blob: ca1428bdfb662bcd7b37b31aebe60533dff7b245 [file] [log] [blame]
/*
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/ralloc.h"
#include "util/register_allocate.h"
#include "common/v3d_device_info.h"
#include "v3d_compiler.h"
#define ACC_INDEX 0
#define ACC_COUNT 6
#define PHYS_INDEX (ACC_INDEX + ACC_COUNT)
#define PHYS_COUNT 64
#define CLASS_BITS_PHYS (1 << 0)
#define CLASS_BITS_ACC (1 << 1)
#define CLASS_BITS_R5 (1 << 4)
#define CLASS_BITS_ANY (CLASS_BITS_PHYS | \
CLASS_BITS_ACC | \
CLASS_BITS_R5)
static inline uint32_t
temp_to_node(uint32_t temp)
{
return temp + ACC_COUNT;
}
static inline uint32_t
node_to_temp(uint32_t node)
{
assert(node >= ACC_COUNT);
return node - ACC_COUNT;
}
static inline uint8_t
get_temp_class_bits(struct v3d_ra_node_info *nodes,
uint32_t temp)
{
return nodes->info[temp_to_node(temp)].class_bits;
}
static inline void
set_temp_class_bits(struct v3d_ra_node_info *nodes,
uint32_t temp, uint8_t class_bits)
{
nodes->info[temp_to_node(temp)].class_bits = class_bits;
}
static struct ra_class *
choose_reg_class(struct v3d_compile *c, uint8_t class_bits)
{
if (class_bits == CLASS_BITS_PHYS) {
return c->compiler->reg_class_phys[c->thread_index];
} else if (class_bits == (CLASS_BITS_R5)) {
return c->compiler->reg_class_r5[c->thread_index];
} else if (class_bits == (CLASS_BITS_PHYS | CLASS_BITS_ACC)) {
return c->compiler->reg_class_phys_or_acc[c->thread_index];
} else {
assert(class_bits == CLASS_BITS_ANY);
return c->compiler->reg_class_any[c->thread_index];
}
}
static inline struct ra_class *
choose_reg_class_for_temp(struct v3d_compile *c, uint32_t temp)
{
assert(temp < c->num_temps && temp < c->nodes.alloc_count);
return choose_reg_class(c, get_temp_class_bits(&c->nodes, temp));
}
static inline bool
qinst_writes_tmu(const struct v3d_device_info *devinfo,
struct qinst *inst)
{
return (inst->dst.file == QFILE_MAGIC &&
v3d_qpu_magic_waddr_is_tmu(devinfo, inst->dst.index)) ||
inst->qpu.sig.wrtmuc;
}
static bool
is_end_of_tmu_sequence(const struct v3d_device_info *devinfo,
struct qinst *inst, struct qblock *block)
{
/* Only tmuwt and ldtmu can finish TMU sequences */
bool is_tmuwt = inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
inst->qpu.alu.add.op == V3D_QPU_A_TMUWT;
bool is_ldtmu = inst->qpu.sig.ldtmu;
if (!is_tmuwt && !is_ldtmu)
return false;
/* Check if this is the last tmuwt or ldtmu in the sequence */
list_for_each_entry_from(struct qinst, scan_inst, inst->link.next,
&block->instructions, link) {
is_tmuwt = scan_inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
scan_inst->qpu.alu.add.op == V3D_QPU_A_TMUWT;
is_ldtmu = scan_inst->qpu.sig.ldtmu;
if (is_tmuwt || is_ldtmu)
return false;
if (qinst_writes_tmu(devinfo, scan_inst))
return true;
}
return true;
}
static bool
vir_is_mov_uniform(struct v3d_compile *c, int temp)
{
struct qinst *def = c->defs[temp];
return def && def->qpu.sig.ldunif;
}
static bool
can_reconstruct_inst(struct qinst *inst)
{
assert(inst);
if (vir_is_add(inst)) {
switch (inst->qpu.alu.add.op) {
case V3D_QPU_A_FXCD:
case V3D_QPU_A_FYCD:
case V3D_QPU_A_XCD:
case V3D_QPU_A_YCD:
case V3D_QPU_A_IID:
case V3D_QPU_A_EIDX:
case V3D_QPU_A_TIDX:
case V3D_QPU_A_SAMPID:
/* No need to check input unpacks because none of these
* opcodes read sources. FXCD,FYCD have pack variants.
*/
return inst->qpu.flags.ac == V3D_QPU_COND_NONE &&
inst->qpu.flags.auf == V3D_QPU_UF_NONE &&
inst->qpu.flags.apf == V3D_QPU_PF_NONE &&
inst->qpu.alu.add.output_pack == V3D_QPU_PACK_NONE;
default:
return false;
}
}
return false;
}
static bool
can_reconstruct_temp(struct v3d_compile *c, int temp)
{
struct qinst *def = c->defs[temp];
return def && can_reconstruct_inst(def);
}
static struct qreg
reconstruct_temp(struct v3d_compile *c, enum v3d_qpu_add_op op)
{
struct qreg dest;
switch (op) {
case V3D_QPU_A_FXCD:
dest = vir_FXCD(c);
break;
case V3D_QPU_A_FYCD:
dest = vir_FYCD(c);
break;
case V3D_QPU_A_XCD:
dest = vir_XCD(c);
break;
case V3D_QPU_A_YCD:
dest = vir_YCD(c);
break;
case V3D_QPU_A_IID:
dest = vir_IID(c);
break;
case V3D_QPU_A_EIDX:
dest = vir_EIDX(c);
break;
case V3D_QPU_A_TIDX:
dest = vir_TIDX(c);
break;
case V3D_QPU_A_SAMPID:
dest = vir_SAMPID(c);
break;
default:
unreachable("Unexpected opcode for reconstruction");
}
return dest;
}
enum temp_spill_type {
SPILL_TYPE_UNIFORM,
SPILL_TYPE_RECONSTRUCT,
SPILL_TYPE_TMU
};
static enum temp_spill_type
get_spill_type_for_temp(struct v3d_compile *c, int temp)
{
if (vir_is_mov_uniform(c, temp))
return SPILL_TYPE_UNIFORM;
if (can_reconstruct_temp(c, temp))
return SPILL_TYPE_RECONSTRUCT;
return SPILL_TYPE_TMU;
}
static int
v3d_choose_spill_node(struct v3d_compile *c)
{
const float tmu_scale = 10;
float block_scale = 1.0;
float spill_costs[c->num_temps];
bool in_tmu_operation = false;
bool started_last_seg = false;
for (unsigned i = 0; i < c->num_temps; i++)
spill_costs[i] = 0.0;
/* XXX: Scale the cost up when inside of a loop. */
vir_for_each_block(block, c) {
vir_for_each_inst(inst, block) {
/* We can't insert new thread switches after
* starting output writes.
*/
bool no_spilling =
(c->threads > 1 && started_last_seg) ||
(c->max_tmu_spills == 0);
/* Discourage spilling of TMU operations */
for (int i = 0; i < vir_get_nsrc(inst); i++) {
if (inst->src[i].file != QFILE_TEMP)
continue;
int temp = inst->src[i].index;
enum temp_spill_type spill_type =
get_spill_type_for_temp(c, temp);
if (spill_type != SPILL_TYPE_TMU) {
spill_costs[temp] += block_scale;
} else if (!no_spilling) {
float tmu_op_scale = in_tmu_operation ?
3.0 : 1.0;
spill_costs[temp] += (block_scale *
tmu_scale *
tmu_op_scale);
} else {
BITSET_CLEAR(c->spillable, temp);
}
}
if (inst->dst.file == QFILE_TEMP) {
int temp = inst->dst.index;
enum temp_spill_type spill_type =
get_spill_type_for_temp(c, temp);
if (spill_type != SPILL_TYPE_TMU) {
/* We just rematerialize it later */
} else if (!no_spilling) {
spill_costs[temp] += (block_scale *
tmu_scale);
} else {
BITSET_CLEAR(c->spillable, temp);
}
}
/* Refuse to spill a ldvary's dst, because that means
* that ldvary's r5 would end up being used across a
* thrsw.
*/
if (inst->qpu.sig.ldvary) {
assert(inst->dst.file == QFILE_TEMP);
BITSET_CLEAR(c->spillable, inst->dst.index);
}
if (inst->is_last_thrsw)
started_last_seg = true;
if (v3d_qpu_writes_vpm(&inst->qpu) ||
v3d_qpu_uses_tlb(&inst->qpu))
started_last_seg = true;
/* Track when we're in between a TMU setup and the
* final LDTMU or TMUWT from that TMU setup. We
* penalize spills during that time.
*/
if (is_end_of_tmu_sequence(c->devinfo, inst, block))
in_tmu_operation = false;
if (qinst_writes_tmu(c->devinfo, inst))
in_tmu_operation = true;
}
}
for (unsigned i = 0; i < c->num_temps; i++) {
if (BITSET_TEST(c->spillable, i)) {
ra_set_node_spill_cost(c->g, temp_to_node(i),
spill_costs[i]);
}
}
return ra_get_best_spill_node(c->g);
}
static void
ensure_nodes(struct v3d_compile *c)
{
if (c->num_temps < c->nodes.alloc_count)
return;
c->nodes.alloc_count *= 2;
c->nodes.info = reralloc_array_size(c,
c->nodes.info,
sizeof(c->nodes.info[0]),
c->nodes.alloc_count + ACC_COUNT);
}
/* Creates the interference node for a new temp. We use this to keep the node
* list updated during the spilling process, which generates new temps/nodes.
*/
static void
add_node(struct v3d_compile *c, uint32_t temp, uint8_t class_bits)
{
ensure_nodes(c);
int node = ra_add_node(c->g, choose_reg_class(c, class_bits));
assert(node == temp + ACC_COUNT);
/* We fill the node priority after we are done inserting spills */
c->nodes.info[node].class_bits = class_bits;
c->nodes.info[node].priority = 0;
}
/* The spill offset for this thread takes a bit of setup, so do it once at
* program start.
*/
void
v3d_setup_spill_base(struct v3d_compile *c)
{
/* Setting up the spill base is done in the entry block; so change
* both the current block to emit and the cursor.
*/
struct qblock *current_block = c->cur_block;
c->cur_block = vir_entry_block(c);
c->cursor = vir_before_block(c->cur_block);
int start_num_temps = c->num_temps;
/* Each thread wants to be in a separate region of the scratch space
* so that the QPUs aren't fighting over cache lines. We have the
* driver keep a single global spill BO rather than
* per-spilling-program BOs, so we need a uniform from the driver for
* what the per-thread scale is.
*/
struct qreg thread_offset =
vir_UMUL(c,
vir_TIDX(c),
vir_uniform(c, QUNIFORM_SPILL_SIZE_PER_THREAD, 0));
/* Each channel in a reg is 4 bytes, so scale them up by that. */
struct qreg element_offset = vir_SHL(c, vir_EIDX(c),
vir_uniform_ui(c, 2));
c->spill_base = vir_ADD(c,
vir_ADD(c, thread_offset, element_offset),
vir_uniform(c, QUNIFORM_SPILL_OFFSET, 0));
/* Make sure that we don't spill the spilling setup instructions. */
for (int i = start_num_temps; i < c->num_temps; i++) {
BITSET_CLEAR(c->spillable, i);
/* If we are spilling, update the RA map with the temps added
* by the spill setup. Our spill_base register can never be an
* accumulator because it is used for TMU spill/fill and thus
* needs to persist across thread switches.
*/
if (c->spilling) {
int temp_class = CLASS_BITS_PHYS;
if (i != c->spill_base.index)
temp_class |= CLASS_BITS_ACC;
add_node(c, i, temp_class);
}
}
/* Restore the current block. */
c->cur_block = current_block;
c->cursor = vir_after_block(c->cur_block);
}
/**
* Computes the address for a spill/fill sequence and completes the spill/fill
* sequence by emitting the following code:
*
* ldunif.spill_offset
* add tmua spill_base spill_offset
* thrsw
*
* If the sequence is for a spill, then it will emit a tmuwt after the thrsw,
* otherwise it will emit an ldtmu to load the fill result into 'fill_dst'.
*
* The parameter 'ip' represents the ip at which the spill/fill is happening.
* This is used to disallow accumulators on temps that cross this ip boundary
* due to the new thrsw itroduced in the sequence above.
*/
static void
v3d_emit_spill_tmua(struct v3d_compile *c,
uint32_t spill_offset,
enum v3d_qpu_cond cond,
int32_t ip,
struct qreg *fill_dst)
{
assert(ip >= 0);
/* Load a uniform with the spill offset and add it to the spill base
* to obtain the TMUA address. It can be of class ANY because we know
* we are consuming it immediately without thrsw in between.
*/
assert(c->disable_ldunif_opt);
struct qreg offset = vir_uniform_ui(c, spill_offset);
add_node(c, offset.index, CLASS_BITS_ANY);
/* We always enable per-quad on spills/fills to ensure we spill
* any channels involved with helper invocations.
*/
struct qreg tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUAU);
struct qinst *inst = vir_ADD_dest(c, tmua, c->spill_base, offset);
inst->qpu.flags.ac = cond;
inst->uniform = vir_get_uniform_index(c, QUNIFORM_CONSTANT,
0xffffff7f); /* per-quad */
vir_emit_thrsw(c);
/* If this is for a spill, emit a TMUWT otherwise a LDTMU to load the
* result of the fill. The TMUWT temp is not really read, the ldtmu
* temp will be used immediately so just like the uniform above we
* can allow accumulators.
*/
if (!fill_dst) {
struct qreg dst = vir_TMUWT(c);
assert(dst.file == QFILE_TEMP);
add_node(c, dst.index, CLASS_BITS_PHYS | CLASS_BITS_ACC);
} else {
*fill_dst = vir_LDTMU(c);
assert(fill_dst->file == QFILE_TEMP);
add_node(c, fill_dst->index, CLASS_BITS_PHYS | CLASS_BITS_ACC);
}
/* Temps across the thread switch we injected can't be assigned to
* accumulators.
*
* Fills inject code before ip, so anything that starts at ip or later
* is not affected by the thrsw. Something that ends at ip will be
* affected though.
*
* Spills inject code after ip, so anything that starts strictly later
* than ip is not affected (the temp starting at ip is usually the
* spilled temp except for postponed spills). Something that ends at ip
* won't be affected either.
*/
for (int i = 0; i < c->spill_start_num_temps; i++) {
bool thrsw_cross = fill_dst ?
c->temp_start[i] < ip && c->temp_end[i] >= ip :
c->temp_start[i] <= ip && c->temp_end[i] > ip;
if (thrsw_cross) {
ra_set_node_class(c->g, temp_to_node(i),
choose_reg_class(c, CLASS_BITS_PHYS));
}
}
}
static void
v3d_emit_tmu_spill(struct v3d_compile *c,
struct qinst *inst,
struct qreg spill_temp,
struct qinst *position,
uint32_t ip,
uint32_t spill_offset)
{
assert(inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU);
assert(inst->dst.file == QFILE_TEMP);
c->cursor = vir_after_inst(position);
enum v3d_qpu_cond cond = vir_get_cond(inst);
/* If inst and position don't match, this is a postponed spill,
* in which case we have already allocated the temp for the spill
* and we should use that, otherwise create a new temp with the
* same register class bits as the original.
*/
if (inst == position) {
uint8_t class_bits = get_temp_class_bits(&c->nodes,
inst->dst.index);
inst->dst = vir_get_temp(c);
add_node(c, inst->dst.index, class_bits);
} else {
inst->dst = spill_temp;
/* If this is a postponed spill the register being spilled may
* have been written more than once including conditional
* writes, so ignore predication on the spill instruction and
* always spill the full register.
*/
cond = V3D_QPU_COND_NONE;
}
struct qinst *tmp =
vir_MOV_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD),
inst->dst);
tmp->qpu.flags.mc = cond;
v3d_emit_spill_tmua(c, spill_offset, cond, ip, NULL);
c->spills++;
c->tmu_dirty_rcl = true;
}
static inline bool
interferes(int32_t t0_start, int32_t t0_end, int32_t t1_start, int32_t t1_end)
{
return !(t0_start >= t1_end || t1_start >= t0_end);
}
static void
v3d_spill_reg(struct v3d_compile *c, int *acc_nodes, int spill_temp)
{
c->spill_start_num_temps = c->num_temps;
c->spilling = true;
enum temp_spill_type spill_type = get_spill_type_for_temp(c, spill_temp);
uint32_t spill_offset = 0;
if (spill_type == SPILL_TYPE_TMU) {
spill_offset = c->spill_size;
c->spill_size += V3D_CHANNELS * sizeof(uint32_t);
if (spill_offset == 0)
v3d_setup_spill_base(c);
}
struct qinst *last_thrsw = c->last_thrsw;
assert(last_thrsw && last_thrsw->is_last_thrsw);
int uniform_index = ~0;
if (spill_type == SPILL_TYPE_UNIFORM) {
struct qinst *orig_unif = c->defs[spill_temp];
uniform_index = orig_unif->uniform;
}
enum v3d_qpu_add_op reconstruct_op = V3D_QPU_A_NOP;
if (spill_type == SPILL_TYPE_RECONSTRUCT) {
struct qinst *orig_def = c->defs[spill_temp];
assert(vir_is_add(orig_def));
reconstruct_op = orig_def->qpu.alu.add.op;
}
uint32_t spill_node = temp_to_node(spill_temp);
/* We must disable the ldunif optimization if we are spilling uniforms */
bool had_disable_ldunif_opt = c->disable_ldunif_opt;
c->disable_ldunif_opt = true;
struct qinst *start_of_tmu_sequence = NULL;
struct qinst *postponed_spill = NULL;
struct qreg postponed_spill_temp = { 0 };
vir_for_each_block(block, c) {
vir_for_each_inst_safe(inst, block) {
int32_t ip = inst->ip;
/* Track when we're in between a TMU setup and the final
* LDTMU or TMUWT from that TMU setup. We can't spill/fill any
* temps during that time, because that involves inserting a
* new TMU setup/LDTMU sequence, so we postpone the spill or
* move the fill up to not intrude in the middle of the TMU
* sequence.
*/
if (is_end_of_tmu_sequence(c->devinfo, inst, block)) {
if (postponed_spill) {
v3d_emit_tmu_spill(c, postponed_spill,
postponed_spill_temp,
inst, ip, spill_offset);
}
start_of_tmu_sequence = NULL;
postponed_spill = NULL;
}
if (!start_of_tmu_sequence &&
qinst_writes_tmu(c->devinfo, inst)) {
start_of_tmu_sequence = inst;
}
/* fills */
int filled_src = -1;
for (int i = 0; i < vir_get_nsrc(inst); i++) {
if (inst->src[i].file != QFILE_TEMP ||
inst->src[i].index != spill_temp) {
continue;
}
if (filled_src >= 0) {
inst->src[i] = inst->src[filled_src];
continue;
}
c->cursor = vir_before_inst(inst);
if (spill_type == SPILL_TYPE_UNIFORM) {
struct qreg unif =
vir_uniform(c,
c->uniform_contents[uniform_index],
c->uniform_data[uniform_index]);
inst->src[i] = unif;
/* We are using the uniform in the
* instruction immediately after, so
* we can use any register class for it.
*/
add_node(c, unif.index, CLASS_BITS_ANY);
} else if (spill_type == SPILL_TYPE_RECONSTRUCT) {
struct qreg temp =
reconstruct_temp(c, reconstruct_op);
inst->src[i] = temp;
/* We are using the temp in the
* instruction immediately after so we
* can use ACC.
*/
add_node(c, temp.index, CLASS_BITS_PHYS |
CLASS_BITS_ACC);
} else {
/* If we have a postponed spill, we
* don't need a fill as the temp would
* not have been spilled yet, however,
* we need to update the temp index.
*/
if (postponed_spill) {
inst->src[i] =
postponed_spill_temp;
} else {
int32_t fill_ip = ip;
if (start_of_tmu_sequence) {
c->cursor = vir_before_inst(start_of_tmu_sequence);
fill_ip = start_of_tmu_sequence->ip;
}
v3d_emit_spill_tmua(c, spill_offset,
V3D_QPU_COND_NONE,
fill_ip, &inst->src[i]);
c->fills++;
}
}
filled_src = i;
}
/* spills */
if (inst->dst.file == QFILE_TEMP &&
inst->dst.index == spill_temp) {
if (spill_type != SPILL_TYPE_TMU) {
c->cursor.link = NULL;
vir_remove_instruction(c, inst);
} else {
/* If we are in the middle of a TMU
* sequence, we postpone the actual
* spill until we have finished it. We,
* still need to replace the spill temp
* with a new temp though.
*/
if (start_of_tmu_sequence) {
if (postponed_spill) {
postponed_spill->dst =
postponed_spill_temp;
}
if (!postponed_spill ||
vir_get_cond(inst) == V3D_QPU_COND_NONE) {
postponed_spill_temp =
vir_get_temp(c);
add_node(c,
postponed_spill_temp.index,
c->nodes.info[spill_node].class_bits);
}
postponed_spill = inst;
} else {
v3d_emit_tmu_spill(c, inst,
postponed_spill_temp,
inst, ip,
spill_offset);
}
}
}
}
}
/* Make sure c->last_thrsw is the actual last thrsw, not just one we
* inserted in our most recent unspill.
*/
c->last_thrsw = last_thrsw;
/* Don't allow spilling of our spilling instructions. There's no way
* they can help get things colored.
*/
for (int i = c->spill_start_num_temps; i < c->num_temps; i++)
BITSET_CLEAR(c->spillable, i);
/* Reset interference for spilled node */
ra_set_node_spill_cost(c->g, spill_node, 0);
ra_reset_node_interference(c->g, spill_node);
BITSET_CLEAR(c->spillable, spill_temp);
/* Rebuild program ips */
int32_t ip = 0;
vir_for_each_inst_inorder(inst, c)
inst->ip = ip++;
/* Rebuild liveness */
vir_calculate_live_intervals(c);
/* Add interferences for the new spilled temps and update interferences
* for c->spill_base (since we may have modified its liveness). Also,
* update node priorities based one new liveness data.
*/
uint32_t sb_temp =c->spill_base.index;
uint32_t sb_node = temp_to_node(sb_temp);
for (uint32_t i = 0; i < c->num_temps; i++) {
if (c->temp_end[i] == -1)
continue;
uint32_t node_i = temp_to_node(i);
c->nodes.info[node_i].priority =
c->temp_end[i] - c->temp_start[i];
for (uint32_t j = MAX2(i + 1, c->spill_start_num_temps);
j < c->num_temps; j++) {
if (interferes(c->temp_start[i], c->temp_end[i],
c->temp_start[j], c->temp_end[j])) {
uint32_t node_j = temp_to_node(j);
ra_add_node_interference(c->g, node_i, node_j);
}
}
if (spill_type == SPILL_TYPE_TMU) {
if (i != sb_temp &&
interferes(c->temp_start[i], c->temp_end[i],
c->temp_start[sb_temp], c->temp_end[sb_temp])) {
ra_add_node_interference(c->g, node_i, sb_node);
}
}
}
c->disable_ldunif_opt = had_disable_ldunif_opt;
c->spilling = false;
}
struct v3d_ra_select_callback_data {
uint32_t next_acc;
uint32_t next_phys;
struct v3d_ra_node_info *nodes;
};
/* Choosing accumulators improves chances of merging QPU instructions
* due to these merges requiring that at most 2 rf registers are used
* by the add and mul instructions.
*/
static bool
v3d_ra_favor_accum(struct v3d_ra_select_callback_data *v3d_ra,
BITSET_WORD *regs,
int priority)
{
/* Favor accumulators if we have less that this number of physical
* registers. Accumulators have more restrictions (like being
* invalidated through thrsw), so running out of physical registers
* even if we have accumulators available can lead to register
* allocation failures.
*/
static const int available_rf_threshold = 5;
int available_rf = 0 ;
for (int i = 0; i < PHYS_COUNT; i++) {
if (BITSET_TEST(regs, PHYS_INDEX + i))
available_rf++;
if (available_rf >= available_rf_threshold)
break;
}
if (available_rf < available_rf_threshold)
return true;
/* Favor accumulators for short-lived temps (our priority represents
* liveness), to prevent long-lived temps from grabbing accumulators
* and preventing follow-up instructions from using them, potentially
* leading to large portions of the shader being unable to use
* accumulators and therefore merge instructions successfully.
*/
static const int priority_threshold = 20;
if (priority <= priority_threshold)
return true;
return false;
}
static bool
v3d_ra_select_accum(struct v3d_ra_select_callback_data *v3d_ra,
BITSET_WORD *regs,
unsigned int *out)
{
/* Choose r5 for our ldunifs if possible (nobody else can load to that
* reg, and it keeps the QPU cond field free from being occupied by
* ldunifrf).
*/
int r5 = ACC_INDEX + 5;
if (BITSET_TEST(regs, r5)) {
*out = r5;
return true;
}
/* Round-robin through our accumulators to give post-RA instruction
* selection more options.
*/
for (int i = 0; i < ACC_COUNT; i++) {
int acc_off = (v3d_ra->next_acc + i) % ACC_COUNT;
int acc = ACC_INDEX + acc_off;
if (BITSET_TEST(regs, acc)) {
v3d_ra->next_acc = acc_off + 1;
*out = acc;
return true;
}
}
return false;
}
static bool
v3d_ra_select_rf(struct v3d_ra_select_callback_data *v3d_ra,
BITSET_WORD *regs,
unsigned int *out)
{
for (int i = 0; i < PHYS_COUNT; i++) {
int phys_off = (v3d_ra->next_phys + i) % PHYS_COUNT;
int phys = PHYS_INDEX + phys_off;
if (BITSET_TEST(regs, phys)) {
v3d_ra->next_phys = phys_off + 1;
*out = phys;
return true;
}
}
return false;
}
static unsigned int
v3d_ra_select_callback(unsigned int n, BITSET_WORD *regs, void *data)
{
struct v3d_ra_select_callback_data *v3d_ra = data;
unsigned int reg;
if (v3d_ra_favor_accum(v3d_ra, regs, v3d_ra->nodes->info[n].priority) &&
v3d_ra_select_accum(v3d_ra, regs, &reg)) {
return reg;
}
if (v3d_ra_select_rf(v3d_ra, regs, &reg))
return reg;
/* If we ran out of physical registers try to assign an accumulator
* if we didn't favor that option earlier.
*/
if (v3d_ra_select_accum(v3d_ra, regs, &reg))
return reg;
unreachable("RA must pass us at least one possible reg.");
}
bool
vir_init_reg_sets(struct v3d_compiler *compiler)
{
/* Allocate up to 3 regfile classes, for the ways the physical
* register file can be divided up for fragment shader threading.
*/
int max_thread_index = (compiler->devinfo->ver >= 40 ? 2 : 3);
compiler->regs = ra_alloc_reg_set(compiler, PHYS_INDEX + PHYS_COUNT,
false);
if (!compiler->regs)
return false;
for (int threads = 0; threads < max_thread_index; threads++) {
compiler->reg_class_any[threads] =
ra_alloc_contig_reg_class(compiler->regs, 1);
compiler->reg_class_r5[threads] =
ra_alloc_contig_reg_class(compiler->regs, 1);
compiler->reg_class_phys_or_acc[threads] =
ra_alloc_contig_reg_class(compiler->regs, 1);
compiler->reg_class_phys[threads] =
ra_alloc_contig_reg_class(compiler->regs, 1);
for (int i = PHYS_INDEX;
i < PHYS_INDEX + (PHYS_COUNT >> threads); i++) {
ra_class_add_reg(compiler->reg_class_phys_or_acc[threads], i);
ra_class_add_reg(compiler->reg_class_phys[threads], i);
ra_class_add_reg(compiler->reg_class_any[threads], i);
}
for (int i = ACC_INDEX + 0; i < ACC_INDEX + ACC_COUNT - 1; i++) {
ra_class_add_reg(compiler->reg_class_phys_or_acc[threads], i);
ra_class_add_reg(compiler->reg_class_any[threads], i);
}
/* r5 can only store a single 32-bit value, so not much can
* use it.
*/
ra_class_add_reg(compiler->reg_class_r5[threads],
ACC_INDEX + 5);
ra_class_add_reg(compiler->reg_class_any[threads],
ACC_INDEX + 5);
}
ra_set_finalize(compiler->regs, NULL);
return true;
}
static inline bool
tmu_spilling_allowed(struct v3d_compile *c)
{
return c->spills + c->fills < c->max_tmu_spills;
}
static void
update_graph_and_reg_classes_for_inst(struct v3d_compile *c, int *acc_nodes,
struct qinst *inst)
{
int32_t ip = inst->ip;
assert(ip >= 0);
/* If the instruction writes r3/r4 (and optionally moves its
* result to a temp), nothing else can be stored in r3/r4 across
* it.
*/
if (vir_writes_r3(c->devinfo, inst)) {
for (int i = 0; i < c->num_temps; i++) {
if (c->temp_start[i] < ip && c->temp_end[i] > ip) {
ra_add_node_interference(c->g,
temp_to_node(i),
acc_nodes[3]);
}
}
}
if (vir_writes_r4(c->devinfo, inst)) {
for (int i = 0; i < c->num_temps; i++) {
if (c->temp_start[i] < ip && c->temp_end[i] > ip) {
ra_add_node_interference(c->g,
temp_to_node(i),
acc_nodes[4]);
}
}
}
if (inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU) {
switch (inst->qpu.alu.add.op) {
case V3D_QPU_A_LDVPMV_IN:
case V3D_QPU_A_LDVPMV_OUT:
case V3D_QPU_A_LDVPMD_IN:
case V3D_QPU_A_LDVPMD_OUT:
case V3D_QPU_A_LDVPMP:
case V3D_QPU_A_LDVPMG_IN:
case V3D_QPU_A_LDVPMG_OUT: {
/* LDVPMs only store to temps (the MA flag
* decides whether the LDVPM is in or out)
*/
assert(inst->dst.file == QFILE_TEMP);
set_temp_class_bits(&c->nodes, inst->dst.index,
CLASS_BITS_PHYS);
break;
}
case V3D_QPU_A_RECIP:
case V3D_QPU_A_RSQRT:
case V3D_QPU_A_EXP:
case V3D_QPU_A_LOG:
case V3D_QPU_A_SIN:
case V3D_QPU_A_RSQRT2: {
/* The SFU instructions write directly to the
* phys regfile.
*/
assert(inst->dst.file == QFILE_TEMP);
set_temp_class_bits(&c->nodes, inst->dst.index,
CLASS_BITS_PHYS);
break;
}
default:
break;
}
}
if (inst->src[0].file == QFILE_REG) {
switch (inst->src[0].index) {
case 0:
case 1:
case 2:
case 3: {
/* Payload setup instructions: Force allocate
* the dst to the given register (so the MOV
* will disappear).
*/
assert(inst->qpu.alu.mul.op == V3D_QPU_M_MOV);
assert(inst->dst.file == QFILE_TEMP);
uint32_t node = temp_to_node(inst->dst.index);
ra_set_node_reg(c->g, node,
PHYS_INDEX + inst->src[0].index);
break;
}
}
}
if (inst->dst.file == QFILE_TEMP) {
/* Only a ldunif gets to write to R5, which only has a
* single 32-bit channel of storage.
*
* NOTE: ldunifa is subject to the same, however, going by
* shader-db it is best to keep r5 exclusive to ldunif, probably
* because ldunif has usually a shorter lifespan, allowing for
* more accumulator reuse and QPU merges.
*/
if (!inst->qpu.sig.ldunif) {
uint8_t class_bits =
get_temp_class_bits(&c->nodes, inst->dst.index) &
~CLASS_BITS_R5;
set_temp_class_bits(&c->nodes, inst->dst.index,
class_bits);
} else {
/* Until V3D 4.x, we could only load a uniform
* to r5, so we'll need to spill if uniform
* loads interfere with each other.
*/
if (c->devinfo->ver < 40) {
set_temp_class_bits(&c->nodes, inst->dst.index,
CLASS_BITS_R5);
}
}
}
/* All accumulators are invalidated across a thread switch. */
if (inst->qpu.sig.thrsw) {
for (int i = 0; i < c->num_temps; i++) {
if (c->temp_start[i] < ip && c->temp_end[i] > ip) {
set_temp_class_bits(&c->nodes, i,
CLASS_BITS_PHYS);
}
}
}
}
/**
* Returns a mapping from QFILE_TEMP indices to struct qpu_regs.
*
* The return value should be freed by the caller.
*/
struct qpu_reg *
v3d_register_allocate(struct v3d_compile *c)
{
int acc_nodes[ACC_COUNT];
c->nodes = (struct v3d_ra_node_info) {
.alloc_count = c->num_temps,
.info = ralloc_array_size(c, sizeof(c->nodes.info[0]),
c->num_temps + ACC_COUNT),
};
struct v3d_ra_select_callback_data callback_data = {
.next_acc = 0,
/* Start at RF3, to try to keep the TLB writes from using
* RF0-2.
*/
.next_phys = 3,
.nodes = &c->nodes,
};
vir_calculate_live_intervals(c);
/* Convert 1, 2, 4 threads to 0, 1, 2 index.
*
* V3D 4.x has double the physical register space, so 64 physical regs
* are available at both 1x and 2x threading, and 4x has 32.
*/
c->thread_index = ffs(c->threads) - 1;
if (c->devinfo->ver >= 40) {
if (c->thread_index >= 1)
c->thread_index--;
}
c->g = ra_alloc_interference_graph(c->compiler->regs,
c->num_temps + ARRAY_SIZE(acc_nodes));
ra_set_select_reg_callback(c->g, v3d_ra_select_callback, &callback_data);
/* Make some fixed nodes for the accumulators, which we will need to
* interfere with when ops have implied r3/r4 writes or for the thread
* switches. We could represent these as classes for the nodes to
* live in, but the classes take up a lot of memory to set up, so we
* don't want to make too many.
*/
for (uint32_t i = 0; i < ACC_COUNT + c->num_temps; i++) {
if (i < ACC_COUNT) {
acc_nodes[i] = i;
ra_set_node_reg(c->g, acc_nodes[i], ACC_INDEX + i);
c->nodes.info[i].priority = 0;
c->nodes.info[i].class_bits = 0;
} else {
uint32_t t = node_to_temp(i);
c->nodes.info[i].priority =
c->temp_end[t] - c->temp_start[t];
c->nodes.info[i].class_bits = CLASS_BITS_ANY;
}
}
/* Walk the instructions adding register class restrictions and
* interferences.
*/
int ip = 0;
vir_for_each_inst_inorder(inst, c) {
inst->ip = ip++;
update_graph_and_reg_classes_for_inst(c, acc_nodes, inst);
}
/* Set the register classes for all our temporaries in the graph */
for (uint32_t i = 0; i < c->num_temps; i++) {
ra_set_node_class(c->g, temp_to_node(i),
choose_reg_class_for_temp(c, i));
}
/* Add register interferences based on liveness data */
for (uint32_t i = 0; i < c->num_temps; i++) {
for (uint32_t j = i + 1; j < c->num_temps; j++) {
if (interferes(c->temp_start[i], c->temp_end[i],
c->temp_start[j], c->temp_end[j])) {
ra_add_node_interference(c->g,
temp_to_node(i),
temp_to_node(j));
}
}
}
/* Debug option to force a bit of TMU spilling, for running
* across conformance tests to make sure that spilling works.
*/
const int force_register_spills = 0;
if (force_register_spills > 0)
c->max_tmu_spills = UINT32_MAX;
struct qpu_reg *temp_registers = NULL;
while (true) {
if (c->spill_size <
V3D_CHANNELS * sizeof(uint32_t) * force_register_spills) {
int node = v3d_choose_spill_node(c);
uint32_t temp = node_to_temp(node);
if (node != -1) {
v3d_spill_reg(c, acc_nodes, temp);
continue;
}
}
if (ra_allocate(c->g))
break;
/* Failed allocation, try to spill */
int node = v3d_choose_spill_node(c);
if (node == -1)
goto spill_fail;
uint32_t temp = node_to_temp(node);
enum temp_spill_type spill_type =
get_spill_type_for_temp(c, temp);
if (spill_type != SPILL_TYPE_TMU || tmu_spilling_allowed(c)) {
v3d_spill_reg(c, acc_nodes, temp);
if (c->spills + c->fills > c->max_tmu_spills)
goto spill_fail;
} else {
goto spill_fail;
}
}
/* Allocation was successful, build the 'temp -> reg' map */
temp_registers = calloc(c->num_temps, sizeof(*temp_registers));
for (uint32_t i = 0; i < c->num_temps; i++) {
int ra_reg = ra_get_node_reg(c->g, temp_to_node(i));
if (ra_reg < PHYS_INDEX) {
temp_registers[i].magic = true;
temp_registers[i].index = (V3D_QPU_WADDR_R0 +
ra_reg - ACC_INDEX);
} else {
temp_registers[i].magic = false;
temp_registers[i].index = ra_reg - PHYS_INDEX;
}
}
spill_fail:
ralloc_free(c->nodes.info);
c->nodes.info = NULL;
c->nodes.alloc_count = 0;
ralloc_free(c->g);
c->g = NULL;
return temp_registers;
}