug_message(&ctx->debug, SHADER_INFO, "%s", message);
}
static void *
v3d_shader_state_create(struct pipe_context *pctx,
const struct pipe_shader_state *cso)
{
struct v3d_uncompiled_shader *so =
v3d_uncompiled_shader_create(pctx,
cso->type,
(cso->type == PIPE_SHADER_IR_TGSI ?
(void *)cso->tokens :
cso->ir.nir));
v3d_set_transform_feedback_outputs(so, &cso->stream_output);
return so;
}
struct v3d_compiled_shader *
v3d_get_compiled_shader(struct v3d_context *v3d,
struct v3d_key *key,
size_t key_size)
{
struct v3d_uncompiled_shader *shader_state = key->shader_state;
nir_shader *s = shader_state->base.ir.nir;
struct hash_table *ht = v3d->prog.cache[s->info.stage];
struct hash_entry *entry = _mesa_hash_table_search(ht, key);
if (entry)
return entry->data;
int variant_id =
p_atomic_inc_return(&shader_state->compiled_variant_count);
struct v3d_compiled_shader *shader = NULL;
#ifdef ENABLE_SHADER_CACHE
shader = v3d_disk_cache_retrieve(v3d, key);
#endif
if (!shader) {
shader = rzalloc(NULL, struct v3d_compiled_shader);
int program_id = shader_state->program_id;
uint64_t *qpu_insts;
uint32_t shader_size;
qpu_insts = v3d_compile(v3d->screen->compiler, key,
&shader->prog_data.base, s,
v3d_shader_debug_output,
v3d,
program_id, variant_id, &shader_size);
ralloc_steal(shader, shader->prog_data.base);
if (shader_size) {
u_upload_data(v3d->state_uploader, 0, shader_size, 8,
qpu_insts, &shader->offset, &shader->resource);
}
#ifdef ENABLE_SHADER_CACHE
v3d_disk_cache_store(v3d, key, shader, qpu_insts, shader_size);
#endif
free(qpu_insts);
}
v3d_set_shader_uniform_dirty_flags(shader);
if (ht) {
struct v3d_key *dup_key;
dup_key = ralloc_size(shader, key_size);
memcpy(dup_key, key, key_size);
_mesa_hash_table_insert(ht, dup_key, shader);
}
if (shader->prog_data.base->spill_size >
v3d->prog.spill_size_per_thread) {
/* The TIDX register we use for choosing the area to access
* for scratch space is: (core << 6) | (qpu << 2) | thread.
* Even at minimum threadcount in a particular shader, that
* means we still multiply by qpus by 4.
*/
int total_spill_size = (v3d->screen->devinfo.qpu_count * 4 *
shader->prog_data.base->spill_size);
v3d_bo_unreference(&v3d->prog.spill_bo);
v3d->prog.spill_bo = v3d_bo_alloc(v3d->screen,
total_spill_size, "spill");
v3d->prog.spill_size_per_thread =
shader->prog_data.base->spill_size;
}
return shader;
}
static void
v3d_free_compiled_shader(struct v3d_compiled_shader *shader)
{
pipe_resource_reference(&shader->resource, NULL);
ralloc_free(shader);
}
static void
v3d_setup_shared_key(struct v3d_context *v3d, struct v3d_key *key,
struct v3d_texture_stateobj *texstate)
{
const struct v3d_device_info *devinfo = &v3d->screen->devinfo;
key->num_tex_used = texstate->num_textures;
key->num_samplers_used = texstate->num_textures;
assert(key->num_tex_used == key->num_samplers_used);
for (int i = 0; i < texstate->num_textures; i++) {
struct pipe_sampler_view *sampler = texstate->textures[i];
struct v3d_sampler_view *v3d_sampler = v3d_sampler_view(sampler);
struct pipe_sampler_state *sampler_state =
texstate->samplers[i];
if (!sampler)
continue;
assert(sampler->target == PIPE_BUFFER || sampler_state);
unsigned compare_mode = sampler_state ?
sampler_state->compare_mode :
PIPE_TEX_COMPARE_NONE;
key->sampler[i].return_size =
v3d_get_tex_return_size(devinfo,
sampler->format,
compare_mode);
/* For 16-bit, we set up the sampler to always return 2
* channels (meaning no recompiles for most statechanges),
* while for 32 we actually scale the returns with channels.
*/
if (key->sampler[i].return_size == 16) {
key->sampler[i].return_channels = 2;
} else if (devinfo->ver > 40) {
key->sampler[i].return_channels = 4;
} else {
key->sampler[i].return_channels =
v3d_get_tex_return_channels(devinfo,
sampler->format);
}
if (key->sampler[i].return_size == 32 && devinfo->ver < 40) {
memcpy(key->tex[i].swizzle,
v3d_sampler->swizzle,
sizeof(v3d_sampler->swizzle));
} else {
/* For 16-bit returns, we let the sampler state handle
* the swizzle.
*/
key->tex[i].swizzle[0] = PIPE_SWIZZLE_X;
key->tex[i].swizzle[1] = PIPE_SWIZZLE_Y;
key->tex[i].swizzle[2] = PIPE_SWIZZLE_Z;
key->tex[i].swizzle[3] = PIPE_SWIZZLE_W;
}
}
}
static void
v3d_setup_shared_precompile_key(struct v3d_uncompiled_shader *uncompiled,
struct v3d_key *key)
{
nir_shader *s = uncompiled->base.ir.nir;
/* Note that below we access they key's texture and sampler fields
* using the same index. On OpenGL they are the same (they are
* combined)
*/
key->num_tex_used = s->info.num_textures;
key->num_samplers_used = s->info.num_textures;
for (int i = 0; i < s->info.num_textures; i++) {
key->sampler[i].return_size = 16;
key->sampler[i].return_channels = 2;
key->tex[i].swizzle[0] = PIPE_SWIZZLE_X;
key->tex[i].swizzle[1] = PIPE_SWIZZLE_Y;
key->tex[i].swizzle[2] = PIPE_SWIZZLE_Z;
key->tex[i].swizzle[3] = PIPE_SWIZZLE_W;
}
}
static void
v3d_update_compiled_fs(struct v3d_context *v3d, uint8_t prim_mode)
{
struct v3d_job *job = v3d->job;
struct v3d_fs_key local_key;
struct v3d_fs_key *key = &local_key;
nir_shader *s = v3d->prog.bind_fs->base.ir.nir;
if (!(v3d->dirty & (V3D_DIRTY_PRIM_MODE |
V3D_DIRTY_BLEND |
V3D_DIRTY_FRAMEBUFFER |
V3D_DIRTY_ZSA |
V3D_DIRTY_RASTERIZER |
V3D_DIRTY_SAMPLE_STATE |
V3D_DIRTY_FRAGTEX |
V3D_DIRTY_UNCOMPILED_FS))) {
return;
}
memset(key, 0, sizeof(*key));
v3d_setup_shared_key(v3d, &key->base, &v3d->tex[PIPE_SHADER_FRAGMENT]);
key->base.shader_state = v3d->prog.bind_fs;
key->base.ucp_enables = v3d->rasterizer->base.clip_plane_enable;
key->is_points = (prim_mode == PIPE_PRIM_POINTS);
key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
prim_mode <= PIPE_PRIM_LINE_STRIP);
key->line_smoothing = (key->is_lines &&
v3d_line_smoothing_enabled(v3d));
key->has_gs = v3d->prog.bind_gs != NULL;
if (v3d->blend->base.logicop_enable) {
key->logicop_func = v3d->blend->base.logicop_func;
} else {
key->logicop_func = PIPE_LOGICOP_COPY;
}
if (job->msaa) {
key->msaa = v3d->rasterizer->base.multisample;
key->sample_coverage = (v3d->rasterizer->base.multisample &&
v3d->sample_mask != (1 << V3D_MAX_SAMPLES) - 1);
key->sample_alpha_to_coverage = v3d->blend->base.alpha_to_coverage;
key->sample_alpha_to_one = v3d->blend->base.alpha_to_one;
}
key->swap_color_rb = v3d->swap_color_rb;
for (int i = 0; i < v3d->framebuffer.nr_cbufs; i++) {
struct pipe_surface *cbuf = v3d->framebuffer.cbufs[i];
if (!cbuf)
continue;
/* gl_FragColor's propagation to however many bound color
* buffers there are means that the shader compile needs to
* know what buffers are present.
*/
key->cbufs |= 1 << i;
/* If logic operations are enabled then we might emit color
* reads and we need to know the color buffer format and
* swizzle for that.
*/
if (key->logicop_func != PIPE_LOGICOP_COPY) {
key->color_fmt[i].format = cbuf->format;
memcpy(key->color_fmt[i].swizzle,
v3d_get_format_swizzle(&v3d->screen->devinfo,
cbuf->format),
sizeof(key->color_fmt[i].swizzle));
}
const struct util_format_description *desc =
util_format_description(cbuf->format);
if (desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT &&
desc->channel[0].size == 32) {
key->f32_color_rb |= 1 << i;
}
if (s->info.fs.untyped_color_outputs) {
if (util_format_is_pure_uint(cbuf->format))
key->uint_color_rb |= 1 << i;
else if (util_format_is_pure_sint(cbuf->format))
key->int_color_rb |= 1 << i;
}
}
if (key->is_points) {
key->point_sprite_mask =
v3d->rasterizer->base.sprite_coord_enable;
/* this is handled by lower_wpos_pntc */
key->point_coord_upper_left = false;
}
struct v3d_compiled_shader *old_fs = v3d->prog.fs;
v3d->prog.fs = v3d_get_compiled_shader(v3d, &key->base, sizeof(*key));
if (v3d->prog.fs == old_fs)
return;
v3d->dirty |= V3D_DIRTY_COMPILED_FS;
if (old_fs) {
if (v3d->prog.fs->prog_data.fs->flat_shade_flags !=
old_fs->prog_data.fs->flat_shade_flags) {
v3d->dirty |= V3D_DIRTY_FLAT_SHADE_FLAGS;
}
if (v3d->prog.fs->prog_data.fs->noperspective_flags !=
old_fs->prog_data.fs->noperspective_flags) {
v3d->dirty |= V3D_DIRTY_NOPERSPECTIVE_FLAGS;
}
if (v3d->prog.fs->prog_data.fs->centroid_flags !=
old_fs->prog_data.fs->centroid_flags) {
v3d->dirty |= V3D_DIRTY_CENTROID_FLAGS;
}
}
if (old_fs && memcmp(v3d->prog.fs->prog_data.fs->input_slots,
old_fs->prog_data.fs->input_slots,
sizeof(v3d->prog.fs->prog_data.fs->input_slots))) {
v3d->dirty |= V3D_DIRTY_FS_INPUTS;
}
}
static void
v3d_update_compiled_gs(struct v3d_context *v3d, uint8_t prim_mode)
{
struct v3d_gs_key local_key;
struct v3d_gs_key *key = &local_key;
if (!(v3d->dirty & (V3D_DIRTY_GEOMTEX |
V3D_DIRTY_RASTERIZER |
V3D_DIRTY_UNCOMPILED_GS |
V3D_DIRTY_PRIM_MODE |
V3D_DIRTY_FS_INPUTS))) {
return;
}
if (!v3d->prog.bind_gs) {
v3d->prog.gs = NULL;
v3d->prog.gs_bin = NULL;
return;
}
memset(key, 0, sizeof(*key));
v3d_setup_shared_key(v3d, &key->base, &v3d->tex[PIPE_SHADER_GEOMETRY]);
key->base.shader_state = v3d->prog.bind_gs;
key->base.ucp_enables = v3d->rasterizer->base.clip_plane_enable;
key->base.is_last_geometry_stage = true;
key->num_used_outputs = v3d->prog.fs->prog_data.fs->num_inputs;
STATIC_ASSERT(sizeof(key->used_outputs) ==
sizeof(v3d->prog.fs->prog_data.fs->input_slots));
memcpy(key->used_outputs, v3d->prog.fs->prog_data.fs->input_slots,
sizeof(key->used_outputs));
key->per_vertex_point_size =
(prim_mode == PIPE_PRIM_POINTS &&
v3d->rasterizer->base.point_size_per_vertex);
struct v3d_compiled_shader *gs =
v3d_get_compiled_shader(v3d, &key->base, sizeof(*key));
if (gs != v3d->prog.gs) {
v3d->prog.gs = gs;
v3d->dirty |= V3D_DIRTY_COMPILED_GS;
}
key->is_coord = true;
/* The last bin-mode shader in the geometry pipeline only outputs
* varyings used by transform feedback.
*/
struct v3d_uncompiled_shader *shader_state = key->base.shader_state;
memcpy(key->used_outputs, shader_state->tf_outputs,
sizeof(*key->used_outputs) * shader_state->num_tf_outputs);
if (shader_state->num_tf_outputs < key->num_used_outputs) {
uint32_t size = sizeof(*key->used_outputs) *
(key->num_used_outputs -
shader_state->num_tf_outputs);
memset(&key->used_outputs[shader_state->num_tf_outputs],
0, size);
}
key->num_used_outputs = shader_state->num_tf_outputs;
struct v3d_compiled_shader *old_gs = v3d->prog.gs;
struct v3d_compiled_shader *gs_bin =
v3d_get_compiled_shader(v3d, &key->base, sizeof(*key));
if (gs_bin != old_gs) {
v3d->prog.gs_bin = gs_bin;
v3d->dirty |= V3D_DIRTY_COMPILED_GS_BIN;
}
if (old_gs && memcmp(v3d->prog.gs->prog_data.gs->input_slots,
old_gs->prog_data.gs->input_slots,
sizeof(v3d->prog.gs->prog_data.gs->input_slots))) {
v3d->dirty |= V3D_DIRTY_GS_INPUTS;
}
}
static void
v3d_update_compiled_vs(struct v3d_context *v3d, uint8_t prim_mode)
{
struct v3d_vs_key local_key;
struct v3d_vs_key *key = &local_key;
if (!(v3d->dirty & (V3D_DIRTY_VERTTEX |
V3D_DIRTY_VTXSTATE |
V3D_DIRTY_UNCOMPILED_VS |
(v3d->prog.bind_gs ? 0 : V3D_DIRTY_RASTERIZER) |
(v3d->prog.bind_gs ? 0 : V3D_DIRTY_PRIM_MODE) |
(v3d->prog.bind_gs ? V3D_DIRTY_GS_INPUTS :
V3D_DIRTY_FS_INPUTS)))) {
return;
}
memset(key, 0, sizeof(*key));
v3d_setup_shared_key(v3d, &key->base, &v3d->tex[PIPE_SHADER_VERTEX]);
key->base.shader_state = v3d->prog.bind_vs;
key->base.ucp_enables = v3d->rasterizer->base.clip_plane_enable;
key->base.is_last_geometry_stage = !v3d->prog.bind_gs;
if (!v3d->prog.bind_gs) {
key->num_used_outputs = v3d->prog.fs->prog_data.fs->num_inputs;
STATIC_ASSERT(sizeof(key->used_outputs) ==
sizeof(v3d->prog.fs->prog_data.fs->input_slots));
memcpy(key->used_outputs, v3d->prog.fs->prog_data.fs->input_slots,
sizeof(key->used_outputs));
} else {
key->num_used_outputs = v3d->prog.gs->prog_data.gs->num_inputs;
STATIC_ASSERT(sizeof(key->used_outputs) ==
sizeof(v3d->prog.gs->prog_data.gs->input_slots));
memcpy(key->used_outputs, v3d->prog.gs->prog_data.gs->input_slots,
sizeof(key->used_outputs));
}
key->per_vertex_point_size =
(prim_mode == PIPE_PRIM_POINTS &&
v3d->rasterizer->base.point_size_per_vertex);
nir_shader *s = v3d->prog.bind_vs->base.ir.nir;
uint64_t inputs_read = s->info.inputs_read;
assert(util_bitcount(inputs_read) <= v3d->vtx->num_elements);
while (inputs_read) {
int location = u_bit_scan64(&inputs_read);
nir_variable *var =
nir_find_variable_with_location(s, nir_var_shader_in, location);
assert (var != NULL);
int driver_location = var->data.driver_location;
switch (v3d->vtx->pipe[driver_location].src_format) {
case PIPE_FORMAT_B8G8R8A8_UNORM:
case PIPE_FORMAT_B10G10R10A2_UNORM:
case PIPE_FORMAT_B10G10R10A2_SNORM:
case PIPE_FORMAT_B10G10R10A2_USCALED:
case PIPE_FORMAT_B10G10R10A2_SSCALED:
key->va_swap_rb_mask |= 1 << location;
break;
default:
break;
}
}
struct v3d_compiled_shader *vs =
v3d_get_compiled_shader(v3d, &key->base, sizeof(*key));
if (vs != v3d->prog.vs) {
v3d->prog.vs = vs;
v3d->dirty |= V3D_DIRTY_COMPILED_VS;
}
key->is_coord = true;
/* Coord shaders only output varyings used by transform feedback,
* unless they are linked to other shaders in the geometry side
* of the pipeline, since in that case any of the output varyings
* could be required in later geometry stages to compute
* gl_Position or TF outputs.
*/
if (!v3d->prog.bind_gs) {
struct v3d_uncompiled_shader *shader_state =
key->base.shader_state;
memcpy(key->used_outputs, shader_state->tf_outputs,
sizeof(*key->used_outputs) *
shader_state->num_tf_outputs);
if (shader_state->num_tf_outputs < key->num_used_outputs) {
uint32_t tail_bytes =
sizeof(*key->used_outputs) *
(key->num_used_outputs -
shader_state->num_tf_outputs);
memset(&key->used_outputs[shader_state->num_tf_outputs],
0, tail_bytes);
}
key->num_used_outputs = shader_state->num_tf_outputs;
} else {
key->num_used_outputs = v3d->prog.gs_bin->prog_data.gs->num_inputs;
STATIC_ASSERT(sizeof(key->used_outputs) ==
sizeof(v3d->prog.gs_bin->prog_data.gs->input_slots));
memcpy(key->used_outputs, v3d->prog.gs_bin->prog_data.gs->input_slots,
sizeof(key->used_outputs));
}
struct v3d_compiled_shader *cs =
v3d_get_compiled_shader(v3d, &key->base, sizeof(*key));
if (cs != v3d->prog.cs) {
v3d->prog.cs = cs;
v3d->dirty |= V3D_DIRTY_COMPILED_CS;
}
}
void
v3d_update_compiled_shaders(struct v3d_context *v3d, uint8_t prim_mode)
{
v3d_update_compiled_fs(v3d, prim_mode);
v3d_update_compiled_gs(v3d, prim_mode);
v3d_update_compiled_vs(v3d, prim_mode);
}
void
v3d_update_compiled_cs(struct v3d_context *v3d)
{
struct v3d_key local_key;
struct v3d_key *key = &local_key;
if (!(v3d->dirty & (V3D_DIRTY_UNCOMPILED_CS |
V3D_DIRTY_COMPTEX))) {
return;
}
memset(key, 0, sizeof(*key));
v3d_setup_shared_key(v3d, key, &v3d->tex[PIPE_SHADER_COMPUTE]);
key->shader_state = v3d->prog.bind_compute;
struct v3d_compiled_shader *cs =
v3d_get_compiled_shader(v3d, key, sizeof(*key));
if (cs != v3d->prog.compute) {
v3d->prog.compute = cs;
v3d->dirty |= V3D_DIRTY_COMPILED_CS; /* XXX */
}
}
static uint32_t
fs_cache_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct v3d_fs_key));
}
static uint32_t
gs_cache_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct v3d_gs_key));
}
static uint32_t
vs_cache_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct v3d_vs_key));
}
static uint32_t
cs_cache_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct v3d_key));
}
static bool
fs_cache_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, sizeof(struct v3d_fs_key)) == 0;
}
static bool
gs_cache_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, sizeof(struct v3d_gs_key)) == 0;
}
static bool
vs_cache_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, sizeof(struct v3d_vs_key)) == 0;
}
static bool
cs_cache_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, sizeof(struct v3d_key)) == 0;
}
static void
v3d_shader_state_delete(struct pipe_context *pctx, void *hwcso)
{
struct v3d_context *v3d = v3d_context(pctx);
struct v3d_uncompiled_shader *so = hwcso;
nir_shader *s = so->base.ir.nir;
hash_table_foreach(v3d->prog.cache[s->info.stage], entry) {
const struct v3d_key *key = entry->key;
struct v3d_compiled_shader *shader = entry->data;
if (key->shader_state != so)
continue;
if (v3d->prog.fs == shader)
v3d->prog.fs = NULL;
if (v3d->prog.vs == shader)
v3d->prog.vs = NULL;
if (v3d->prog.cs == shader)
v3d->prog.cs = NULL;
if (v3d->prog.compute == shader)
v3d->prog.compute = NULL;
_mesa_hash_table_remove(v3d->prog.cache[s->info.stage], entry);
v3d_free_compiled_shader(shader);
}
ralloc_free(so->base.ir.nir);
free(so);
}
static void
v3d_fp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct v3d_context *v3d = v3d_context(pctx);
v3d->prog.bind_fs = hwcso;
v3d->dirty |= V3D_DIRTY_UNCOMPILED_FS;
}
static void
v3d_gp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct v3d_context *v3d = v3d_context(pctx);
v3d->prog.bind_gs = hwcso;
v3d->dirty |= V3D_DIRTY_UNCOMPILED_GS;
}
static void
v3d_vp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct v3d_context *v3d = v3d_context(pctx);
v3d->prog.bind_vs = hwcso;
v3d->dirty |= V3D_DIRTY_UNCOMPILED_VS;
}
static void
v3d_compute_state_bind(struct pipe_context *pctx, void *state)
{
struct v3d_context *v3d = v3d_context(pctx);
v3d->prog.bind_compute = state;
v3d->dirty |= V3D_DIRTY_UNCOMPILED_CS;
}
static void *
v3d_create_compute_state(struct pipe_context *pctx,
const struct pipe_compute_state *cso)
{
return v3d_uncompiled_shader_create(pctx, cso->ir_type,
(void *)cso->prog);
}
void
v3d_program_init(struct pipe_context *pctx)
{
struct v3d_context *v3d = v3d_context(pctx);
pctx->create_vs_state = v3d_shader_state_create;
pctx->delete_vs_state = v3d_shader_state_delete;
pctx->create_gs_state = v3d_shader_state_create;
pctx->delete_gs_state = v3d_shader_state_delete;
pctx->create_fs_state = v3d_shader_state_create;
pctx->delete_fs_state = v3d_shader_state_delete;
pctx->bind_fs_state = v3d_fp_state_bind;
pctx->bind_gs_state = v3d_gp_state_bind;
pctx->bind_vs_state = v3d_vp_state_bind;
if (v3d->screen->has_csd) {
pctx->create_compute_state = v3d_create_compute_state;
pctx->delete_compute_state = v3d_shader_state_delete;
pctx->bind_compute_state = v3d_compute_state_bind;
}
v3d->prog.cache[MESA_SHADER_VERTEX] =
_mesa_hash_table_create(pctx, vs_cache_hash, vs_cache_compare);
v3d->prog.cache[MESA_SHADER_GEOMETRY] =
_mesa_hash_table_create(pctx, gs_cache_hash, gs_cache_compare);
v3d->prog.cache[MESA_SHADER_FRAGMENT] =
_mesa_hash_table_create(pctx, fs_cache_hash, fs_cache_compare);
v3d->prog.cache[MESA_SHADER_COMPUTE] =
_mesa_hash_table_create(pctx, cs_cache_hash, cs_cache_compare);
}
void
v3d_program_fini(struct pipe_context *pctx)
{
struct v3d_context *v3d = v3d_context(pctx);
for (int i = 0; i < MESA_SHADER_STAGES; i++) {
struct hash_table *cache = v3d->prog.cache[i];
if (!cache)
continue;
hash_table_foreach(cache, entry) {
struct v3d_compiled_shader *shader = entry->data;
v3d_free_compiled_shader(shader);
_mesa_hash_table_remove(cache, entry);
}
}
v3d_bo_unreference(&v3d->prog.spill_bo);
}