blob: ebf2432b132f67d58d88054e61fa43e5103f9619 [file] [log] [blame]
/*
* Copyright © 2019 Raspberry Pi Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "v3dv_private.h"
#include "drm-uapi/drm_fourcc.h"
#include "util/format/u_format.h"
#include "util/u_math.h"
#include "vk_util.h"
#include "vulkan/wsi/wsi_common.h"
/**
* Computes the HW's UIFblock padding for a given height/cpp.
*
* The goal of the padding is to keep pages of the same color (bank number) at
* least half a page away from each other vertically when crossing between
* columns of UIF blocks.
*/
static uint32_t
v3d_get_ub_pad(uint32_t cpp, uint32_t height)
{
uint32_t utile_h = v3d_utile_height(cpp);
uint32_t uif_block_h = utile_h * 2;
uint32_t height_ub = height / uif_block_h;
uint32_t height_offset_in_pc = height_ub % PAGE_CACHE_UB_ROWS;
/* For the perfectly-aligned-for-UIF-XOR case, don't add any pad. */
if (height_offset_in_pc == 0)
return 0;
/* Try padding up to where we're offset by at least half a page. */
if (height_offset_in_pc < PAGE_UB_ROWS_TIMES_1_5) {
/* If we fit entirely in the page cache, don't pad. */
if (height_ub < PAGE_CACHE_UB_ROWS)
return 0;
else
return PAGE_UB_ROWS_TIMES_1_5 - height_offset_in_pc;
}
/* If we're close to being aligned to page cache size, then round up
* and rely on XOR.
*/
if (height_offset_in_pc > PAGE_CACHE_MINUS_1_5_UB_ROWS)
return PAGE_CACHE_UB_ROWS - height_offset_in_pc;
/* Otherwise, we're far enough away (top and bottom) to not need any
* padding.
*/
return 0;
}
static void
v3d_setup_slices(struct v3dv_image *image)
{
assert(image->cpp > 0);
uint32_t width = image->vk.extent.width;
uint32_t height = image->vk.extent.height;
uint32_t depth = image->vk.extent.depth;
/* Note that power-of-two padding is based on level 1. These are not
* equivalent to just util_next_power_of_two(dimension), because at a
* level 0 dimension of 9, the level 1 power-of-two padded value is 4,
* not 8.
*/
uint32_t pot_width = 2 * util_next_power_of_two(u_minify(width, 1));
uint32_t pot_height = 2 * util_next_power_of_two(u_minify(height, 1));
uint32_t pot_depth = 2 * util_next_power_of_two(u_minify(depth, 1));
uint32_t utile_w = v3d_utile_width(image->cpp);
uint32_t utile_h = v3d_utile_height(image->cpp);
uint32_t uif_block_w = utile_w * 2;
uint32_t uif_block_h = utile_h * 2;
uint32_t block_width = vk_format_get_blockwidth(image->vk.format);
uint32_t block_height = vk_format_get_blockheight(image->vk.format);
assert(image->vk.samples == VK_SAMPLE_COUNT_1_BIT ||
image->vk.samples == VK_SAMPLE_COUNT_4_BIT);
bool msaa = image->vk.samples != VK_SAMPLE_COUNT_1_BIT;
bool uif_top = msaa;
assert(image->vk.array_layers > 0);
assert(depth > 0);
assert(image->vk.mip_levels >= 1);
uint32_t offset = 0;
for (int32_t i = image->vk.mip_levels - 1; i >= 0; i--) {
struct v3d_resource_slice *slice = &image->slices[i];
uint32_t level_width, level_height, level_depth;
if (i < 2) {
level_width = u_minify(width, i);
level_height = u_minify(height, i);
} else {
level_width = u_minify(pot_width, i);
level_height = u_minify(pot_height, i);
}
if (i < 1)
level_depth = u_minify(depth, i);
else
level_depth = u_minify(pot_depth, i);
if (msaa) {
level_width *= 2;
level_height *= 2;
}
level_width = DIV_ROUND_UP(level_width, block_width);
level_height = DIV_ROUND_UP(level_height, block_height);
if (!image->tiled) {
slice->tiling = V3D_TILING_RASTER;
if (image->vk.image_type == VK_IMAGE_TYPE_1D)
level_width = align(level_width, 64 / image->cpp);
} else {
if ((i != 0 || !uif_top) &&
(level_width <= utile_w || level_height <= utile_h)) {
slice->tiling = V3D_TILING_LINEARTILE;
level_width = align(level_width, utile_w);
level_height = align(level_height, utile_h);
} else if ((i != 0 || !uif_top) && level_width <= uif_block_w) {
slice->tiling = V3D_TILING_UBLINEAR_1_COLUMN;
level_width = align(level_width, uif_block_w);
level_height = align(level_height, uif_block_h);
} else if ((i != 0 || !uif_top) && level_width <= 2 * uif_block_w) {
slice->tiling = V3D_TILING_UBLINEAR_2_COLUMN;
level_width = align(level_width, 2 * uif_block_w);
level_height = align(level_height, uif_block_h);
} else {
/* We align the width to a 4-block column of UIF blocks, but we
* only align height to UIF blocks.
*/
level_width = align(level_width, 4 * uif_block_w);
level_height = align(level_height, uif_block_h);
slice->ub_pad = v3d_get_ub_pad(image->cpp, level_height);
level_height += slice->ub_pad * uif_block_h;
/* If the padding set us to to be aligned to the page cache size,
* then the HW will use the XOR bit on odd columns to get us
* perfectly misaligned.
*/
if ((level_height / uif_block_h) %
(V3D_PAGE_CACHE_SIZE / V3D_UIFBLOCK_ROW_SIZE) == 0) {
slice->tiling = V3D_TILING_UIF_XOR;
} else {
slice->tiling = V3D_TILING_UIF_NO_XOR;
}
}
}
slice->offset = offset;
slice->stride = level_width * image->cpp;
slice->padded_height = level_height;
if (slice->tiling == V3D_TILING_UIF_NO_XOR ||
slice->tiling == V3D_TILING_UIF_XOR) {
slice->padded_height_of_output_image_in_uif_blocks =
slice->padded_height / (2 * v3d_utile_height(image->cpp));
}
slice->size = level_height * slice->stride;
uint32_t slice_total_size = slice->size * level_depth;
/* The HW aligns level 1's base to a page if any of level 1 or
* below could be UIF XOR. The lower levels then inherit the
* alignment for as long as necesary, thanks to being power of
* two aligned.
*/
if (i == 1 &&
level_width > 4 * uif_block_w &&
level_height > PAGE_CACHE_MINUS_1_5_UB_ROWS * uif_block_h) {
slice_total_size = align(slice_total_size, V3D_UIFCFG_PAGE_SIZE);
}
offset += slice_total_size;
}
image->size = offset;
/* UIF/UBLINEAR levels need to be aligned to UIF-blocks, and LT only
* needs to be aligned to utile boundaries. Since tiles are laid out
* from small to big in memory, we need to align the later UIF slices
* to UIF blocks, if they were preceded by non-UIF-block-aligned LT
* slices.
*
* We additionally align to 4k, which improves UIF XOR performance.
*/
image->alignment = image->tiled ? 4096 : image->cpp;
uint32_t align_offset =
align(image->slices[0].offset, image->alignment) - image->slices[0].offset;
if (align_offset) {
image->size += align_offset;
for (int i = 0; i < image->vk.mip_levels; i++)
image->slices[i].offset += align_offset;
}
/* Arrays and cube textures have a stride which is the distance from
* one full mipmap tree to the next (64b aligned). For 3D textures,
* we need to program the stride between slices of miplevel 0.
*/
if (image->vk.image_type != VK_IMAGE_TYPE_3D) {
image->cube_map_stride =
align(image->slices[0].offset + image->slices[0].size, 64);
image->size += image->cube_map_stride * (image->vk.array_layers - 1);
} else {
image->cube_map_stride = image->slices[0].size;
}
}
uint32_t
v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer)
{
const struct v3d_resource_slice *slice = &image->slices[level];
if (image->vk.image_type == VK_IMAGE_TYPE_3D)
return image->mem_offset + slice->offset + layer * slice->size;
else
return image->mem_offset + slice->offset + layer * image->cube_map_stride;
}
VkResult
v3dv_image_init(struct v3dv_device *device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
struct v3dv_image *image)
{
/* When using the simulator the WSI common code will see that our
* driver wsi device doesn't match the display device and because of that
* it will not attempt to present directly from the swapchain images,
* instead it will use the prime blit path (use_buffer_blit flag in
* struct wsi_swapchain), where it copies the contents of the swapchain
* images to a linear buffer with appropriate row stride for presentation.
* As a result, on that path, swapchain images do not have any special
* requirements and are not created with the pNext structs below.
*/
VkImageTiling tiling = pCreateInfo->tiling;
uint64_t modifier = DRM_FORMAT_MOD_INVALID;
if (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
const VkImageDrmFormatModifierListCreateInfoEXT *mod_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
assert(mod_info || explicit_mod_info);
if (mod_info) {
for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) {
switch (mod_info->pDrmFormatModifiers[i]) {
case DRM_FORMAT_MOD_LINEAR:
if (modifier == DRM_FORMAT_MOD_INVALID)
modifier = DRM_FORMAT_MOD_LINEAR;
break;
case DRM_FORMAT_MOD_BROADCOM_UIF:
modifier = DRM_FORMAT_MOD_BROADCOM_UIF;
break;
}
}
} else {
modifier = explicit_mod_info->drmFormatModifier;
}
assert(modifier == DRM_FORMAT_MOD_LINEAR ||
modifier == DRM_FORMAT_MOD_BROADCOM_UIF);
} else if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D ||
image->vk.wsi_legacy_scanout) {
tiling = VK_IMAGE_TILING_LINEAR;
}
#ifdef ANDROID
const VkNativeBufferANDROID *native_buffer =
vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
int native_buf_fd = -1;
int native_buf_stride = 0;
int native_buf_size = 0;
if (native_buffer != NULL) {
VkResult result = v3dv_gralloc_info(device, native_buffer, &native_buf_fd,
&native_buf_stride, &native_buf_size,
&modifier);
if (result != VK_SUCCESS)
return result;
if (modifier != DRM_FORMAT_MOD_BROADCOM_UIF)
tiling = VK_IMAGE_TILING_LINEAR;
}
#endif
const struct v3dv_format *format =
v3dv_X(device, get_format)(pCreateInfo->format);
v3dv_assert(format != NULL && format->supported);
assert(pCreateInfo->samples == VK_SAMPLE_COUNT_1_BIT ||
pCreateInfo->samples == VK_SAMPLE_COUNT_4_BIT);
image->format = format;
image->cpp = vk_format_get_blocksize(image->vk.format);
image->tiled = tiling == VK_IMAGE_TILING_OPTIMAL ||
(tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT &&
modifier != DRM_FORMAT_MOD_LINEAR);
image->vk.tiling = tiling;
image->vk.drm_format_mod = modifier;
/* Our meta paths can create image views with compatible formats for any
* image, so always set this flag to keep the common Vulkan image code
* happy.
*/
image->vk.create_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
v3d_setup_slices(image);
#ifdef ANDROID
if (native_buffer != NULL) {
image->slices[0].stride = native_buf_stride;
image->slices[0].size = image->size = native_buf_size;
VkResult result = v3dv_import_native_buffer_fd(v3dv_device_to_handle(device),
native_buf_fd, pAllocator,
v3dv_image_to_handle(image));
if (result != VK_SUCCESS)
return result;
}
#endif
return VK_SUCCESS;
}
static VkResult
create_image(struct v3dv_device *device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
struct v3dv_image *image = NULL;
image = vk_image_create(&device->vk, pCreateInfo, pAllocator, sizeof(*image));
if (image == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
VkResult result = v3dv_image_init(device, pCreateInfo, pAllocator, image);
if (result != VK_SUCCESS) {
vk_image_destroy(&device->vk, pAllocator, &image->vk);
return result;
}
*pImage = v3dv_image_to_handle(image);
return VK_SUCCESS;
}
static VkResult
create_image_from_swapchain(struct v3dv_device *device,
const VkImageCreateInfo *pCreateInfo,
const VkImageSwapchainCreateInfoKHR *swapchain_info,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
struct v3dv_image *swapchain_image =
v3dv_wsi_get_image_from_swapchain(swapchain_info->swapchain, 0);
assert(swapchain_image);
VkImageCreateInfo local_create_info = *pCreateInfo;
local_create_info.pNext = NULL;
/* Added by wsi code. */
local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
/* The spec requires TILING_OPTIMAL as input, but the swapchain image may
* privately use a different tiling. See spec anchor
* #swapchain-wsi-image-create-info .
*/
assert(local_create_info.tiling == VK_IMAGE_TILING_OPTIMAL);
local_create_info.tiling = swapchain_image->vk.tiling;
VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT,
.drmFormatModifierCount = 1,
.pDrmFormatModifiers = &swapchain_image->vk.drm_format_mod,
};
if (swapchain_image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID)
__vk_append_struct(&local_create_info, &local_modifier_info);
assert(swapchain_image->vk.image_type == local_create_info.imageType);
assert(swapchain_image->vk.format == local_create_info.format);
assert(swapchain_image->vk.extent.width == local_create_info.extent.width);
assert(swapchain_image->vk.extent.height == local_create_info.extent.height);
assert(swapchain_image->vk.extent.depth == local_create_info.extent.depth);
assert(swapchain_image->vk.array_layers == local_create_info.arrayLayers);
assert(swapchain_image->vk.samples == local_create_info.samples);
assert(swapchain_image->vk.tiling == local_create_info.tiling);
assert((swapchain_image->vk.usage & local_create_info.usage) ==
local_create_info.usage);
return create_image(device, &local_create_info, pAllocator, pImage);
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateImage(VkDevice _device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
#ifdef ANDROID
/* VkImageSwapchainCreateInfoKHR is not useful at all */
const VkImageSwapchainCreateInfoKHR *swapchain_info = NULL;
#else
const VkImageSwapchainCreateInfoKHR *swapchain_info =
vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
#endif
if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE)
return create_image_from_swapchain(device, pCreateInfo, swapchain_info,
pAllocator, pImage);
return create_image(device, pCreateInfo, pAllocator, pImage);
}
VKAPI_ATTR void VKAPI_CALL
v3dv_GetImageSubresourceLayout(VkDevice device,
VkImage _image,
const VkImageSubresource *subresource,
VkSubresourceLayout *layout)
{
V3DV_FROM_HANDLE(v3dv_image, image, _image);
const struct v3d_resource_slice *slice =
&image->slices[subresource->mipLevel];
layout->offset =
v3dv_layer_offset(image, subresource->mipLevel, subresource->arrayLayer) -
image->mem_offset;
layout->rowPitch = slice->stride;
layout->depthPitch = image->cube_map_stride;
layout->arrayPitch = image->cube_map_stride;
if (image->vk.image_type != VK_IMAGE_TYPE_3D) {
layout->size = slice->size;
} else {
/* For 3D images, the size of the slice represents the size of a 2D slice
* in the 3D image, so we have to multiply by the depth extent of the
* miplevel. For levels other than the first, we just compute the size
* as the distance between consecutive levels (notice that mip levels are
* arranged in memory from last to first).
*/
if (subresource->mipLevel == 0) {
layout->size = slice->size * image->vk.extent.depth;
} else {
const struct v3d_resource_slice *prev_slice =
&image->slices[subresource->mipLevel - 1];
layout->size = prev_slice->offset - slice->offset;
}
}
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyImage(VkDevice _device,
VkImage _image,
const VkAllocationCallbacks* pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_image, image, _image);
if (image == NULL)
return;
#ifdef ANDROID
if (image->is_native_buffer_memory)
v3dv_FreeMemory(_device, v3dv_device_memory_to_handle(image->mem), pAllocator);
#endif
vk_image_destroy(&device->vk, pAllocator, &image->vk);
}
VkImageViewType
v3dv_image_type_to_view_type(VkImageType type)
{
switch (type) {
case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D;
case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D;
case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D;
default:
unreachable("Invalid image type");
}
}
static VkResult
create_image_view(struct v3dv_device *device,
bool driver_internal,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
V3DV_FROM_HANDLE(v3dv_image, image, pCreateInfo->image);
struct v3dv_image_view *iview;
iview = vk_image_view_create(&device->vk, driver_internal, pCreateInfo,
pAllocator, sizeof(*iview));
if (iview == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
iview->offset = v3dv_layer_offset(image, iview->vk.base_mip_level,
iview->vk.base_array_layer);
/* If we have D24S8 format but the view only selects the stencil aspect
* we want to re-interpret the format as RGBA8_UINT, then map our stencil
* data reads to the R component and ignore the GBA channels that contain
* the depth aspect data.
*/
VkFormat format;
uint8_t image_view_swizzle[4];
if (pCreateInfo->format == VK_FORMAT_D24_UNORM_S8_UINT &&
range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) {
format = VK_FORMAT_R8G8B8A8_UINT;
image_view_swizzle[0] = PIPE_SWIZZLE_X;
image_view_swizzle[1] = PIPE_SWIZZLE_0;
image_view_swizzle[2] = PIPE_SWIZZLE_0;
image_view_swizzle[3] = PIPE_SWIZZLE_1;
} else {
format = pCreateInfo->format;
/* FIXME: we are doing this vk to pipe swizzle mapping just to call
* util_format_compose_swizzles. Would be good to check if it would be
* better to reimplement the latter using vk component
*/
vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle,
image_view_swizzle);
}
iview->vk.view_format = format;
iview->format = v3dv_X(device, get_format)(format);
assert(iview->format && iview->format->supported);
if (vk_format_is_depth_or_stencil(iview->vk.view_format)) {
iview->internal_type =
v3dv_X(device, get_internal_depth_type)(iview->vk.view_format);
} else {
v3dv_X(device, get_internal_type_bpp_for_output_format)
(iview->format->rt_type, &iview->internal_type, &iview->internal_bpp);
}
const uint8_t *format_swizzle = v3dv_get_format_swizzle(device, format);
util_format_compose_swizzles(format_swizzle, image_view_swizzle,
iview->swizzle);
iview->swap_rb = v3dv_format_swizzle_needs_rb_swap(format_swizzle);
iview->channel_reverse = v3dv_format_swizzle_needs_reverse(format_swizzle);
v3dv_X(device, pack_texture_shader_state)(device, iview);
*pView = v3dv_image_view_to_handle(iview);
return VK_SUCCESS;
}
VkResult
v3dv_create_image_view(struct v3dv_device *device,
const VkImageViewCreateInfo *pCreateInfo,
VkImageView *pView)
{
return create_image_view(device, true, pCreateInfo, NULL, pView);
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateImageView(VkDevice _device,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
return create_image_view(device, false, pCreateInfo, pAllocator, pView);
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyImageView(VkDevice _device,
VkImageView imageView,
const VkAllocationCallbacks* pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_image_view, image_view, imageView);
if (image_view == NULL)
return;
vk_image_view_destroy(&device->vk, pAllocator, &image_view->vk);
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateBufferView(VkDevice _device,
const VkBufferViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBufferView *pView)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
struct v3dv_buffer *buffer =
v3dv_buffer_from_handle(pCreateInfo->buffer);
struct v3dv_buffer_view *view =
vk_object_zalloc(&device->vk, pAllocator, sizeof(*view),
VK_OBJECT_TYPE_BUFFER_VIEW);
if (!view)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
uint32_t range;
if (pCreateInfo->range == VK_WHOLE_SIZE)
range = buffer->size - pCreateInfo->offset;
else
range = pCreateInfo->range;
enum pipe_format pipe_format = vk_format_to_pipe_format(pCreateInfo->format);
uint32_t num_elements = range / util_format_get_blocksize(pipe_format);
view->buffer = buffer;
view->offset = pCreateInfo->offset;
view->size = view->offset + range;
view->num_elements = num_elements;
view->vk_format = pCreateInfo->format;
view->format = v3dv_X(device, get_format)(view->vk_format);
v3dv_X(device, get_internal_type_bpp_for_output_format)
(view->format->rt_type, &view->internal_type, &view->internal_bpp);
if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT ||
buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT)
v3dv_X(device, pack_texture_shader_state_from_buffer_view)(device, view);
*pView = v3dv_buffer_view_to_handle(view);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyBufferView(VkDevice _device,
VkBufferView bufferView,
const VkAllocationCallbacks *pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, bufferView);
if (buffer_view == NULL)
return;
vk_object_free(&device->vk, pAllocator, buffer_view);
}