blob: 3879f6116df80e5ab78035eee561cea54e150f76 [file] [log] [blame]
/*
* Copyright © 2016 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef V3D_COMPILER_H
#define V3D_COMPILER_H
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "util/macros.h"
#include "common/v3d_debug.h"
#include "common/v3d_device_info.h"
#include "common/v3d_limits.h"
#include "compiler/nir/nir.h"
#include "util/list.h"
#include "util/u_math.h"
#include "qpu/qpu_instr.h"
#include "pipe/p_state.h"
/**
* Maximum number of outstanding TMU operations we can queue for execution.
*
* This is mostly limited by the size of the TMU fifos. The Input and Config
* fifos can stall, but we prefer that than injecting TMU flushes manually
* in the driver, so we can ignore these, but we can't overflow the Output fifo,
* which has 16 / threads per-thread entries, meaning that the maximum number
* of outstanding LDTMUs we can ever have is 8, for a 2-way threaded shader.
* This means that at most we can have 8 outstanding TMU loads, if each load
* is just one component.
*
* NOTE: we could actually have a larger value here because TMU stores don't
* consume any entries in the Output fifo (so we could have any number of
* outstanding stores) and the driver keeps track of used Output fifo entries
* and will flush if we ever needs more than 8, but since loads are much more
* common than stores, it is probably not worth it.
*/
#define MAX_TMU_QUEUE_SIZE 8
/**
* Maximum offset distance in bytes between two consecutive constant UBO loads
* for the same UBO where we would favor updating the unifa address by emitting
* dummy ldunifa instructions to avoid writing the unifa register.
*/
#define MAX_UNIFA_SKIP_DISTANCE 16
struct nir_builder;
struct v3d_fs_inputs {
/**
* Array of the meanings of the VPM inputs this shader needs.
*
* It doesn't include those that aren't part of the VPM, like
* point/line coordinates.
*/
struct v3d_varying_slot *input_slots;
uint32_t num_inputs;
};
enum qfile {
/** An unused source or destination register. */
QFILE_NULL,
/** A physical register, such as the W coordinate payload. */
QFILE_REG,
/** One of the regsiters for fixed function interactions. */
QFILE_MAGIC,
/**
* A virtual register, that will be allocated to actual accumulator
* or physical registers later.
*/
QFILE_TEMP,
/**
* VPM reads use this with an index value to say what part of the VPM
* is being read.
*/
QFILE_VPM,
/**
* Stores an immediate value in the index field that will be used
* directly by qpu_load_imm().
*/
QFILE_LOAD_IMM,
/**
* Stores an immediate value in the index field that can be turned
* into a small immediate field by qpu_encode_small_immediate().
*/
QFILE_SMALL_IMM,
};
/**
* A reference to a QPU register or a virtual temp register.
*/
struct qreg {
enum qfile file;
uint32_t index;
};
static inline struct qreg vir_reg(enum qfile file, uint32_t index)
{
return (struct qreg){file, index};
}
static inline struct qreg vir_magic_reg(uint32_t index)
{
return (struct qreg){QFILE_MAGIC, index};
}
static inline struct qreg vir_nop_reg(void)
{
return (struct qreg){QFILE_NULL, 0};
}
/**
* A reference to an actual register at the QPU level, for register
* allocation.
*/
struct qpu_reg {
bool magic;
bool smimm;
int index;
};
struct qinst {
/** Entry in qblock->instructions */
struct list_head link;
/**
* The instruction being wrapped. Its condition codes, pack flags,
* signals, etc. will all be used, with just the register references
* being replaced by the contents of qinst->dst and qinst->src[].
*/
struct v3d_qpu_instr qpu;
/* Pre-register-allocation references to src/dst registers */
struct qreg dst;
struct qreg src[3];
bool is_last_thrsw;
/* If the instruction reads a uniform (other than through src[i].file
* == QFILE_UNIF), that uniform's index in c->uniform_contents. ~0
* otherwise.
*/
int uniform;
/* If this is a a TLB Z write */
bool is_tlb_z_write;
/* Position of this instruction in the program. Filled in during
* register allocation.
*/
int32_t ip;
};
enum quniform_contents {
/**
* Indicates that a constant 32-bit value is copied from the program's
* uniform contents.
*/
QUNIFORM_CONSTANT,
/**
* Indicates that the program's uniform contents are used as an index
* into the GL uniform storage.
*/
QUNIFORM_UNIFORM,
/** @{
* Scaling factors from clip coordinates to relative to the viewport
* center.
*
* This is used by the coordinate and vertex shaders to produce the
* 32-bit entry consisting of 2 16-bit fields with 12.4 signed fixed
* point offsets from the viewport ccenter.
*/
QUNIFORM_VIEWPORT_X_SCALE,
QUNIFORM_VIEWPORT_Y_SCALE,
/** @} */
QUNIFORM_VIEWPORT_Z_OFFSET,
QUNIFORM_VIEWPORT_Z_SCALE,
QUNIFORM_USER_CLIP_PLANE,
/**
* A reference to a V3D 3.x texture config parameter 0 uniform.
*
* This is a uniform implicitly loaded with a QPU_W_TMU* write, which
* defines texture type, miplevels, and such. It will be found as a
* parameter to the first QOP_TEX_[STRB] instruction in a sequence.
*/
QUNIFORM_TEXTURE_CONFIG_P0_0,
QUNIFORM_TEXTURE_CONFIG_P0_1,
QUNIFORM_TEXTURE_CONFIG_P0_2,
QUNIFORM_TEXTURE_CONFIG_P0_3,
QUNIFORM_TEXTURE_CONFIG_P0_4,
QUNIFORM_TEXTURE_CONFIG_P0_5,
QUNIFORM_TEXTURE_CONFIG_P0_6,
QUNIFORM_TEXTURE_CONFIG_P0_7,
QUNIFORM_TEXTURE_CONFIG_P0_8,
QUNIFORM_TEXTURE_CONFIG_P0_9,
QUNIFORM_TEXTURE_CONFIG_P0_10,
QUNIFORM_TEXTURE_CONFIG_P0_11,
QUNIFORM_TEXTURE_CONFIG_P0_12,
QUNIFORM_TEXTURE_CONFIG_P0_13,
QUNIFORM_TEXTURE_CONFIG_P0_14,
QUNIFORM_TEXTURE_CONFIG_P0_15,
QUNIFORM_TEXTURE_CONFIG_P0_16,
QUNIFORM_TEXTURE_CONFIG_P0_17,
QUNIFORM_TEXTURE_CONFIG_P0_18,
QUNIFORM_TEXTURE_CONFIG_P0_19,
QUNIFORM_TEXTURE_CONFIG_P0_20,
QUNIFORM_TEXTURE_CONFIG_P0_21,
QUNIFORM_TEXTURE_CONFIG_P0_22,
QUNIFORM_TEXTURE_CONFIG_P0_23,
QUNIFORM_TEXTURE_CONFIG_P0_24,
QUNIFORM_TEXTURE_CONFIG_P0_25,
QUNIFORM_TEXTURE_CONFIG_P0_26,
QUNIFORM_TEXTURE_CONFIG_P0_27,
QUNIFORM_TEXTURE_CONFIG_P0_28,
QUNIFORM_TEXTURE_CONFIG_P0_29,
QUNIFORM_TEXTURE_CONFIG_P0_30,
QUNIFORM_TEXTURE_CONFIG_P0_31,
QUNIFORM_TEXTURE_CONFIG_P0_32,
/**
* A reference to a V3D 3.x texture config parameter 1 uniform.
*
* This is a uniform implicitly loaded with a QPU_W_TMU* write, which
* has the pointer to the indirect texture state. Our data[] field
* will have a packed p1 value, but the address field will be just
* which texture unit's texture should be referenced.
*/
QUNIFORM_TEXTURE_CONFIG_P1,
/* A V3D 4.x texture config parameter. The high 8 bits will be
* which texture or sampler is being sampled, and the driver must
* replace the address field with the appropriate address.
*/
QUNIFORM_TMU_CONFIG_P0,
QUNIFORM_TMU_CONFIG_P1,
QUNIFORM_IMAGE_TMU_CONFIG_P0,
QUNIFORM_TEXTURE_FIRST_LEVEL,
QUNIFORM_TEXTURE_WIDTH,
QUNIFORM_TEXTURE_HEIGHT,
QUNIFORM_TEXTURE_DEPTH,
QUNIFORM_TEXTURE_ARRAY_SIZE,
QUNIFORM_TEXTURE_LEVELS,
QUNIFORM_TEXTURE_SAMPLES,
QUNIFORM_UBO_ADDR,
QUNIFORM_TEXRECT_SCALE_X,
QUNIFORM_TEXRECT_SCALE_Y,
/* Returns the base offset of the SSBO given by the data value. */
QUNIFORM_SSBO_OFFSET,
/* Returns the size of the SSBO or UBO given by the data value. */
QUNIFORM_GET_SSBO_SIZE,
QUNIFORM_GET_UBO_SIZE,
/* Sizes (in pixels) of a shader image given by the data value. */
QUNIFORM_IMAGE_WIDTH,
QUNIFORM_IMAGE_HEIGHT,
QUNIFORM_IMAGE_DEPTH,
QUNIFORM_IMAGE_ARRAY_SIZE,
QUNIFORM_LINE_WIDTH,
/* The line width sent to hardware. This includes the expanded width
* when anti-aliasing is enabled.
*/
QUNIFORM_AA_LINE_WIDTH,
/* Number of workgroups passed to glDispatchCompute in the dimension
* selected by the data value.
*/
QUNIFORM_NUM_WORK_GROUPS,
/* Base workgroup offset passed to vkCmdDispatchBase in the dimension
* selected by the data value.
*/
QUNIFORM_WORK_GROUP_BASE,
/**
* Returns the the offset of the scratch buffer for register spilling.
*/
QUNIFORM_SPILL_OFFSET,
QUNIFORM_SPILL_SIZE_PER_THREAD,
/**
* Returns the offset of the shared memory for compute shaders.
*
* This will be accessed using TMU general memory operations, so the
* L2T cache will effectively be the shared memory area.
*/
QUNIFORM_SHARED_OFFSET,
/**
* Returns the number of layers in the framebuffer.
*
* This is used to cap gl_Layer in geometry shaders to avoid
* out-of-bounds accesses into the tile state during binning.
*/
QUNIFORM_FB_LAYERS,
/**
* Current value of gl_ViewIndex for Multiview rendering.
*/
QUNIFORM_VIEW_INDEX,
/**
* Inline uniform buffers
*/
QUNIFORM_INLINE_UBO_0,
QUNIFORM_INLINE_UBO_1,
QUNIFORM_INLINE_UBO_2,
QUNIFORM_INLINE_UBO_3,
};
static inline uint32_t v3d_unit_data_create(uint32_t unit, uint32_t value)
{
assert(value < (1 << 24));
return unit << 24 | value;
}
static inline uint32_t v3d_unit_data_get_unit(uint32_t data)
{
return data >> 24;
}
static inline uint32_t v3d_unit_data_get_offset(uint32_t data)
{
return data & 0xffffff;
}
struct v3d_varying_slot {
uint8_t slot_and_component;
};
static inline struct v3d_varying_slot
v3d_slot_from_slot_and_component(uint8_t slot, uint8_t component)
{
assert(slot < 255 / 4);
return (struct v3d_varying_slot){ (slot << 2) + component };
}
static inline uint8_t v3d_slot_get_slot(struct v3d_varying_slot slot)
{
return slot.slot_and_component >> 2;
}
static inline uint8_t v3d_slot_get_component(struct v3d_varying_slot slot)
{
return slot.slot_and_component & 3;
}
enum v3d_execution_environment {
V3D_ENVIRONMENT_OPENGL = 0,
V3D_ENVIRONMENT_VULKAN,
};
struct v3d_key {
void *shader_state;
struct {
uint8_t swizzle[4];
} tex[V3D_MAX_TEXTURE_SAMPLERS];
struct {
uint8_t return_size;
uint8_t return_channels;
} sampler[V3D_MAX_TEXTURE_SAMPLERS];
uint8_t num_tex_used;
uint8_t num_samplers_used;
uint8_t ucp_enables;
bool is_last_geometry_stage;
bool robust_uniform_access;
bool robust_storage_access;
bool robust_image_access;
enum v3d_execution_environment environment;
};
struct v3d_fs_key {
struct v3d_key base;
bool is_points;
bool is_lines;
bool line_smoothing;
bool point_coord_upper_left;
bool msaa;
bool sample_coverage;
bool sample_alpha_to_coverage;
bool sample_alpha_to_one;
/* Mask of which color render targets are present. */
uint8_t cbufs;
uint8_t swap_color_rb;
/* Mask of which render targets need to be written as 32-bit floats */
uint8_t f32_color_rb;
/* Masks of which render targets need to be written as ints/uints.
* Used by gallium to work around lost information in TGSI.
*/
uint8_t int_color_rb;
uint8_t uint_color_rb;
/* Color format information per render target. Only set when logic
* operations are enabled.
*/
struct {
enum pipe_format format;
uint8_t swizzle[4];
} color_fmt[V3D_MAX_DRAW_BUFFERS];
uint8_t logicop_func;
uint32_t point_sprite_mask;
struct pipe_rt_blend_state blend;
/* If the fragment shader reads gl_PrimitiveID then we have 2 scenarios:
*
* - If there is a geometry shader, then gl_PrimitiveID must be written
* by it and the fragment shader loads it as a regular explicit input
* varying. This is the only valid use case in GLES 3.1.
*
* - If there is not a geometry shader (allowed since GLES 3.2 and
* Vulkan 1.0), then gl_PrimitiveID must be implicitly written by
* hardware and is considered an implicit input varying in the
* fragment shader.
*/
bool has_gs;
};
struct v3d_gs_key {
struct v3d_key base;
struct v3d_varying_slot used_outputs[V3D_MAX_FS_INPUTS];
uint8_t num_used_outputs;
bool is_coord;
bool per_vertex_point_size;
};
struct v3d_vs_key {
struct v3d_key base;
struct v3d_varying_slot used_outputs[V3D_MAX_ANY_STAGE_INPUTS];
uint8_t num_used_outputs;
/* A bit-mask indicating if we need to swap the R/B channels for
* vertex attributes. Since the hardware doesn't provide any
* means to swizzle vertex attributes we need to do it in the shader.
*/
uint32_t va_swap_rb_mask;
bool is_coord;
bool per_vertex_point_size;
bool clamp_color;
};
/** A basic block of VIR intructions. */
struct qblock {
struct list_head link;
struct list_head instructions;
struct set *predecessors;
struct qblock *successors[2];
int index;
/* Instruction IPs for the first and last instruction of the block.
* Set by qpu_schedule.c.
*/
uint32_t start_qpu_ip;
uint32_t end_qpu_ip;
/* Instruction IP for the branch instruction of the block. Set by
* qpu_schedule.c.
*/
uint32_t branch_qpu_ip;
/** Offset within the uniform stream at the start of the block. */
uint32_t start_uniform;
/** Offset within the uniform stream of the branch instruction */
uint32_t branch_uniform;
/**
* Has the terminating branch of this block already been emitted
* by a break or continue?
*/
bool branch_emitted;
/** @{ used by v3d_vir_live_variables.c */
BITSET_WORD *def;
BITSET_WORD *defin;
BITSET_WORD *defout;
BITSET_WORD *use;
BITSET_WORD *live_in;
BITSET_WORD *live_out;
int start_ip, end_ip;
/** @} */
};
/** Which util/list.h add mode we should use when inserting an instruction. */
enum vir_cursor_mode {
vir_cursor_add,
vir_cursor_addtail,
};
/**
* Tracking structure for where new instructions should be inserted. Create
* with one of the vir_after_inst()-style helper functions.
*
* This does not protect against removal of the block or instruction, so we
* have an assert in instruction removal to try to catch it.
*/
struct vir_cursor {
enum vir_cursor_mode mode;
struct list_head *link;
};
static inline struct vir_cursor
vir_before_inst(struct qinst *inst)
{
return (struct vir_cursor){ vir_cursor_addtail, &inst->link };
}
static inline struct vir_cursor
vir_after_inst(struct qinst *inst)
{
return (struct vir_cursor){ vir_cursor_add, &inst->link };
}
static inline struct vir_cursor
vir_before_block(struct qblock *block)
{
return (struct vir_cursor){ vir_cursor_add, &block->instructions };
}
static inline struct vir_cursor
vir_after_block(struct qblock *block)
{
return (struct vir_cursor){ vir_cursor_addtail, &block->instructions };
}
enum v3d_compilation_result {
V3D_COMPILATION_SUCCEEDED,
V3D_COMPILATION_FAILED_REGISTER_ALLOCATION,
V3D_COMPILATION_FAILED,
};
/**
* Compiler state saved across compiler invocations, for any expensive global
* setup.
*/
struct v3d_compiler {
const struct v3d_device_info *devinfo;
uint32_t max_inline_uniform_buffers;
struct ra_regs *regs;
struct ra_class *reg_class_any[3];
struct ra_class *reg_class_r5[3];
struct ra_class *reg_class_phys[3];
struct ra_class *reg_class_phys_or_acc[3];
};
/**
* This holds partially interpolated inputs as provided by hardware
* (The Vp = A*(x - x0) + B*(y - y0) term), as well as the C coefficient
* required to compute the final interpolated value.
*/
struct v3d_interp_input {
struct qreg vp;
struct qreg C;
unsigned mode; /* interpolation mode */
};
struct v3d_ra_node_info {
struct {
uint32_t priority;
uint8_t class_bits;
} *info;
uint32_t alloc_count;
};
struct v3d_compile {
const struct v3d_device_info *devinfo;
nir_shader *s;
nir_function_impl *impl;
struct exec_list *cf_node_list;
const struct v3d_compiler *compiler;
void (*debug_output)(const char *msg,
void *debug_output_data);
void *debug_output_data;
/**
* Mapping from nir_register * or nir_ssa_def * to array of struct
* qreg for the values.
*/
struct hash_table *def_ht;
/* For each temp, the instruction generating its value. */
struct qinst **defs;
uint32_t defs_array_size;
/* TMU pipelining tracking */
struct {
/* NIR registers that have been updated with a TMU operation
* that has not been flushed yet.
*/
struct set *outstanding_regs;
uint32_t output_fifo_size;
struct {
nir_dest *dest;
uint8_t num_components;
uint8_t component_mask;
} flush[MAX_TMU_QUEUE_SIZE];
uint32_t flush_count;
uint32_t total_count;
} tmu;
/**
* Inputs to the shader, arranged by TGSI declaration order.
*
* Not all fragment shader QFILE_VARY reads are present in this array.
*/
struct qreg *inputs;
/**
* Partially interpolated inputs to the shader.
*/
struct v3d_interp_input *interp;
struct qreg *outputs;
bool msaa_per_sample_output;
struct qreg color_reads[V3D_MAX_DRAW_BUFFERS * V3D_MAX_SAMPLES * 4];
struct qreg sample_colors[V3D_MAX_DRAW_BUFFERS * V3D_MAX_SAMPLES * 4];
uint32_t inputs_array_size;
uint32_t outputs_array_size;
uint32_t uniforms_array_size;
/* Booleans for whether the corresponding QFILE_VARY[i] is
* flat-shaded. This includes gl_FragColor flat-shading, which is
* customized based on the shademodel_flat shader key.
*/
uint32_t flat_shade_flags[BITSET_WORDS(V3D_MAX_FS_INPUTS)];
uint32_t noperspective_flags[BITSET_WORDS(V3D_MAX_FS_INPUTS)];
uint32_t centroid_flags[BITSET_WORDS(V3D_MAX_FS_INPUTS)];
bool uses_center_w;
bool writes_z;
bool writes_z_from_fep;
bool reads_z;
bool uses_implicit_point_line_varyings;
/* True if a fragment shader reads gl_PrimitiveID */
bool fs_uses_primitive_id;
/* If the fragment shader does anything that requires to force
* per-sample MSAA, such as reading gl_SampleID.
*/
bool force_per_sample_msaa;
/* Whether we are using the fallback scheduler. This will be set after
* register allocation has failed once.
*/
bool fallback_scheduler;
/* Disable TMU pipelining. This may increase the chances of being able
* to compile shaders with high register pressure that require to emit
* TMU spills.
*/
bool disable_tmu_pipelining;
bool pipelined_any_tmu;
/* Disable sorting of UBO loads with constant offset. This may
* increase the chances of being able to compile shaders with high
* register pressure.
*/
bool disable_constant_ubo_load_sorting;
bool sorted_any_ubo_loads;
/* Emits ldunif for each new uniform, even if the uniform was already
* emitted in the same block. Useful to compile shaders with high
* register pressure or to disable the optimization during uniform
* spills.
*/
bool disable_ldunif_opt;
/* Disables loop unrolling to reduce register pressure. */
bool disable_loop_unrolling;
bool unrolled_any_loops;
/* Disables nir_opt_gcm to reduce register pressure. */
bool disable_gcm;
/* If calling nir_opt_gcm made any progress. Used to skip new rebuilds
* if possible
*/
bool gcm_progress;
/* Disables scheduling of general TMU loads (and unfiltered image load).
*/
bool disable_general_tmu_sched;
bool has_general_tmu_load;
/* Minimum number of threads we are willing to use to register allocate
* a shader with the current compilation strategy. This only prevents
* us from lowering the thread count to register allocate successfully,
* which can be useful when we prefer doing other changes to the
* compilation strategy before dropping thread count.
*/
uint32_t min_threads_for_reg_alloc;
/* Whether TMU spills are allowed. If this is disabled it may cause
* register allocation to fail. We set this to favor other compilation
* strategies that can reduce register pressure and hopefully reduce or
* eliminate TMU spills in the shader.
*/
uint32_t max_tmu_spills;
uint32_t compile_strategy_idx;
/* The UBO index and block used with the last unifa load, as well as the
* current unifa offset *after* emitting that load. This is used to skip
* unifa writes (and their 3 delay slot) when the next UBO load reads
* right after the previous one in the same block.
*/
struct qblock *current_unifa_block;
int32_t current_unifa_index;
uint32_t current_unifa_offset;
bool current_unifa_is_ubo;
/* State for whether we're executing on each channel currently. 0 if
* yes, otherwise a block number + 1 that the channel jumped to.
*/
struct qreg execute;
bool in_control_flow;
struct qreg line_x, point_x, point_y, primitive_id;
/**
* Instance ID, which comes in before the vertex attribute payload if
* the shader record requests it.
*/
struct qreg iid;
/**
* Base Instance ID, which comes in before the vertex attribute payload
* (after Instance ID) if the shader record requests it.
*/
struct qreg biid;
/**
* Vertex ID, which comes in before the vertex attribute payload
* (after Base Instance) if the shader record requests it.
*/
struct qreg vid;
/* Fragment shader payload regs. */
struct qreg payload_w, payload_w_centroid, payload_z;
struct qreg cs_payload[2];
struct qreg cs_shared_offset;
int local_invocation_index_bits;
/* If the shader uses subgroup functionality */
bool has_subgroups;
uint8_t vattr_sizes[V3D_MAX_VS_INPUTS / 4];
uint32_t vpm_output_size;
/* Size in bytes of registers that have been spilled. This is how much
* space needs to be available in the spill BO per thread per QPU.
*/
uint32_t spill_size;
/* Shader-db stats */
uint32_t spills, fills, loops;
/* Whether we are in the process of spilling registers for
* register allocation
*/
bool spilling;
/**
* Register spilling's per-thread base address, shared between each
* spill/fill's addressing calculations (also used for scratch
* access).
*/
struct qreg spill_base;
/* Bit vector of which temps may be spilled */
BITSET_WORD *spillable;
/* Used during register allocation */
int thread_index;
struct v3d_ra_node_info nodes;
struct ra_graph *g;
/**
* Array of the VARYING_SLOT_* of all FS QFILE_VARY reads.
*
* This includes those that aren't part of the VPM varyings, like
* point/line coordinates.
*/
struct v3d_varying_slot input_slots[V3D_MAX_FS_INPUTS];
/**
* An entry per outputs[] in the VS indicating what the VARYING_SLOT_*
* of the output is. Used to emit from the VS in the order that the
* FS needs.
*/
struct v3d_varying_slot *output_slots;
struct pipe_shader_state *shader_state;
struct v3d_key *key;
struct v3d_fs_key *fs_key;
struct v3d_gs_key *gs_key;
struct v3d_vs_key *vs_key;
/* Live ranges of temps. */
int *temp_start, *temp_end;
bool live_intervals_valid;
uint32_t *uniform_data;
enum quniform_contents *uniform_contents;
uint32_t uniform_array_size;
uint32_t num_uniforms;
uint32_t output_position_index;
nir_variable *output_color_var[V3D_MAX_DRAW_BUFFERS];
uint32_t output_sample_mask_index;
struct qreg undef;
uint32_t num_temps;
/* Number of temps in the program right before we spill a new temp. We
* use this to know which temps existed before a spill and which were
* added with the spill itself.
*/
uint32_t spill_start_num_temps;
struct vir_cursor cursor;
struct list_head blocks;
int next_block_index;
struct qblock *cur_block;
struct qblock *loop_cont_block;
struct qblock *loop_break_block;
/**
* Which temp, if any, do we currently have in the flags?
* This is set when processing a comparison instruction, and
* reset to -1 by anything else that touches the flags.
*/
int32_t flags_temp;
enum v3d_qpu_cond flags_cond;
uint64_t *qpu_insts;
uint32_t qpu_inst_count;
uint32_t qpu_inst_size;
uint32_t qpu_inst_stalled_count;
uint32_t nop_count;
/* For the FS, the number of varying inputs not counting the
* point/line varyings payload
*/
uint32_t num_inputs;
uint32_t program_id;
uint32_t variant_id;
/* Set to compile program in in 1x, 2x, or 4x threaded mode, where
* SIG_THREAD_SWITCH is used to hide texturing latency at the cost of
* limiting ourselves to the part of the physical reg space.
*
* On V3D 3.x, 2x or 4x divide the physical reg space by 2x or 4x. On
* V3D 4.x, all shaders are 2x threaded, and 4x only divides the
* physical reg space in half.
*/
uint8_t threads;
struct qinst *last_thrsw;
bool last_thrsw_at_top_level;
bool emitted_tlb_load;
bool lock_scoreboard_on_first_thrsw;
enum v3d_compilation_result compilation_result;
bool tmu_dirty_rcl;
bool has_global_address;
};
struct v3d_uniform_list {
enum quniform_contents *contents;
uint32_t *data;
uint32_t count;
};
struct v3d_prog_data {
struct v3d_uniform_list uniforms;
uint32_t spill_size;
uint32_t tmu_spills;
uint32_t tmu_fills;
uint32_t tmu_count;
uint32_t qpu_read_stalls;
uint8_t compile_strategy_idx;
uint8_t threads;
/* For threads > 1, whether the program should be dispatched in the
* after-final-THRSW state.
*/
bool single_seg;
bool tmu_dirty_rcl;
bool has_control_barrier;
bool has_global_address;
};
struct v3d_vs_prog_data {
struct v3d_prog_data base;
bool uses_iid, uses_biid, uses_vid;
/* Number of components read from each vertex attribute. */
uint8_t vattr_sizes[V3D_MAX_VS_INPUTS / 4];
/* Total number of components read, for the shader state record. */
uint32_t vpm_input_size;
/* Total number of components written, for the shader state record. */
uint32_t vpm_output_size;
/* Set if there should be separate VPM segments for input and output.
* If unset, vpm_input_size will be 0.
*/
bool separate_segments;
/* Value to be programmed in VCM_CACHE_SIZE. */
uint8_t vcm_cache_size;
/* Maps the nir->data.location to its
* nir->data.driver_location. In general we are using the
* driver location as index (like vattr_sizes above), so this
* map is useful when what we have is the location
*
* Returns -1 if the location is not used
*/
int32_t driver_location_map[V3D_MAX_VS_INPUTS];
};
struct v3d_gs_prog_data {
struct v3d_prog_data base;
/* Whether the program reads gl_PrimitiveIDIn */
bool uses_pid;
/* Number of components read from each input varying. */
uint8_t input_sizes[V3D_MAX_GS_INPUTS / 4];
/* Number of inputs */
uint8_t num_inputs;
struct v3d_varying_slot input_slots[V3D_MAX_GS_INPUTS];
/* Total number of components written, for the shader state record. */
uint32_t vpm_output_size;
/* Maximum SIMD dispatch width to not exceed VPM output size limits
* in the geometry shader. Notice that the final dispatch width has to
* be decided at draw time and could be lower based on the VPM pressure
* added by other shader stages.
*/
uint8_t simd_width;
/* Output primitive type */
uint8_t out_prim_type;
/* Number of GS invocations */
uint8_t num_invocations;
bool writes_psiz;
};
struct v3d_fs_prog_data {
struct v3d_prog_data base;
/* Whether the program reads gl_PrimitiveID */
bool uses_pid;
struct v3d_varying_slot input_slots[V3D_MAX_FS_INPUTS];
/* Array of flat shade flags.
*
* Each entry is only 24 bits (high 8 bits 0), to match the hardware
* packet layout.
*/
uint32_t flat_shade_flags[((V3D_MAX_FS_INPUTS - 1) / 24) + 1];
uint32_t noperspective_flags[((V3D_MAX_FS_INPUTS - 1) / 24) + 1];
uint32_t centroid_flags[((V3D_MAX_FS_INPUTS - 1) / 24) + 1];
uint8_t num_inputs;
bool writes_z;
bool writes_z_from_fep;
bool disable_ez;
bool uses_center_w;
bool uses_implicit_point_line_varyings;
bool lock_scoreboard_on_first_thrsw;
bool force_per_sample_msaa;
};
struct v3d_compute_prog_data {
struct v3d_prog_data base;
/* Size in bytes of the workgroup's shared space. */
uint32_t shared_size;
uint16_t local_size[3];
/* If the shader uses subgroup functionality */
bool has_subgroups;
};
struct vpm_config {
uint32_t As;
uint32_t Vc;
uint32_t Gs;
uint32_t Gd;
uint32_t Gv;
uint32_t Ve;
uint32_t gs_width;
};
bool
v3d_compute_vpm_config(struct v3d_device_info *devinfo,
struct v3d_vs_prog_data *vs_bin,
struct v3d_vs_prog_data *vs,
struct v3d_gs_prog_data *gs_bin,
struct v3d_gs_prog_data *gs,
struct vpm_config *vpm_cfg_bin,
struct vpm_config *vpm_cfg);
static inline bool
vir_has_uniform(struct qinst *inst)
{
return inst->uniform != ~0;
}
const struct v3d_compiler *v3d_compiler_init(const struct v3d_device_info *devinfo,
uint32_t max_inline_uniform_buffers);
void v3d_compiler_free(const struct v3d_compiler *compiler);
void v3d_optimize_nir(struct v3d_compile *c, struct nir_shader *s, bool allow_copies);
uint64_t *v3d_compile(const struct v3d_compiler *compiler,
struct v3d_key *key,
struct v3d_prog_data **prog_data,
nir_shader *s,
void (*debug_output)(const char *msg,
void *debug_output_data),
void *debug_output_data,
int program_id, int variant_id,
uint32_t *final_assembly_size);
uint32_t v3d_prog_data_size(gl_shader_stage stage);
void v3d_nir_to_vir(struct v3d_compile *c);
void vir_compile_destroy(struct v3d_compile *c);
const char *vir_get_stage_name(struct v3d_compile *c);
struct qblock *vir_new_block(struct v3d_compile *c);
void vir_set_emit_block(struct v3d_compile *c, struct qblock *block);
void vir_link_blocks(struct qblock *predecessor, struct qblock *successor);
struct qblock *vir_entry_block(struct v3d_compile *c);
struct qblock *vir_exit_block(struct v3d_compile *c);
struct qinst *vir_add_inst(enum v3d_qpu_add_op op, struct qreg dst,
struct qreg src0, struct qreg src1);
struct qinst *vir_mul_inst(enum v3d_qpu_mul_op op, struct qreg dst,
struct qreg src0, struct qreg src1);
struct qinst *vir_branch_inst(struct v3d_compile *c,
enum v3d_qpu_branch_cond cond);
void vir_remove_instruction(struct v3d_compile *c, struct qinst *qinst);
uint32_t vir_get_uniform_index(struct v3d_compile *c,
enum quniform_contents contents,
uint32_t data);
struct qreg vir_uniform(struct v3d_compile *c,
enum quniform_contents contents,
uint32_t data);
void vir_schedule_instructions(struct v3d_compile *c);
void v3d_setup_spill_base(struct v3d_compile *c);
struct v3d_qpu_instr v3d_qpu_nop(void);
struct qreg vir_emit_def(struct v3d_compile *c, struct qinst *inst);
struct qinst *vir_emit_nondef(struct v3d_compile *c, struct qinst *inst);
void vir_set_cond(struct qinst *inst, enum v3d_qpu_cond cond);
enum v3d_qpu_cond vir_get_cond(struct qinst *inst);
void vir_set_pf(struct v3d_compile *c, struct qinst *inst, enum v3d_qpu_pf pf);
void vir_set_uf(struct v3d_compile *c, struct qinst *inst, enum v3d_qpu_uf uf);
void vir_set_unpack(struct qinst *inst, int src,
enum v3d_qpu_input_unpack unpack);
void vir_set_pack(struct qinst *inst, enum v3d_qpu_output_pack pack);
struct qreg vir_get_temp(struct v3d_compile *c);
void vir_calculate_live_intervals(struct v3d_compile *c);
int vir_get_nsrc(struct qinst *inst);
bool vir_has_side_effects(struct v3d_compile *c, struct qinst *inst);
bool vir_get_add_op(struct qinst *inst, enum v3d_qpu_add_op *op);
bool vir_get_mul_op(struct qinst *inst, enum v3d_qpu_mul_op *op);
bool vir_is_raw_mov(struct qinst *inst);
bool vir_is_tex(const struct v3d_device_info *devinfo, struct qinst *inst);
bool vir_is_add(struct qinst *inst);
bool vir_is_mul(struct qinst *inst);
bool vir_writes_r3(const struct v3d_device_info *devinfo, struct qinst *inst);
bool vir_writes_r4(const struct v3d_device_info *devinfo, struct qinst *inst);
struct qreg vir_follow_movs(struct v3d_compile *c, struct qreg reg);
uint8_t vir_channels_written(struct qinst *inst);
struct qreg ntq_get_src(struct v3d_compile *c, nir_src src, int i);
void ntq_store_dest(struct v3d_compile *c, nir_dest *dest, int chan,
struct qreg result);
bool ntq_tmu_fifo_overflow(struct v3d_compile *c, uint32_t components);
void ntq_add_pending_tmu_flush(struct v3d_compile *c, nir_dest *dest,
uint32_t component_mask);
void ntq_flush_tmu(struct v3d_compile *c);
void vir_emit_thrsw(struct v3d_compile *c);
void vir_dump(struct v3d_compile *c);
void vir_dump_inst(struct v3d_compile *c, struct qinst *inst);
void vir_dump_uniform(enum quniform_contents contents, uint32_t data);
void vir_validate(struct v3d_compile *c);
void vir_optimize(struct v3d_compile *c);
bool vir_opt_algebraic(struct v3d_compile *c);
bool vir_opt_constant_folding(struct v3d_compile *c);
bool vir_opt_copy_propagate(struct v3d_compile *c);
bool vir_opt_dead_code(struct v3d_compile *c);
bool vir_opt_peephole_sf(struct v3d_compile *c);
bool vir_opt_redundant_flags(struct v3d_compile *c);
bool vir_opt_small_immediates(struct v3d_compile *c);
bool vir_opt_vpm(struct v3d_compile *c);
bool vir_opt_constant_alu(struct v3d_compile *c);
bool v3d_nir_lower_io(nir_shader *s, struct v3d_compile *c);
bool v3d_nir_lower_line_smooth(nir_shader *shader);
bool v3d_nir_lower_logic_ops(nir_shader *s, struct v3d_compile *c);
bool v3d_nir_lower_robust_buffer_access(nir_shader *s, struct v3d_compile *c);
bool v3d_nir_lower_robust_image_access(nir_shader *s, struct v3d_compile *c);
bool v3d_nir_lower_scratch(nir_shader *s);
bool v3d_nir_lower_txf_ms(nir_shader *s, struct v3d_compile *c);
bool v3d_nir_lower_image_load_store(nir_shader *s);
bool v3d_nir_lower_load_store_bitsize(nir_shader *s, struct v3d_compile *c);
void v3d33_vir_vpm_read_setup(struct v3d_compile *c, int num_components);
void v3d33_vir_vpm_write_setup(struct v3d_compile *c);
void v3d33_vir_emit_tex(struct v3d_compile *c, nir_tex_instr *instr);
void v3d40_vir_emit_tex(struct v3d_compile *c, nir_tex_instr *instr);
void v3d40_vir_emit_image_load_store(struct v3d_compile *c,
nir_intrinsic_instr *instr);
void v3d_vir_to_qpu(struct v3d_compile *c, struct qpu_reg *temp_registers);
uint32_t v3d_qpu_schedule_instructions(struct v3d_compile *c);
void qpu_validate(struct v3d_compile *c);
struct qpu_reg *v3d_register_allocate(struct v3d_compile *c);
bool vir_init_reg_sets(struct v3d_compiler *compiler);
int v3d_shaderdb_dump(struct v3d_compile *c, char **shaderdb_str);
bool v3d_gl_format_is_return_32(enum pipe_format format);
uint32_t
v3d_get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src);
static inline bool
quniform_contents_is_texture_p0(enum quniform_contents contents)
{
return (contents >= QUNIFORM_TEXTURE_CONFIG_P0_0 &&
contents < (QUNIFORM_TEXTURE_CONFIG_P0_0 +
V3D_MAX_TEXTURE_SAMPLERS));
}
static inline bool
vir_in_nonuniform_control_flow(struct v3d_compile *c)
{
return c->execute.file != QFILE_NULL;
}
static inline struct qreg
vir_uniform_ui(struct v3d_compile *c, uint32_t ui)
{
return vir_uniform(c, QUNIFORM_CONSTANT, ui);
}
static inline struct qreg
vir_uniform_f(struct v3d_compile *c, float f)
{
return vir_uniform(c, QUNIFORM_CONSTANT, fui(f));
}
#define VIR_ALU0(name, vir_inst, op) \
static inline struct qreg \
vir_##name(struct v3d_compile *c) \
{ \
return vir_emit_def(c, vir_inst(op, c->undef, \
c->undef, c->undef)); \
} \
static inline struct qinst * \
vir_##name##_dest(struct v3d_compile *c, struct qreg dest) \
{ \
return vir_emit_nondef(c, vir_inst(op, dest, \
c->undef, c->undef)); \
}
#define VIR_ALU1(name, vir_inst, op) \
static inline struct qreg \
vir_##name(struct v3d_compile *c, struct qreg a) \
{ \
return vir_emit_def(c, vir_inst(op, c->undef, \
a, c->undef)); \
} \
static inline struct qinst * \
vir_##name##_dest(struct v3d_compile *c, struct qreg dest, \
struct qreg a) \
{ \
return vir_emit_nondef(c, vir_inst(op, dest, a, \
c->undef)); \
}
#define VIR_ALU2(name, vir_inst, op) \
static inline struct qreg \
vir_##name(struct v3d_compile *c, struct qreg a, struct qreg b) \
{ \
return vir_emit_def(c, vir_inst(op, c->undef, a, b)); \
} \
static inline struct qinst * \
vir_##name##_dest(struct v3d_compile *c, struct qreg dest, \
struct qreg a, struct qreg b) \
{ \
return vir_emit_nondef(c, vir_inst(op, dest, a, b)); \
}
#define VIR_NODST_0(name, vir_inst, op) \
static inline struct qinst * \
vir_##name(struct v3d_compile *c) \
{ \
return vir_emit_nondef(c, vir_inst(op, c->undef, \
c->undef, c->undef)); \
}
#define VIR_NODST_1(name, vir_inst, op) \
static inline struct qinst * \
vir_##name(struct v3d_compile *c, struct qreg a) \
{ \
return vir_emit_nondef(c, vir_inst(op, c->undef, \
a, c->undef)); \
}
#define VIR_NODST_2(name, vir_inst, op) \
static inline struct qinst * \
vir_##name(struct v3d_compile *c, struct qreg a, struct qreg b) \
{ \
return vir_emit_nondef(c, vir_inst(op, c->undef, \
a, b)); \
}
#define VIR_SFU(name) \
static inline struct qreg \
vir_##name(struct v3d_compile *c, struct qreg a) \
{ \
if (c->devinfo->ver >= 41) { \
return vir_emit_def(c, vir_add_inst(V3D_QPU_A_##name, \
c->undef, \
a, c->undef)); \
} else { \
vir_FMOV_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_##name), a); \
return vir_FMOV(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R4)); \
} \
} \
static inline struct qinst * \
vir_##name##_dest(struct v3d_compile *c, struct qreg dest, \
struct qreg a) \
{ \
if (c->devinfo->ver >= 41) { \
return vir_emit_nondef(c, vir_add_inst(V3D_QPU_A_##name, \
dest, \
a, c->undef)); \
} else { \
vir_FMOV_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_##name), a); \
return vir_FMOV_dest(c, dest, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R4)); \
} \
}
#define VIR_A_ALU2(name) VIR_ALU2(name, vir_add_inst, V3D_QPU_A_##name)
#define VIR_M_ALU2(name) VIR_ALU2(name, vir_mul_inst, V3D_QPU_M_##name)
#define VIR_A_ALU1(name) VIR_ALU1(name, vir_add_inst, V3D_QPU_A_##name)
#define VIR_M_ALU1(name) VIR_ALU1(name, vir_mul_inst, V3D_QPU_M_##name)
#define VIR_A_ALU0(name) VIR_ALU0(name, vir_add_inst, V3D_QPU_A_##name)
#define VIR_M_ALU0(name) VIR_ALU0(name, vir_mul_inst, V3D_QPU_M_##name)
#define VIR_A_NODST_2(name) VIR_NODST_2(name, vir_add_inst, V3D_QPU_A_##name)
#define VIR_M_NODST_2(name) VIR_NODST_2(name, vir_mul_inst, V3D_QPU_M_##name)
#define VIR_A_NODST_1(name) VIR_NODST_1(name, vir_add_inst, V3D_QPU_A_##name)
#define VIR_M_NODST_1(name) VIR_NODST_1(name, vir_mul_inst, V3D_QPU_M_##name)
#define VIR_A_NODST_0(name) VIR_NODST_0(name, vir_add_inst, V3D_QPU_A_##name)
VIR_A_ALU2(FADD)
VIR_A_ALU2(VFPACK)
VIR_A_ALU2(FSUB)
VIR_A_ALU2(FMIN)
VIR_A_ALU2(FMAX)
VIR_A_ALU2(ADD)
VIR_A_ALU2(SUB)
VIR_A_ALU2(SHL)
VIR_A_ALU2(SHR)
VIR_A_ALU2(ASR)
VIR_A_ALU2(ROR)
VIR_A_ALU2(MIN)
VIR_A_ALU2(MAX)
VIR_A_ALU2(UMIN)
VIR_A_ALU2(UMAX)
VIR_A_ALU2(AND)
VIR_A_ALU2(OR)
VIR_A_ALU2(XOR)
VIR_A_ALU2(VADD)
VIR_A_ALU2(VSUB)
VIR_A_NODST_2(STVPMV)
VIR_A_NODST_2(STVPMD)
VIR_A_ALU1(NOT)
VIR_A_ALU1(NEG)
VIR_A_ALU1(FLAPUSH)
VIR_A_ALU1(FLBPUSH)
VIR_A_ALU1(FLPOP)
VIR_A_ALU0(FLAFIRST)
VIR_A_ALU0(FLNAFIRST)
VIR_A_ALU1(SETMSF)
VIR_A_ALU1(SETREVF)
VIR_A_ALU0(TIDX)
VIR_A_ALU0(EIDX)
VIR_A_ALU1(LDVPMV_IN)
VIR_A_ALU1(LDVPMV_OUT)
VIR_A_ALU1(LDVPMD_IN)
VIR_A_ALU1(LDVPMD_OUT)
VIR_A_ALU2(LDVPMG_IN)
VIR_A_ALU2(LDVPMG_OUT)
VIR_A_ALU0(TMUWT)
VIR_A_ALU0(IID)
VIR_A_ALU0(FXCD)
VIR_A_ALU0(XCD)
VIR_A_ALU0(FYCD)
VIR_A_ALU0(YCD)
VIR_A_ALU0(MSF)
VIR_A_ALU0(REVF)
VIR_A_ALU0(BARRIERID)
VIR_A_ALU0(SAMPID)
VIR_A_NODST_1(VPMSETUP)
VIR_A_NODST_0(VPMWT)
VIR_A_ALU2(FCMP)
VIR_A_ALU2(VFMAX)
VIR_A_ALU1(FROUND)
VIR_A_ALU1(FTOIN)
VIR_A_ALU1(FTRUNC)
VIR_A_ALU1(FTOIZ)
VIR_A_ALU1(FFLOOR)
VIR_A_ALU1(FTOUZ)
VIR_A_ALU1(FCEIL)
VIR_A_ALU1(FTOC)
VIR_A_ALU1(FDX)
VIR_A_ALU1(FDY)
VIR_A_ALU1(ITOF)
VIR_A_ALU1(CLZ)
VIR_A_ALU1(UTOF)
VIR_M_ALU2(UMUL24)
VIR_M_ALU2(FMUL)
VIR_M_ALU2(SMUL24)
VIR_M_NODST_2(MULTOP)
VIR_M_ALU1(MOV)
VIR_M_ALU1(FMOV)
VIR_SFU(RECIP)
VIR_SFU(RSQRT)
VIR_SFU(EXP)
VIR_SFU(LOG)
VIR_SFU(SIN)
VIR_SFU(RSQRT2)
static inline struct qinst *
vir_MOV_cond(struct v3d_compile *c, enum v3d_qpu_cond cond,
struct qreg dest, struct qreg src)
{
struct qinst *mov = vir_MOV_dest(c, dest, src);
vir_set_cond(mov, cond);
return mov;
}
static inline struct qreg
vir_SEL(struct v3d_compile *c, enum v3d_qpu_cond cond,
struct qreg src0, struct qreg src1)
{
struct qreg t = vir_get_temp(c);
vir_MOV_dest(c, t, src1);
vir_MOV_cond(c, cond, t, src0);
return t;
}
static inline struct qinst *
vir_NOP(struct v3d_compile *c)
{
return vir_emit_nondef(c, vir_add_inst(V3D_QPU_A_NOP,
c->undef, c->undef, c->undef));
}
static inline struct qreg
vir_LDTMU(struct v3d_compile *c)
{
if (c->devinfo->ver >= 41) {
struct qinst *ldtmu = vir_add_inst(V3D_QPU_A_NOP, c->undef,
c->undef, c->undef);
ldtmu->qpu.sig.ldtmu = true;
return vir_emit_def(c, ldtmu);
} else {
vir_NOP(c)->qpu.sig.ldtmu = true;
return vir_MOV(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R4));
}
}
static inline struct qreg
vir_UMUL(struct v3d_compile *c, struct qreg src0, struct qreg src1)
{
vir_MULTOP(c, src0, src1);
return vir_UMUL24(c, src0, src1);
}
static inline struct qreg
vir_TLBU_COLOR_READ(struct v3d_compile *c, uint32_t config)
{
assert(c->devinfo->ver >= 41); /* XXX */
assert((config & 0xffffff00) == 0xffffff00);
struct qinst *ldtlb = vir_add_inst(V3D_QPU_A_NOP, c->undef,
c->undef, c->undef);
ldtlb->qpu.sig.ldtlbu = true;
ldtlb->uniform = vir_get_uniform_index(c, QUNIFORM_CONSTANT, config);
return vir_emit_def(c, ldtlb);
}
static inline struct qreg
vir_TLB_COLOR_READ(struct v3d_compile *c)
{
assert(c->devinfo->ver >= 41); /* XXX */
struct qinst *ldtlb = vir_add_inst(V3D_QPU_A_NOP, c->undef,
c->undef, c->undef);
ldtlb->qpu.sig.ldtlb = true;
return vir_emit_def(c, ldtlb);
}
static inline struct qinst *
vir_BRANCH(struct v3d_compile *c, enum v3d_qpu_branch_cond cond)
{
/* The actual uniform_data value will be set at scheduling time */
return vir_emit_nondef(c, vir_branch_inst(c, cond));
}
#define vir_for_each_block(block, c) \
list_for_each_entry(struct qblock, block, &c->blocks, link)
#define vir_for_each_block_rev(block, c) \
list_for_each_entry_rev(struct qblock, block, &c->blocks, link)
/* Loop over the non-NULL members of the successors array. */
#define vir_for_each_successor(succ, block) \
for (struct qblock *succ = block->successors[0]; \
succ != NULL; \
succ = (succ == block->successors[1] ? NULL : \
block->successors[1]))
#define vir_for_each_inst(inst, block) \
list_for_each_entry(struct qinst, inst, &block->instructions, link)
#define vir_for_each_inst_rev(inst, block) \
list_for_each_entry_rev(struct qinst, inst, &block->instructions, link)
#define vir_for_each_inst_safe(inst, block) \
list_for_each_entry_safe(struct qinst, inst, &block->instructions, link)
#define vir_for_each_inst_inorder(inst, c) \
vir_for_each_block(_block, c) \
vir_for_each_inst(inst, _block)
#define vir_for_each_inst_inorder_safe(inst, c) \
vir_for_each_block(_block, c) \
vir_for_each_inst_safe(inst, _block)
#endif /* V3D_COMPILER_H */