blob: 22f84811e192f55998ab98a34b0c5d06ebab36e3 [file] [log] [blame]
/*
* Copyright © 2014-2017 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file v3d_tiling.c
*
* Handles information about the V3D tiling formats, and loading and storing
* from them.
*/
#include <stdint.h>
#include "v3d_tiling.h"
#include "broadcom/common/v3d_cpu_tiling.h"
/** Return the width in pixels of a 64-byte microtile. */
uint32_t
v3d_utile_width(int cpp)
{
switch (cpp) {
case 1:
case 2:
return 8;
case 4:
case 8:
return 4;
case 16:
return 2;
default:
unreachable("unknown cpp");
}
}
/** Return the height in pixels of a 64-byte microtile. */
uint32_t
v3d_utile_height(int cpp)
{
switch (cpp) {
case 1:
return 8;
case 2:
case 4:
return 4;
case 8:
case 16:
return 2;
default:
unreachable("unknown cpp");
}
}
/**
* Returns the byte address for a given pixel within a utile.
*
* Utiles are 64b blocks of pixels in raster order, with 32bpp being a 4x4
* arrangement.
*/
static inline uint32_t
v3d_get_utile_pixel_offset(uint32_t cpp, uint32_t x, uint32_t y)
{
uint32_t utile_w = v3d_utile_width(cpp);
assert(x < utile_w && y < v3d_utile_height(cpp));
return x * cpp + y * utile_w * cpp;
}
/**
* Returns the byte offset for a given pixel in a LINEARTILE layout.
*
* LINEARTILE is a single line of utiles in either the X or Y direction.
*/
static inline uint32_t
v3d_get_lt_pixel_offset(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y)
{
uint32_t utile_w = v3d_utile_width(cpp);
uint32_t utile_h = v3d_utile_height(cpp);
uint32_t utile_index_x = x / utile_w;
uint32_t utile_index_y = y / utile_h;
assert(utile_index_x == 0 || utile_index_y == 0);
return (64 * (utile_index_x + utile_index_y) +
v3d_get_utile_pixel_offset(cpp,
x & (utile_w - 1),
y & (utile_h - 1)));
}
/**
* Returns the byte offset for a given pixel in a UBLINEAR layout.
*
* UBLINEAR is the layout where pixels are arranged in UIF blocks (2x2
* utiles), and the UIF blocks are in 1 or 2 columns in raster order.
*/
static inline uint32_t
v3d_get_ublinear_pixel_offset(uint32_t cpp, uint32_t x, uint32_t y,
int ublinear_number)
{
uint32_t utile_w = v3d_utile_width(cpp);
uint32_t utile_h = v3d_utile_height(cpp);
uint32_t ub_w = utile_w * 2;
uint32_t ub_h = utile_h * 2;
uint32_t ub_x = x / ub_w;
uint32_t ub_y = y / ub_h;
return (256 * (ub_y * ublinear_number +
ub_x) +
((x & utile_w) ? 64 : 0) +
((y & utile_h) ? 128 : 0) +
+ v3d_get_utile_pixel_offset(cpp,
x & (utile_w - 1),
y & (utile_h - 1)));
}
static inline uint32_t
v3d_get_ublinear_2_column_pixel_offset(uint32_t cpp, uint32_t image_h,
uint32_t x, uint32_t y)
{
return v3d_get_ublinear_pixel_offset(cpp, x, y, 2);
}
static inline uint32_t
v3d_get_ublinear_1_column_pixel_offset(uint32_t cpp, uint32_t image_h,
uint32_t x, uint32_t y)
{
return v3d_get_ublinear_pixel_offset(cpp, x, y, 1);
}
/**
* Returns the byte offset for a given pixel in a UIF layout.
*
* UIF is the general V3D tiling layout shared across 3D, media, and scanout.
* It stores pixels in UIF blocks (2x2 utiles), and UIF blocks are stored in
* 4x4 groups, and those 4x4 groups are then stored in raster order.
*/
static inline uint32_t
v3d_get_uif_pixel_offset(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y,
bool do_xor)
{
uint32_t utile_w = v3d_utile_width(cpp);
uint32_t utile_h = v3d_utile_height(cpp);
uint32_t mb_width = utile_w * 2;
uint32_t mb_height = utile_h * 2;
uint32_t log2_mb_width = ffs(mb_width) - 1;
uint32_t log2_mb_height = ffs(mb_height) - 1;
/* Macroblock X, y */
uint32_t mb_x = x >> log2_mb_width;
uint32_t mb_y = y >> log2_mb_height;
/* X, y within the macroblock */
uint32_t mb_pixel_x = x - (mb_x << log2_mb_width);
uint32_t mb_pixel_y = y - (mb_y << log2_mb_height);
if (do_xor && (mb_x / 4) & 1)
mb_y ^= 0x10;
uint32_t mb_h = align(image_h, 1 << log2_mb_height) >> log2_mb_height;
uint32_t mb_id = ((mb_x / 4) * ((mb_h - 1) * 4)) + mb_x + mb_y * 4;
uint32_t mb_base_addr = mb_id * 256;
bool top = mb_pixel_y < utile_h;
bool left = mb_pixel_x < utile_w;
/* Docs have this in pixels, we do bytes here. */
uint32_t mb_tile_offset = (!top * 128 + !left * 64);
uint32_t utile_x = mb_pixel_x & (utile_w - 1);
uint32_t utile_y = mb_pixel_y & (utile_h - 1);
uint32_t mb_pixel_address = (mb_base_addr +
mb_tile_offset +
v3d_get_utile_pixel_offset(cpp,
utile_x,
utile_y));
return mb_pixel_address;
}
static inline uint32_t
v3d_get_uif_xor_pixel_offset(uint32_t cpp, uint32_t image_h,
uint32_t x, uint32_t y)
{
return v3d_get_uif_pixel_offset(cpp, image_h, x, y, true);
}
static inline uint32_t
v3d_get_uif_no_xor_pixel_offset(uint32_t cpp, uint32_t image_h,
uint32_t x, uint32_t y)
{
return v3d_get_uif_pixel_offset(cpp, image_h, x, y, false);
}
/* Loads/stores non-utile-aligned boxes by walking over the destination
* rectangle, computing the address on the GPU, and storing/loading a pixel at
* a time.
*/
static inline void
v3d_move_pixels_unaligned(void *gpu, uint32_t gpu_stride,
void *cpu, uint32_t cpu_stride,
int cpp, uint32_t image_h,
const struct pipe_box *box,
uint32_t (*get_pixel_offset)(uint32_t cpp,
uint32_t image_h,
uint32_t x, uint32_t y),
bool is_load)
{
for (uint32_t y = 0; y < box->height; y++) {
void *cpu_row = cpu + y * cpu_stride;
for (int x = 0; x < box->width; x++) {
uint32_t pixel_offset = get_pixel_offset(cpp, image_h,
box->x + x,
box->y + y);
if (false) {
fprintf(stderr, "%3d,%3d -> %d\n",
box->x + x, box->y + y,
pixel_offset);
}
if (is_load) {
memcpy(cpu_row + x * cpp,
gpu + pixel_offset,
cpp);
} else {
memcpy(gpu + pixel_offset,
cpu_row + x * cpp,
cpp);
}
}
}
}
/* Breaks the image down into utiles and calls either the fast whole-utile
* load/store functions, or the unaligned fallback case.
*/
static inline void
v3d_move_pixels_general_percpp(void *gpu, uint32_t gpu_stride,
void *cpu, uint32_t cpu_stride,
int cpp, uint32_t image_h,
const struct pipe_box *box,
uint32_t (*get_pixel_offset)(uint32_t cpp,
uint32_t image_h,
uint32_t x, uint32_t y),
bool is_load)
{
uint32_t utile_w = v3d_utile_width(cpp);
uint32_t utile_h = v3d_utile_height(cpp);
uint32_t utile_gpu_stride = utile_w * cpp;
uint32_t x1 = box->x;
uint32_t y1 = box->y;
uint32_t x2 = box->x + box->width;
uint32_t y2 = box->y + box->height;
uint32_t align_x1 = align(x1, utile_w);
uint32_t align_y1 = align(y1, utile_h);
uint32_t align_x2 = x2 & ~(utile_w - 1);
uint32_t align_y2 = y2 & ~(utile_h - 1);
/* Load/store all the whole utiles first. */
for (uint32_t y = align_y1; y < align_y2; y += utile_h) {
void *cpu_row = cpu + (y - box->y) * cpu_stride;
for (uint32_t x = align_x1; x < align_x2; x += utile_w) {
void *utile_gpu = (gpu +
get_pixel_offset(cpp, image_h, x, y));
void *utile_cpu = cpu_row + (x - box->x) * cpp;
if (is_load) {
v3d_load_utile(utile_cpu, cpu_stride,
utile_gpu, utile_gpu_stride);
} else {
v3d_store_utile(utile_gpu, utile_gpu_stride,
utile_cpu, cpu_stride);
}
}
}
/* If there were no aligned utiles in the middle, load/store the whole
* thing unaligned.
*/
if (align_y2 <= align_y1 ||
align_x2 <= align_x1) {
v3d_move_pixels_unaligned(gpu, gpu_stride,
cpu, cpu_stride,
cpp, image_h,
box,
get_pixel_offset, is_load);
return;
}
/* Load/store the partial utiles. */
struct pipe_box partial_boxes[4] = {
/* Top */
{
.x = x1,
.width = x2 - x1,
.y = y1,
.height = align_y1 - y1,
},
/* Bottom */
{
.x = x1,
.width = x2 - x1,
.y = align_y2,
.height = y2 - align_y2,
},
/* Left */
{
.x = x1,
.width = align_x1 - x1,
.y = align_y1,
.height = align_y2 - align_y1,
},
/* Right */
{
.x = align_x2,
.width = x2 - align_x2,
.y = align_y1,
.height = align_y2 - align_y1,
},
};
for (int i = 0; i < ARRAY_SIZE(partial_boxes); i++) {
void *partial_cpu = (cpu +
(partial_boxes[i].y - y1) * cpu_stride +
(partial_boxes[i].x - x1) * cpp);
v3d_move_pixels_unaligned(gpu, gpu_stride,
partial_cpu, cpu_stride,
cpp, image_h,
&partial_boxes[i],
get_pixel_offset, is_load);
}
}
static inline void
v3d_move_pixels_general(void *gpu, uint32_t gpu_stride,
void *cpu, uint32_t cpu_stride,
int cpp, uint32_t image_h,
const struct pipe_box *box,
uint32_t (*get_pixel_offset)(uint32_t cpp,
uint32_t image_h,
uint32_t x, uint32_t y),
bool is_load)
{
switch (cpp) {
case 1:
v3d_move_pixels_general_percpp(gpu, gpu_stride,
cpu, cpu_stride,
1, image_h, box,
get_pixel_offset,
is_load);
break;
case 2:
v3d_move_pixels_general_percpp(gpu, gpu_stride,
cpu, cpu_stride,
2, image_h, box,
get_pixel_offset,
is_load);
break;
case 4:
v3d_move_pixels_general_percpp(gpu, gpu_stride,
cpu, cpu_stride,
4, image_h, box,
get_pixel_offset,
is_load);
break;
case 8:
v3d_move_pixels_general_percpp(gpu, gpu_stride,
cpu, cpu_stride,
8, image_h, box,
get_pixel_offset,
is_load);
break;
case 16:
v3d_move_pixels_general_percpp(gpu, gpu_stride,
cpu, cpu_stride,
16, image_h, box,
get_pixel_offset,
is_load);
break;
}
}
static inline void
v3d_move_tiled_image(void *gpu, uint32_t gpu_stride,
void *cpu, uint32_t cpu_stride,
enum v3d_tiling_mode tiling_format,
int cpp,
uint32_t image_h,
const struct pipe_box *box,
bool is_load)
{
switch (tiling_format) {
case V3D_TILING_UIF_XOR:
v3d_move_pixels_general(gpu, gpu_stride,
cpu, cpu_stride,
cpp, image_h, box,
v3d_get_uif_xor_pixel_offset,
is_load);
break;
case V3D_TILING_UIF_NO_XOR:
v3d_move_pixels_general(gpu, gpu_stride,
cpu, cpu_stride,
cpp, image_h, box,
v3d_get_uif_no_xor_pixel_offset,
is_load);
break;
case V3D_TILING_UBLINEAR_2_COLUMN:
v3d_move_pixels_general(gpu, gpu_stride,
cpu, cpu_stride,
cpp, image_h, box,
v3d_get_ublinear_2_column_pixel_offset,
is_load);
break;
case V3D_TILING_UBLINEAR_1_COLUMN:
v3d_move_pixels_general(gpu, gpu_stride,
cpu, cpu_stride,
cpp, image_h, box,
v3d_get_ublinear_1_column_pixel_offset,
is_load);
break;
case V3D_TILING_LINEARTILE:
v3d_move_pixels_general(gpu, gpu_stride,
cpu, cpu_stride,
cpp, image_h, box,
v3d_get_lt_pixel_offset,
is_load);
break;
default:
unreachable("Unsupported tiling format");
break;
}
}
/**
* Loads pixel data from the start (microtile-aligned) box in \p src to the
* start of \p dst according to the given tiling format.
*/
void
v3d_load_tiled_image(void *dst, uint32_t dst_stride,
void *src, uint32_t src_stride,
enum v3d_tiling_mode tiling_format, int cpp,
uint32_t image_h,
const struct pipe_box *box)
{
v3d_move_tiled_image(src, src_stride,
dst, dst_stride,
tiling_format,
cpp,
image_h,
box,
true);
}
/**
* Stores pixel data from the start of \p src into a (microtile-aligned) box in
* \p dst according to the given tiling format.
*/
void
v3d_store_tiled_image(void *dst, uint32_t dst_stride,
void *src, uint32_t src_stride,
enum v3d_tiling_mode tiling_format, int cpp,
uint32_t image_h,
const struct pipe_box *box)
{
v3d_move_tiled_image(dst, dst_stride,
src, src_stride,
tiling_format,
cpp,
image_h,
box,
false);
}