| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based on si_state.c |
| * Copyright © 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| /* command buffer handling for AMD GCN */ |
| |
| #include "radv_cs.h" |
| #include "radv_private.h" |
| #include "radv_shader.h" |
| #include "sid.h" |
| |
| static void |
| si_write_harvested_raster_configs(struct radv_physical_device *physical_device, |
| struct radeon_cmdbuf *cs, unsigned raster_config, |
| unsigned raster_config_1) |
| { |
| unsigned num_se = MAX2(physical_device->rad_info.max_se, 1); |
| unsigned raster_config_se[4]; |
| unsigned se; |
| |
| ac_get_harvested_configs(&physical_device->rad_info, raster_config, &raster_config_1, |
| raster_config_se); |
| |
| for (se = 0; se < num_se; se++) { |
| /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */ |
| if (physical_device->rad_info.gfx_level < GFX7) |
| radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX, |
| S_00802C_SE_INDEX(se) | S_00802C_SH_BROADCAST_WRITES(1) | |
| S_00802C_INSTANCE_BROADCAST_WRITES(1)); |
| else |
| radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX, |
| S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) | |
| S_030800_INSTANCE_BROADCAST_WRITES(1)); |
| radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]); |
| } |
| |
| /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */ |
| if (physical_device->rad_info.gfx_level < GFX7) |
| radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX, |
| S_00802C_SE_BROADCAST_WRITES(1) | S_00802C_SH_BROADCAST_WRITES(1) | |
| S_00802C_INSTANCE_BROADCAST_WRITES(1)); |
| else |
| radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX, |
| S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) | |
| S_030800_INSTANCE_BROADCAST_WRITES(1)); |
| |
| if (physical_device->rad_info.gfx_level >= GFX7) |
| radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1); |
| } |
| |
| void |
| si_emit_compute(struct radv_device *device, struct radeon_cmdbuf *cs) |
| { |
| const struct radeon_info *info = &device->physical_device->rad_info; |
| |
| radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, 0); |
| |
| radeon_set_sh_reg(cs, R_00B834_COMPUTE_PGM_HI, |
| S_00B834_DATA(device->physical_device->rad_info.address32_hi >> 8)); |
| |
| radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2); |
| /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1, |
| * renamed COMPUTE_DESTINATION_EN_SEn on gfx10. */ |
| radeon_emit(cs, S_00B858_SH0_CU_EN(info->spi_cu_en) | S_00B858_SH1_CU_EN(info->spi_cu_en)); |
| radeon_emit(cs, S_00B858_SH0_CU_EN(info->spi_cu_en) | S_00B858_SH1_CU_EN(info->spi_cu_en)); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX7) { |
| /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */ |
| radeon_set_sh_reg_seq(cs, R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2); |
| radeon_emit(cs, S_00B858_SH0_CU_EN(info->spi_cu_en) | S_00B858_SH1_CU_EN(info->spi_cu_en)); |
| radeon_emit(cs, S_00B858_SH0_CU_EN(info->spi_cu_en) | S_00B858_SH1_CU_EN(info->spi_cu_en)); |
| |
| if (device->border_color_data.bo) { |
| uint64_t bc_va = radv_buffer_get_va(device->border_color_data.bo); |
| |
| radeon_set_uconfig_reg_seq(cs, R_030E00_TA_CS_BC_BASE_ADDR, 2); |
| radeon_emit(cs, bc_va >> 8); |
| radeon_emit(cs, S_030E04_ADDRESS(bc_va >> 40)); |
| } |
| } |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX9 && |
| device->physical_device->rad_info.gfx_level < GFX11) { |
| radeon_set_uconfig_reg(cs, R_0301EC_CP_COHER_START_DELAY, |
| device->physical_device->rad_info.gfx_level >= GFX10 ? 0x20 : 0); |
| } |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| radeon_set_sh_reg_seq(cs, R_00B890_COMPUTE_USER_ACCUM_0, 5); |
| radeon_emit(cs, 0); /* R_00B890_COMPUTE_USER_ACCUM_0 */ |
| radeon_emit(cs, 0); /* R_00B894_COMPUTE_USER_ACCUM_1 */ |
| radeon_emit(cs, 0); /* R_00B898_COMPUTE_USER_ACCUM_2 */ |
| radeon_emit(cs, 0); /* R_00B89C_COMPUTE_USER_ACCUM_3 */ |
| radeon_emit(cs, 0); /* R_00B8A0_COMPUTE_PGM_RSRC3 */ |
| } |
| |
| /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID |
| * and is now per pipe, so it should be handled in the |
| * kernel if we want to use something other than the default value, |
| * which is now 0x22f. |
| */ |
| if (device->physical_device->rad_info.gfx_level <= GFX6) { |
| /* XXX: This should be: |
| * (number of compute units) * 4 * (waves per simd) - 1 */ |
| |
| radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID, 0x190 /* Default value */); |
| |
| if (device->border_color_data.bo) { |
| uint64_t bc_va = radv_buffer_get_va(device->border_color_data.bo); |
| radeon_set_config_reg(cs, R_00950C_TA_CS_BC_BASE_ADDR, bc_va >> 8); |
| } |
| } |
| |
| if (device->tma_bo) { |
| uint64_t tba_va, tma_va; |
| |
| assert(device->physical_device->rad_info.gfx_level == GFX8); |
| |
| tba_va = radv_trap_handler_shader_get_va(device->trap_handler_shader); |
| tma_va = radv_buffer_get_va(device->tma_bo); |
| |
| radeon_set_sh_reg_seq(cs, R_00B838_COMPUTE_TBA_LO, 4); |
| radeon_emit(cs, tba_va >> 8); |
| radeon_emit(cs, tba_va >> 40); |
| radeon_emit(cs, tma_va >> 8); |
| radeon_emit(cs, tma_va >> 40); |
| } |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| uint32_t spi_cu_en = device->physical_device->rad_info.spi_cu_en; |
| |
| radeon_set_sh_reg_seq(cs, R_00B8AC_COMPUTE_STATIC_THREAD_MGMT_SE4, 4); |
| radeon_emit(cs, S_00B8AC_SA0_CU_EN(spi_cu_en) | S_00B8AC_SA1_CU_EN(spi_cu_en)); /* SE4 */ |
| radeon_emit(cs, S_00B8AC_SA0_CU_EN(spi_cu_en) | S_00B8AC_SA1_CU_EN(spi_cu_en)); /* SE5 */ |
| radeon_emit(cs, S_00B8AC_SA0_CU_EN(spi_cu_en) | S_00B8AC_SA1_CU_EN(spi_cu_en)); /* SE6 */ |
| radeon_emit(cs, S_00B8AC_SA0_CU_EN(spi_cu_en) | S_00B8AC_SA1_CU_EN(spi_cu_en)); /* SE7 */ |
| |
| radeon_set_sh_reg(cs, R_00B8BC_COMPUTE_DISPATCH_INTERLEAVE, 64); |
| } |
| } |
| |
| /* 12.4 fixed-point */ |
| static unsigned |
| radv_pack_float_12p4(float x) |
| { |
| return x <= 0 ? 0 : x >= 4096 ? 0xffff : x * 16; |
| } |
| |
| static void |
| si_set_raster_config(struct radv_physical_device *physical_device, struct radeon_cmdbuf *cs) |
| { |
| unsigned num_rb = MIN2(physical_device->rad_info.max_render_backends, 16); |
| unsigned rb_mask = physical_device->rad_info.enabled_rb_mask; |
| unsigned raster_config, raster_config_1; |
| |
| ac_get_raster_config(&physical_device->rad_info, &raster_config, &raster_config_1, NULL); |
| |
| /* Always use the default config when all backends are enabled |
| * (or when we failed to determine the enabled backends). |
| */ |
| if (!rb_mask || util_bitcount(rb_mask) >= num_rb) { |
| radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config); |
| if (physical_device->rad_info.gfx_level >= GFX7) |
| radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1); |
| } else { |
| si_write_harvested_raster_configs(physical_device, cs, raster_config, raster_config_1); |
| } |
| } |
| |
| void |
| si_emit_graphics(struct radv_device *device, struct radeon_cmdbuf *cs) |
| { |
| struct radv_physical_device *physical_device = device->physical_device; |
| |
| bool has_clear_state = physical_device->rad_info.has_clear_state; |
| int i; |
| |
| radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0)); |
| radeon_emit(cs, CC0_UPDATE_LOAD_ENABLES(1)); |
| radeon_emit(cs, CC1_UPDATE_SHADOW_ENABLES(1)); |
| |
| if (has_clear_state) { |
| radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0)); |
| radeon_emit(cs, 0); |
| } |
| |
| if (physical_device->rad_info.gfx_level <= GFX8) |
| si_set_raster_config(physical_device, cs); |
| |
| radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64)); |
| if (!has_clear_state) |
| radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0)); |
| |
| /* FIXME calculate these values somehow ??? */ |
| if (physical_device->rad_info.gfx_level <= GFX8) { |
| radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES); |
| radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40); |
| } |
| |
| if (!has_clear_state) { |
| if (physical_device->rad_info.gfx_level < GFX11) { |
| radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2); |
| radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0); |
| } |
| radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0); |
| } |
| |
| if (physical_device->rad_info.gfx_level <= GFX9) |
| radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1); |
| if (!has_clear_state && physical_device->rad_info.gfx_level < GFX11) |
| radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0); |
| if (physical_device->rad_info.gfx_level < GFX7) |
| radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, |
| S_008A14_NUM_CLIP_SEQ(3) | S_008A14_CLIP_VTX_REORDER_ENA(1)); |
| |
| if (!has_clear_state) |
| radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0); |
| |
| /* CLEAR_STATE doesn't clear these correctly on certain generations. |
| * I don't know why. Deduced by trial and error. |
| */ |
| if (physical_device->rad_info.gfx_level <= GFX7 || !has_clear_state) { |
| radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0); |
| radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL, |
| S_028204_WINDOW_OFFSET_DISABLE(1)); |
| radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL, |
| S_028240_WINDOW_OFFSET_DISABLE(1)); |
| radeon_set_context_reg( |
| cs, R_028244_PA_SC_GENERIC_SCISSOR_BR, |
| S_028244_BR_X(MAX_FRAMEBUFFER_WIDTH) | S_028244_BR_Y(MAX_FRAMEBUFFER_HEIGHT)); |
| radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0); |
| radeon_set_context_reg( |
| cs, R_028034_PA_SC_SCREEN_SCISSOR_BR, |
| S_028034_BR_X(MAX_FRAMEBUFFER_WIDTH) | S_028034_BR_Y(MAX_FRAMEBUFFER_HEIGHT)); |
| } |
| |
| if (!has_clear_state) { |
| for (i = 0; i < 16; i++) { |
| radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i * 8, 0); |
| radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i * 8, fui(1.0)); |
| } |
| } |
| |
| if (!has_clear_state) { |
| radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF); |
| radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA); |
| /* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on GFX6 */ |
| radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0); |
| radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0); |
| radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0); |
| radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0); |
| radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0); |
| } |
| |
| radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE, |
| S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) | |
| S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE)); |
| |
| if (physical_device->rad_info.gfx_level >= GFX10) { |
| radeon_set_context_reg(cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, 0); |
| radeon_set_uconfig_reg(cs, R_030964_GE_MAX_VTX_INDX, ~0); |
| radeon_set_uconfig_reg(cs, R_030924_GE_MIN_VTX_INDX, 0); |
| radeon_set_uconfig_reg(cs, R_030928_GE_INDX_OFFSET, 0); |
| radeon_set_uconfig_reg(cs, R_03097C_GE_STEREO_CNTL, 0); |
| radeon_set_uconfig_reg(cs, R_030988_GE_USER_VGPR_EN, 0); |
| |
| if (physical_device->rad_info.gfx_level < GFX11) { |
| radeon_set_context_reg( |
| cs, R_028038_DB_DFSM_CONTROL, |
| S_028038_PUNCHOUT_MODE(V_028038_FORCE_OFF) | S_028038_POPS_DRAIN_PS_ON_OVERLAP(1)); |
| } |
| } else if (physical_device->rad_info.gfx_level == GFX9) { |
| radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0); |
| radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0); |
| radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0); |
| |
| radeon_set_context_reg(cs, R_028060_DB_DFSM_CONTROL, |
| S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF) | |
| S_028060_POPS_DRAIN_PS_ON_OVERLAP(1)); |
| } else { |
| /* These registers, when written, also overwrite the |
| * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting |
| * them. It would be an issue if there was another UMD |
| * changing them. |
| */ |
| radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0); |
| radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0); |
| radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0); |
| } |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| radeon_set_sh_reg(cs, R_00B524_SPI_SHADER_PGM_HI_LS, |
| S_00B524_MEM_BASE(device->physical_device->rad_info.address32_hi >> 8)); |
| radeon_set_sh_reg(cs, R_00B324_SPI_SHADER_PGM_HI_ES, |
| S_00B324_MEM_BASE(device->physical_device->rad_info.address32_hi >> 8)); |
| } else if (device->physical_device->rad_info.gfx_level == GFX9) { |
| radeon_set_sh_reg(cs, R_00B414_SPI_SHADER_PGM_HI_LS, |
| S_00B414_MEM_BASE(device->physical_device->rad_info.address32_hi >> 8)); |
| radeon_set_sh_reg(cs, R_00B214_SPI_SHADER_PGM_HI_ES, |
| S_00B214_MEM_BASE(device->physical_device->rad_info.address32_hi >> 8)); |
| } else { |
| radeon_set_sh_reg(cs, R_00B524_SPI_SHADER_PGM_HI_LS, |
| S_00B524_MEM_BASE(device->physical_device->rad_info.address32_hi >> 8)); |
| radeon_set_sh_reg(cs, R_00B324_SPI_SHADER_PGM_HI_ES, |
| S_00B324_MEM_BASE(device->physical_device->rad_info.address32_hi >> 8)); |
| } |
| |
| if (device->physical_device->rad_info.gfx_level < GFX11) |
| radeon_set_sh_reg(cs, R_00B124_SPI_SHADER_PGM_HI_VS, |
| S_00B124_MEM_BASE(device->physical_device->rad_info.address32_hi >> 8)); |
| |
| unsigned cu_mask_ps = 0xffffffff; |
| |
| /* It's wasteful to enable all CUs for PS if shader arrays have a |
| * different number of CUs. The reason is that the hardware sends the |
| * same number of PS waves to each shader array, so the slowest shader |
| * array limits the performance. Disable the extra CUs for PS in |
| * other shader arrays to save power and thus increase clocks for busy |
| * CUs. In the future, we might disable or enable this tweak only for |
| * certain apps. |
| */ |
| if (physical_device->rad_info.gfx_level >= GFX10_3) |
| cu_mask_ps = u_bit_consecutive(0, physical_device->rad_info.min_good_cu_per_sa); |
| |
| if (physical_device->rad_info.gfx_level >= GFX7) { |
| if (physical_device->rad_info.gfx_level >= GFX10 && |
| physical_device->rad_info.gfx_level < GFX11) { |
| /* Logical CUs 16 - 31 */ |
| ac_set_reg_cu_en(cs, R_00B104_SPI_SHADER_PGM_RSRC4_VS, S_00B104_CU_EN(0xffff), |
| C_00B104_CU_EN, 16, &physical_device->rad_info, |
| (void*)gfx10_set_sh_reg_idx3); |
| } |
| |
| if (physical_device->rad_info.gfx_level >= GFX10) { |
| ac_set_reg_cu_en(cs, R_00B404_SPI_SHADER_PGM_RSRC4_HS, S_00B404_CU_EN(0xffff), |
| C_00B404_CU_EN, 16, &physical_device->rad_info, |
| (void*)gfx10_set_sh_reg_idx3); |
| ac_set_reg_cu_en(cs, R_00B004_SPI_SHADER_PGM_RSRC4_PS, S_00B004_CU_EN(cu_mask_ps >> 16), |
| C_00B004_CU_EN, 16, &physical_device->rad_info, |
| (void*)gfx10_set_sh_reg_idx3); |
| } |
| |
| if (physical_device->rad_info.gfx_level >= GFX10) { |
| ac_set_reg_cu_en(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS, |
| S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F), |
| C_00B41C_CU_EN, 0, &physical_device->rad_info, |
| (void*)gfx10_set_sh_reg_idx3); |
| } else if (physical_device->rad_info.gfx_level == GFX9) { |
| radeon_set_sh_reg_idx(physical_device, cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS, 3, |
| S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F)); |
| } else { |
| radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS, |
| S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F)); |
| radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS, S_00B41C_WAVE_LIMIT(0x3F)); |
| radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES, |
| S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F)); |
| /* If this is 0, Bonaire can hang even if GS isn't being used. |
| * Other chips are unaffected. These are suboptimal values, |
| * but we don't use on-chip GS. |
| */ |
| radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL, |
| S_028A44_ES_VERTS_PER_SUBGRP(64) | S_028A44_GS_PRIMS_PER_SUBGRP(4)); |
| } |
| |
| if (physical_device->rad_info.gfx_level >= GFX10) { |
| ac_set_reg_cu_en(cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS, |
| S_00B01C_CU_EN(cu_mask_ps) | S_00B01C_WAVE_LIMIT(0x3F) | |
| S_00B01C_LDS_GROUP_SIZE(physical_device->rad_info.gfx_level >= GFX11), |
| C_00B01C_CU_EN, 0, &physical_device->rad_info, |
| (void*)gfx10_set_sh_reg_idx3); |
| } else { |
| radeon_set_sh_reg_idx(physical_device, cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS, 3, |
| S_00B01C_CU_EN(cu_mask_ps) | S_00B01C_WAVE_LIMIT(0x3F)); |
| } |
| } |
| |
| if (physical_device->rad_info.gfx_level >= GFX10) { |
| /* Break up a pixel wave if it contains deallocs for more than |
| * half the parameter cache. |
| * |
| * To avoid a deadlock where pixel waves aren't launched |
| * because they're waiting for more pixels while the frontend |
| * is stuck waiting for PC space, the maximum allowed value is |
| * the size of the PC minus the largest possible allocation for |
| * a single primitive shader subgroup. |
| */ |
| uint32_t max_deallocs_in_wave = physical_device->rad_info.gfx_level >= GFX11 ? 16 : 512; |
| radeon_set_context_reg(cs, R_028C50_PA_SC_NGG_MODE_CNTL, |
| S_028C50_MAX_DEALLOCS_IN_WAVE(max_deallocs_in_wave)); |
| |
| if (physical_device->rad_info.gfx_level < GFX11) |
| radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14); |
| |
| /* Vulkan doesn't support user edge flags and it also doesn't |
| * need to prevent drawing lines on internal edges of |
| * decomposed primitives (such as quads) with polygon mode = lines. |
| */ |
| unsigned vertex_reuse_depth = physical_device->rad_info.gfx_level >= GFX10_3 ? 30 : 0; |
| radeon_set_context_reg(cs, R_028838_PA_CL_NGG_CNTL, |
| S_028838_INDEX_BUF_EDGE_FLAG_ENA(0) | |
| S_028838_VERTEX_REUSE_DEPTH(vertex_reuse_depth)); |
| |
| /* Enable CMASK/FMASK/HTILE/DCC caching in L2 for small chips. */ |
| unsigned meta_write_policy, meta_read_policy; |
| unsigned no_alloc = device->physical_device->rad_info.gfx_level >= GFX11 |
| ? V_02807C_CACHE_NOA_GFX11 |
| : V_02807C_CACHE_NOA_GFX10; |
| |
| /* TODO: investigate whether LRU improves performance on other chips too */ |
| if (physical_device->rad_info.max_render_backends <= 4) { |
| meta_write_policy = V_02807C_CACHE_LRU_WR; /* cache writes */ |
| meta_read_policy = V_02807C_CACHE_LRU_RD; /* cache reads */ |
| } else { |
| meta_write_policy = V_02807C_CACHE_STREAM; /* write combine */ |
| meta_read_policy = no_alloc; /* don't cache reads */ |
| } |
| |
| radeon_set_context_reg( |
| cs, R_02807C_DB_RMI_L2_CACHE_CONTROL, |
| S_02807C_Z_WR_POLICY(V_02807C_CACHE_STREAM) | S_02807C_S_WR_POLICY(V_02807C_CACHE_STREAM) | |
| S_02807C_HTILE_WR_POLICY(meta_write_policy) | |
| S_02807C_ZPCPSD_WR_POLICY(V_02807C_CACHE_STREAM) | S_02807C_Z_RD_POLICY(no_alloc) | |
| S_02807C_S_RD_POLICY(no_alloc) | S_02807C_HTILE_RD_POLICY(meta_read_policy)); |
| |
| uint32_t gl2_cc; |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| gl2_cc = S_028410_DCC_WR_POLICY_GFX11(meta_write_policy) | |
| S_028410_COLOR_WR_POLICY_GFX11(V_028410_CACHE_STREAM) | |
| S_028410_COLOR_RD_POLICY(V_028410_CACHE_NOA_GFX11); |
| } else { |
| gl2_cc = S_028410_CMASK_WR_POLICY(meta_write_policy) | |
| S_028410_FMASK_WR_POLICY(V_028410_CACHE_STREAM) | |
| S_028410_DCC_WR_POLICY_GFX10(meta_write_policy) | |
| S_028410_COLOR_WR_POLICY_GFX10(V_028410_CACHE_STREAM) | |
| S_028410_CMASK_RD_POLICY(meta_read_policy) | |
| S_028410_FMASK_RD_POLICY(V_028410_CACHE_NOA_GFX10) | |
| S_028410_COLOR_RD_POLICY(V_028410_CACHE_NOA_GFX10); |
| } |
| |
| radeon_set_context_reg(cs, R_028410_CB_RMI_GL2_CACHE_CONTROL, |
| gl2_cc | S_028410_DCC_RD_POLICY(meta_read_policy)); |
| radeon_set_context_reg(cs, R_028428_CB_COVERAGE_OUT_CONTROL, 0); |
| |
| radeon_set_sh_reg_seq(cs, R_00B0C8_SPI_SHADER_USER_ACCUM_PS_0, 4); |
| radeon_emit(cs, 0); /* R_00B0C8_SPI_SHADER_USER_ACCUM_PS_0 */ |
| radeon_emit(cs, 0); /* R_00B0CC_SPI_SHADER_USER_ACCUM_PS_1 */ |
| radeon_emit(cs, 0); /* R_00B0D0_SPI_SHADER_USER_ACCUM_PS_2 */ |
| radeon_emit(cs, 0); /* R_00B0D4_SPI_SHADER_USER_ACCUM_PS_3 */ |
| |
| if (physical_device->rad_info.gfx_level < GFX11) { |
| radeon_set_sh_reg_seq(cs, R_00B1C8_SPI_SHADER_USER_ACCUM_VS_0, 4); |
| radeon_emit(cs, 0); /* R_00B1C8_SPI_SHADER_USER_ACCUM_VS_0 */ |
| radeon_emit(cs, 0); /* R_00B1CC_SPI_SHADER_USER_ACCUM_VS_1 */ |
| radeon_emit(cs, 0); /* R_00B1D0_SPI_SHADER_USER_ACCUM_VS_2 */ |
| radeon_emit(cs, 0); /* R_00B1D4_SPI_SHADER_USER_ACCUM_VS_3 */ |
| } |
| |
| radeon_set_sh_reg_seq(cs, R_00B2C8_SPI_SHADER_USER_ACCUM_ESGS_0, 4); |
| radeon_emit(cs, 0); /* R_00B2C8_SPI_SHADER_USER_ACCUM_ESGS_0 */ |
| radeon_emit(cs, 0); /* R_00B2CC_SPI_SHADER_USER_ACCUM_ESGS_1 */ |
| radeon_emit(cs, 0); /* R_00B2D0_SPI_SHADER_USER_ACCUM_ESGS_2 */ |
| radeon_emit(cs, 0); /* R_00B2D4_SPI_SHADER_USER_ACCUM_ESGS_3 */ |
| radeon_set_sh_reg_seq(cs, R_00B4C8_SPI_SHADER_USER_ACCUM_LSHS_0, 4); |
| radeon_emit(cs, 0); /* R_00B4C8_SPI_SHADER_USER_ACCUM_LSHS_0 */ |
| radeon_emit(cs, 0); /* R_00B4CC_SPI_SHADER_USER_ACCUM_LSHS_1 */ |
| radeon_emit(cs, 0); /* R_00B4D0_SPI_SHADER_USER_ACCUM_LSHS_2 */ |
| radeon_emit(cs, 0); /* R_00B4D4_SPI_SHADER_USER_ACCUM_LSHS_3 */ |
| |
| radeon_set_sh_reg(cs, R_00B0C0_SPI_SHADER_REQ_CTRL_PS, |
| S_00B0C0_SOFT_GROUPING_EN(1) | S_00B0C0_NUMBER_OF_REQUESTS_PER_CU(4 - 1)); |
| |
| if (physical_device->rad_info.gfx_level < GFX11) |
| radeon_set_sh_reg(cs, R_00B1C0_SPI_SHADER_REQ_CTRL_VS, 0); |
| |
| if (physical_device->rad_info.gfx_level >= GFX10_3) { |
| radeon_set_context_reg(cs, R_028750_SX_PS_DOWNCONVERT_CONTROL, 0xff); |
| /* This allows sample shading. */ |
| radeon_set_context_reg( |
| cs, R_028848_PA_CL_VRS_CNTL, |
| S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE)); |
| } |
| } |
| |
| if (physical_device->rad_info.gfx_level >= GFX11) { |
| /* ACCUM fields changed their meaning. */ |
| radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION, |
| S_028B50_ACCUM_ISOLINE(255) | S_028B50_ACCUM_TRI(255) | |
| S_028B50_ACCUM_QUAD(255) | S_028B50_DONUT_SPLIT_GFX9(24) | |
| S_028B50_TRAP_SPLIT(6)); |
| } else if (physical_device->rad_info.gfx_level >= GFX9) { |
| radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION, |
| S_028B50_ACCUM_ISOLINE(40) | S_028B50_ACCUM_TRI(30) | |
| S_028B50_ACCUM_QUAD(24) | S_028B50_DONUT_SPLIT_GFX9(24) | |
| S_028B50_TRAP_SPLIT(6)); |
| } else if (physical_device->rad_info.gfx_level >= GFX8) { |
| uint32_t vgt_tess_distribution; |
| |
| vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) | S_028B50_ACCUM_TRI(11) | |
| S_028B50_ACCUM_QUAD(11) | S_028B50_DONUT_SPLIT_GFX81(16); |
| |
| if (physical_device->rad_info.family == CHIP_FIJI || |
| physical_device->rad_info.family >= CHIP_POLARIS10) |
| vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3); |
| |
| radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION, vgt_tess_distribution); |
| } else if (!has_clear_state) { |
| radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14); |
| radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16); |
| } |
| |
| if (device->border_color_data.bo) { |
| uint64_t border_color_va = radv_buffer_get_va(device->border_color_data.bo); |
| |
| radeon_set_context_reg(cs, R_028080_TA_BC_BASE_ADDR, border_color_va >> 8); |
| if (physical_device->rad_info.gfx_level >= GFX7) { |
| radeon_set_context_reg(cs, R_028084_TA_BC_BASE_ADDR_HI, |
| S_028084_ADDRESS(border_color_va >> 40)); |
| } |
| } |
| |
| if (physical_device->rad_info.gfx_level >= GFX9) { |
| radeon_set_context_reg( |
| cs, R_028C48_PA_SC_BINNER_CNTL_1, |
| S_028C48_MAX_ALLOC_COUNT(physical_device->rad_info.pbb_max_alloc_count - 1) | |
| S_028C48_MAX_PRIM_PER_BATCH(1023)); |
| radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL, |
| S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1)); |
| radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0); |
| } |
| |
| unsigned tmp = (unsigned)(1.0 * 8.0); |
| radeon_set_context_reg(cs, R_028A00_PA_SU_POINT_SIZE, |
| S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp)); |
| radeon_set_context_reg(cs, R_028A04_PA_SU_POINT_MINMAX, |
| S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) | |
| S_028A04_MAX_SIZE(radv_pack_float_12p4(8191.875 / 2))); |
| |
| if (!has_clear_state) { |
| radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL, S_028004_ZPASS_INCREMENT_DISABLE(1)); |
| } |
| |
| /* Enable the Polaris small primitive filter control. |
| * XXX: There is possibly an issue when MSAA is off (see RadeonSI |
| * has_msaa_sample_loc_bug). But this doesn't seem to regress anything, |
| * and AMDVLK doesn't have a workaround as well. |
| */ |
| if (physical_device->rad_info.family >= CHIP_POLARIS10) { |
| unsigned small_prim_filter_cntl = |
| S_028830_SMALL_PRIM_FILTER_ENABLE(1) | |
| /* Workaround for a hw line bug. */ |
| S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12); |
| |
| radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL, small_prim_filter_cntl); |
| } |
| |
| radeon_set_context_reg( |
| cs, R_0286D4_SPI_INTERP_CONTROL_0, |
| S_0286D4_FLAT_SHADE_ENA(1) | S_0286D4_PNT_SPRITE_ENA(1) | |
| S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) | |
| S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) | |
| S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) | |
| S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) | |
| S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */ |
| |
| radeon_set_context_reg(cs, R_028BE4_PA_SU_VTX_CNTL, |
| S_028BE4_PIX_CENTER(1) | S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) | |
| S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH)); |
| |
| radeon_set_context_reg(cs, R_028818_PA_CL_VTE_CNTL, |
| S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | |
| S_028818_VPORT_X_OFFSET_ENA(1) | S_028818_VPORT_Y_SCALE_ENA(1) | |
| S_028818_VPORT_Y_OFFSET_ENA(1) | S_028818_VPORT_Z_SCALE_ENA(1) | |
| S_028818_VPORT_Z_OFFSET_ENA(1)); |
| |
| if (device->tma_bo) { |
| uint64_t tba_va, tma_va; |
| |
| assert(device->physical_device->rad_info.gfx_level == GFX8); |
| |
| tba_va = radv_trap_handler_shader_get_va(device->trap_handler_shader); |
| tma_va = radv_buffer_get_va(device->tma_bo); |
| |
| uint32_t regs[] = {R_00B000_SPI_SHADER_TBA_LO_PS, R_00B100_SPI_SHADER_TBA_LO_VS, |
| R_00B200_SPI_SHADER_TBA_LO_GS, R_00B300_SPI_SHADER_TBA_LO_ES, |
| R_00B400_SPI_SHADER_TBA_LO_HS, R_00B500_SPI_SHADER_TBA_LO_LS}; |
| |
| for (i = 0; i < ARRAY_SIZE(regs); ++i) { |
| radeon_set_sh_reg_seq(cs, regs[i], 4); |
| radeon_emit(cs, tba_va >> 8); |
| radeon_emit(cs, tba_va >> 40); |
| radeon_emit(cs, tma_va >> 8); |
| radeon_emit(cs, tma_va >> 40); |
| } |
| } |
| |
| /* The DX10 diamond test is unnecessary with Vulkan and it decreases line rasterization |
| * performance. |
| */ |
| radeon_set_context_reg(cs, R_028BDC_PA_SC_LINE_CNTL, 0); |
| |
| if (physical_device->rad_info.gfx_level >= GFX11) { |
| radeon_set_context_reg(cs, R_028C54_PA_SC_BINNER_CNTL_2, 0); |
| radeon_set_context_reg(cs, R_028620_PA_RATE_CNTL, |
| S_028620_VERTEX_RATE(2) | S_028620_PRIM_RATE(1)); |
| |
| radeon_set_uconfig_reg(cs, R_031110_SPI_GS_THROTTLE_CNTL1, 0x12355123); |
| radeon_set_uconfig_reg(cs, R_031114_SPI_GS_THROTTLE_CNTL2, 0x1544D); |
| } |
| |
| si_emit_compute(device, cs); |
| } |
| |
| void |
| cik_create_gfx_config(struct radv_device *device) |
| { |
| struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, AMD_IP_GFX); |
| if (!cs) |
| return; |
| |
| si_emit_graphics(device, cs); |
| |
| while (cs->cdw & 7) { |
| if (device->physical_device->rad_info.gfx_ib_pad_with_type2) |
| radeon_emit(cs, PKT2_NOP_PAD); |
| else |
| radeon_emit(cs, PKT3_NOP_PAD); |
| } |
| |
| VkResult result = |
| device->ws->buffer_create(device->ws, cs->cdw * 4, 4096, device->ws->cs_domain(device->ws), |
| RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | |
| RADEON_FLAG_READ_ONLY | RADEON_FLAG_GTT_WC, |
| RADV_BO_PRIORITY_CS, 0, &device->gfx_init); |
| if (result != VK_SUCCESS) |
| goto fail; |
| |
| void *map = device->ws->buffer_map(device->gfx_init); |
| if (!map) { |
| device->ws->buffer_destroy(device->ws, device->gfx_init); |
| device->gfx_init = NULL; |
| goto fail; |
| } |
| memcpy(map, cs->buf, cs->cdw * 4); |
| |
| device->ws->buffer_unmap(device->gfx_init); |
| device->gfx_init_size_dw = cs->cdw; |
| fail: |
| device->ws->cs_destroy(cs); |
| } |
| |
| void |
| radv_get_viewport_xform(const VkViewport *viewport, float scale[3], float translate[3]) |
| { |
| float x = viewport->x; |
| float y = viewport->y; |
| float half_width = 0.5f * viewport->width; |
| float half_height = 0.5f * viewport->height; |
| double n = viewport->minDepth; |
| double f = viewport->maxDepth; |
| |
| scale[0] = half_width; |
| translate[0] = half_width + x; |
| scale[1] = half_height; |
| translate[1] = half_height + y; |
| |
| scale[2] = (f - n); |
| translate[2] = n; |
| } |
| |
| static VkRect2D |
| si_scissor_from_viewport(const VkViewport *viewport) |
| { |
| float scale[3], translate[3]; |
| VkRect2D rect; |
| |
| radv_get_viewport_xform(viewport, scale, translate); |
| |
| rect.offset.x = translate[0] - fabsf(scale[0]); |
| rect.offset.y = translate[1] - fabsf(scale[1]); |
| rect.extent.width = ceilf(translate[0] + fabsf(scale[0])) - rect.offset.x; |
| rect.extent.height = ceilf(translate[1] + fabsf(scale[1])) - rect.offset.y; |
| |
| return rect; |
| } |
| |
| static VkRect2D |
| si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) |
| { |
| VkRect2D ret; |
| ret.offset.x = MAX2(a->offset.x, b->offset.x); |
| ret.offset.y = MAX2(a->offset.y, b->offset.y); |
| ret.extent.width = |
| MIN2(a->offset.x + a->extent.width, b->offset.x + b->extent.width) - ret.offset.x; |
| ret.extent.height = |
| MIN2(a->offset.y + a->extent.height, b->offset.y + b->extent.height) - ret.offset.y; |
| return ret; |
| } |
| |
| void |
| si_write_scissors(struct radeon_cmdbuf *cs, int count, const VkRect2D *scissors, |
| const VkViewport *viewports) |
| { |
| int i; |
| |
| if (!count) |
| return; |
| |
| radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, count * 2); |
| for (i = 0; i < count; i++) { |
| VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i); |
| VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor); |
| |
| radeon_emit(cs, S_028250_TL_X(scissor.offset.x) | S_028250_TL_Y(scissor.offset.y) | |
| S_028250_WINDOW_OFFSET_DISABLE(1)); |
| radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) | |
| S_028254_BR_Y(scissor.offset.y + scissor.extent.height)); |
| } |
| } |
| |
| void |
| si_write_guardband(struct radeon_cmdbuf *cs, int count, const VkViewport *viewports, |
| unsigned rast_prim, unsigned polygon_mode, float line_width) |
| { |
| const bool draw_points = |
| radv_rast_prim_is_point(rast_prim) || radv_polygon_mode_is_point(polygon_mode); |
| const bool draw_lines = |
| radv_rast_prim_is_line(rast_prim) || radv_polygon_mode_is_line(polygon_mode); |
| int i; |
| float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY; |
| float discard_x = 1.0f, discard_y = 1.0f; |
| const float max_range = 32767.0f; |
| if (!count) |
| return; |
| |
| for (i = 0; i < count; i++) { |
| radv_get_viewport_xform(viewports + i, scale, translate); |
| scale[0] = fabsf(scale[0]); |
| scale[1] = fabsf(scale[1]); |
| |
| if (scale[0] < 0.5) |
| scale[0] = 0.5; |
| if (scale[1] < 0.5) |
| scale[1] = 0.5; |
| |
| guardband_x = MIN2(guardband_x, (max_range - fabsf(translate[0])) / scale[0]); |
| guardband_y = MIN2(guardband_y, (max_range - fabsf(translate[1])) / scale[1]); |
| |
| if (draw_points || draw_lines) { |
| /* When rendering wide points or lines, we need to be more conservative about when to |
| * discard them entirely. */ |
| float pixels; |
| |
| if (draw_points) { |
| pixels = 8191.875f; |
| } else { |
| pixels = line_width; |
| } |
| |
| /* Add half the point size / line width. */ |
| discard_x += pixels / (2.0 * scale[0]); |
| discard_y += pixels / (2.0 * scale[1]); |
| |
| /* Discard primitives that would lie entirely outside the clip region. */ |
| discard_x = MIN2(discard_x, guardband_x); |
| discard_y = MIN2(discard_y, guardband_y); |
| } |
| } |
| |
| radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4); |
| radeon_emit(cs, fui(guardband_y)); |
| radeon_emit(cs, fui(discard_y)); |
| radeon_emit(cs, fui(guardband_x)); |
| radeon_emit(cs, fui(discard_x)); |
| } |
| |
| static inline unsigned |
| radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num) |
| { |
| if (num == 0) |
| return 0; |
| |
| if (info->incr == 0) |
| return 0; |
| |
| if (num < info->min) |
| return 0; |
| |
| return 1 + ((num - info->min) / info->incr); |
| } |
| |
| static const struct radv_prim_vertex_count prim_size_table[] = { |
| [V_008958_DI_PT_NONE] = {0, 0}, [V_008958_DI_PT_POINTLIST] = {1, 1}, |
| [V_008958_DI_PT_LINELIST] = {2, 2}, [V_008958_DI_PT_LINESTRIP] = {2, 1}, |
| [V_008958_DI_PT_TRILIST] = {3, 3}, [V_008958_DI_PT_TRIFAN] = {3, 1}, |
| [V_008958_DI_PT_TRISTRIP] = {3, 1}, [V_008958_DI_PT_LINELIST_ADJ] = {4, 4}, |
| [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, [V_008958_DI_PT_TRILIST_ADJ] = {6, 6}, |
| [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2}, [V_008958_DI_PT_RECTLIST] = {3, 3}, |
| [V_008958_DI_PT_LINELOOP] = {2, 1}, [V_008958_DI_PT_POLYGON] = {3, 1}, |
| [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0}, |
| }; |
| |
| uint32_t |
| si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, |
| bool indirect_draw, bool count_from_stream_output, |
| uint32_t draw_vertex_count, unsigned topology, bool prim_restart_enable, |
| unsigned patch_control_points, unsigned num_tess_patches) |
| { |
| enum amd_gfx_level gfx_level = cmd_buffer->device->physical_device->rad_info.gfx_level; |
| enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family; |
| struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info; |
| const unsigned max_primgroup_in_wave = 2; |
| /* SWITCH_ON_EOP(0) is always preferable. */ |
| bool wd_switch_on_eop = false; |
| bool ia_switch_on_eop = false; |
| bool ia_switch_on_eoi = false; |
| bool partial_vs_wave = false; |
| bool partial_es_wave = cmd_buffer->state.graphics_pipeline->ia_multi_vgt_param.partial_es_wave; |
| bool multi_instances_smaller_than_primgroup; |
| struct radv_prim_vertex_count prim_vertex_count = prim_size_table[topology]; |
| unsigned primgroup_size; |
| |
| if (radv_pipeline_has_stage(cmd_buffer->state.graphics_pipeline, MESA_SHADER_TESS_CTRL)) { |
| primgroup_size = num_tess_patches; |
| } else if (radv_pipeline_has_stage(cmd_buffer->state.graphics_pipeline, MESA_SHADER_GEOMETRY)) { |
| primgroup_size = 64; |
| } else { |
| primgroup_size = 128; /* recommended without a GS */ |
| } |
| |
| /* GS requirement. */ |
| if (radv_pipeline_has_stage(cmd_buffer->state.graphics_pipeline, MESA_SHADER_GEOMETRY) && |
| gfx_level <= GFX8) { |
| unsigned gs_table_depth = cmd_buffer->device->physical_device->gs_table_depth; |
| if (SI_GS_PER_ES / primgroup_size >= gs_table_depth - 3) |
| partial_es_wave = true; |
| } |
| |
| if (radv_pipeline_has_stage(cmd_buffer->state.graphics_pipeline, MESA_SHADER_TESS_CTRL)) { |
| if (topology == V_008958_DI_PT_PATCH) { |
| prim_vertex_count.min = patch_control_points; |
| prim_vertex_count.incr = 1; |
| } |
| } |
| |
| multi_instances_smaller_than_primgroup = indirect_draw; |
| if (!multi_instances_smaller_than_primgroup && instanced_draw) { |
| uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count); |
| if (num_prims < primgroup_size) |
| multi_instances_smaller_than_primgroup = true; |
| } |
| |
| ia_switch_on_eoi = cmd_buffer->state.graphics_pipeline->ia_multi_vgt_param.ia_switch_on_eoi; |
| partial_vs_wave = cmd_buffer->state.graphics_pipeline->ia_multi_vgt_param.partial_vs_wave; |
| |
| if (gfx_level >= GFX7) { |
| /* WD_SWITCH_ON_EOP has no effect on GPUs with less than |
| * 4 shader engines. Set 1 to pass the assertion below. |
| * The other cases are hardware requirements. */ |
| if (cmd_buffer->device->physical_device->rad_info.max_se < 4 || |
| topology == V_008958_DI_PT_POLYGON || topology == V_008958_DI_PT_LINELOOP || |
| topology == V_008958_DI_PT_TRIFAN || topology == V_008958_DI_PT_TRISTRIP_ADJ || |
| (prim_restart_enable && |
| (cmd_buffer->device->physical_device->rad_info.family < CHIP_POLARIS10 || |
| (topology != V_008958_DI_PT_POINTLIST && topology != V_008958_DI_PT_LINESTRIP)))) |
| wd_switch_on_eop = true; |
| |
| /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0. |
| * We don't know that for indirect drawing, so treat it as |
| * always problematic. */ |
| if (family == CHIP_HAWAII && (instanced_draw || indirect_draw)) |
| wd_switch_on_eop = true; |
| |
| /* Performance recommendation for 4 SE Gfx7-8 parts if |
| * instances are smaller than a primgroup. |
| * Assume indirect draws always use small instances. |
| * This is needed for good VS wave utilization. |
| */ |
| if (gfx_level <= GFX8 && info->max_se == 4 && multi_instances_smaller_than_primgroup) |
| wd_switch_on_eop = true; |
| |
| /* Hardware requirement when drawing primitives from a stream |
| * output buffer. |
| */ |
| if (count_from_stream_output) |
| wd_switch_on_eop = true; |
| |
| /* Required on GFX7 and later. */ |
| if (info->max_se > 2 && !wd_switch_on_eop) |
| ia_switch_on_eoi = true; |
| |
| /* Required by Hawaii and, for some special cases, by GFX8. */ |
| if (ia_switch_on_eoi && |
| (family == CHIP_HAWAII || |
| (gfx_level == GFX8 && |
| /* max primgroup in wave is always 2 - leave this for documentation */ |
| (radv_pipeline_has_stage(cmd_buffer->state.graphics_pipeline, MESA_SHADER_GEOMETRY) || max_primgroup_in_wave != 2)))) |
| partial_vs_wave = true; |
| |
| /* Instancing bug on Bonaire. */ |
| if (family == CHIP_BONAIRE && ia_switch_on_eoi && (instanced_draw || indirect_draw)) |
| partial_vs_wave = true; |
| |
| /* If the WD switch is false, the IA switch must be false too. */ |
| assert(wd_switch_on_eop || !ia_switch_on_eop); |
| } |
| /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */ |
| if (gfx_level <= GFX8 && ia_switch_on_eoi) |
| partial_es_wave = true; |
| |
| if (radv_pipeline_has_stage(cmd_buffer->state.graphics_pipeline, MESA_SHADER_GEOMETRY)) { |
| /* GS hw bug with single-primitive instances and SWITCH_ON_EOI. |
| * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan |
| * only applies it to Hawaii. Do what amdgpu-pro Vulkan does. |
| */ |
| if (family == CHIP_HAWAII && ia_switch_on_eoi) { |
| bool set_vgt_flush = indirect_draw; |
| if (!set_vgt_flush && instanced_draw) { |
| uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count); |
| if (num_prims <= 1) |
| set_vgt_flush = true; |
| } |
| if (set_vgt_flush) |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH; |
| } |
| } |
| |
| /* Workaround for a VGT hang when strip primitive types are used with |
| * primitive restart. |
| */ |
| if (prim_restart_enable && |
| (topology == V_008958_DI_PT_LINESTRIP || topology == V_008958_DI_PT_TRISTRIP || |
| topology == V_008958_DI_PT_LINESTRIP_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) { |
| partial_vs_wave = true; |
| } |
| |
| return cmd_buffer->state.graphics_pipeline->ia_multi_vgt_param.base | |
| S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1) | |
| S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) | |
| S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) | |
| S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) | |
| S_028AA8_WD_SWITCH_ON_EOP(gfx_level >= GFX7 ? wd_switch_on_eop : 0); |
| } |
| |
| void |
| si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level, bool is_mec, |
| unsigned event, unsigned event_flags, unsigned dst_sel, |
| unsigned data_sel, uint64_t va, uint32_t new_fence, |
| uint64_t gfx9_eop_bug_va) |
| { |
| unsigned op = EVENT_TYPE(event) | |
| EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) | |
| event_flags; |
| unsigned is_gfx8_mec = is_mec && gfx_level < GFX9; |
| unsigned sel = EOP_DST_SEL(dst_sel) | EOP_DATA_SEL(data_sel); |
| |
| /* Wait for write confirmation before writing data, but don't send |
| * an interrupt. */ |
| if (data_sel != EOP_DATA_SEL_DISCARD) |
| sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM); |
| |
| if (gfx_level >= GFX9 || is_gfx8_mec) { |
| /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion |
| * counters) must immediately precede every timestamp event to |
| * prevent a GPU hang on GFX9. |
| */ |
| if (gfx_level == GFX9 && !is_mec) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); |
| radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); |
| radeon_emit(cs, gfx9_eop_bug_va); |
| radeon_emit(cs, gfx9_eop_bug_va >> 32); |
| } |
| |
| radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false)); |
| radeon_emit(cs, op); |
| radeon_emit(cs, sel); |
| radeon_emit(cs, va); /* address lo */ |
| radeon_emit(cs, va >> 32); /* address hi */ |
| radeon_emit(cs, new_fence); /* immediate data lo */ |
| radeon_emit(cs, 0); /* immediate data hi */ |
| if (!is_gfx8_mec) |
| radeon_emit(cs, 0); /* unused */ |
| } else { |
| /* On GFX6, EOS events are always emitted with EVENT_WRITE_EOS. |
| * On GFX7+, EOS events are emitted with EVENT_WRITE_EOS on |
| * the graphics queue, and with RELEASE_MEM on the compute |
| * queue. |
| */ |
| if (event == V_028B9C_CS_DONE || event == V_028B9C_PS_DONE) { |
| assert(event_flags == 0 && dst_sel == EOP_DST_SEL_MEM && |
| data_sel == EOP_DATA_SEL_VALUE_32BIT); |
| |
| if (is_mec) { |
| radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 5, false)); |
| radeon_emit(cs, op); |
| radeon_emit(cs, sel); |
| radeon_emit(cs, va); /* address lo */ |
| radeon_emit(cs, va >> 32); /* address hi */ |
| radeon_emit(cs, new_fence); /* immediate data lo */ |
| radeon_emit(cs, 0); /* immediate data hi */ |
| } else { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOS, 3, false)); |
| radeon_emit(cs, op); |
| radeon_emit(cs, va); |
| radeon_emit(cs, ((va >> 32) & 0xffff) | EOS_DATA_SEL(EOS_DATA_SEL_VALUE_32BIT)); |
| radeon_emit(cs, new_fence); |
| } |
| } else { |
| if (gfx_level == GFX7 || gfx_level == GFX8) { |
| /* Two EOP events are required to make all |
| * engines go idle (and optional cache flushes |
| * executed) before the timestamp is written. |
| */ |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false)); |
| radeon_emit(cs, op); |
| radeon_emit(cs, va); |
| radeon_emit(cs, ((va >> 32) & 0xffff) | sel); |
| radeon_emit(cs, 0); /* immediate data */ |
| radeon_emit(cs, 0); /* unused */ |
| } |
| |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false)); |
| radeon_emit(cs, op); |
| radeon_emit(cs, va); |
| radeon_emit(cs, ((va >> 32) & 0xffff) | sel); |
| radeon_emit(cs, new_fence); /* immediate data */ |
| radeon_emit(cs, 0); /* unused */ |
| } |
| } |
| } |
| |
| void |
| radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va, uint32_t ref, uint32_t mask) |
| { |
| assert(op == WAIT_REG_MEM_EQUAL || op == WAIT_REG_MEM_NOT_EQUAL || |
| op == WAIT_REG_MEM_GREATER_OR_EQUAL); |
| |
| radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false)); |
| radeon_emit(cs, op | WAIT_REG_MEM_MEM_SPACE(1)); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, ref); /* reference value */ |
| radeon_emit(cs, mask); /* mask */ |
| radeon_emit(cs, 4); /* poll interval */ |
| } |
| |
| static void |
| si_emit_acquire_mem(struct radeon_cmdbuf *cs, bool is_mec, bool is_gfx9, unsigned cp_coher_cntl) |
| { |
| if (is_mec || is_gfx9) { |
| uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff; |
| radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) | PKT3_SHADER_TYPE_S(is_mec)); |
| radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */ |
| radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */ |
| radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */ |
| radeon_emit(cs, 0); /* CP_COHER_BASE */ |
| radeon_emit(cs, 0); /* CP_COHER_BASE_HI */ |
| radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */ |
| } else { |
| /* ACQUIRE_MEM is only required on a compute ring. */ |
| radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false)); |
| radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */ |
| radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */ |
| radeon_emit(cs, 0); /* CP_COHER_BASE */ |
| radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */ |
| } |
| } |
| |
| static void |
| gfx10_cs_emit_cache_flush(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level, |
| uint32_t *flush_cnt, uint64_t flush_va, bool is_mec, |
| enum radv_cmd_flush_bits flush_bits, enum rgp_flush_bits *sqtt_flush_bits, |
| uint64_t gfx9_eop_bug_va) |
| { |
| uint32_t gcr_cntl = 0; |
| unsigned cb_db_event = 0; |
| |
| /* We don't need these. */ |
| assert(!(flush_bits & (RADV_CMD_FLAG_VGT_STREAMOUT_SYNC))); |
| |
| if (flush_bits & RADV_CMD_FLAG_INV_ICACHE) { |
| gcr_cntl |= S_586_GLI_INV(V_586_GLI_ALL); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_INVAL_ICACHE; |
| } |
| if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) { |
| /* TODO: When writing to the SMEM L1 cache, we need to set SEQ |
| * to FORWARD when both L1 and L2 are written out (WB or INV). |
| */ |
| gcr_cntl |= S_586_GL1_INV(1) | S_586_GLK_INV(1); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_INVAL_SMEM_L0; |
| } |
| if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) { |
| gcr_cntl |= S_586_GL1_INV(1) | S_586_GLV_INV(1); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_INVAL_VMEM_L0 | RGP_FLUSH_INVAL_L1; |
| } |
| if (flush_bits & RADV_CMD_FLAG_INV_L2) { |
| /* Writeback and invalidate everything in L2. */ |
| gcr_cntl |= S_586_GL2_INV(1) | S_586_GL2_WB(1) | S_586_GLM_INV(1) | S_586_GLM_WB(1); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_INVAL_L2; |
| } else if (flush_bits & RADV_CMD_FLAG_WB_L2) { |
| /* Writeback but do not invalidate. |
| * GLM doesn't support WB alone. If WB is set, INV must be set too. |
| */ |
| gcr_cntl |= S_586_GL2_WB(1) | S_586_GLM_WB(1) | S_586_GLM_INV(1); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_FLUSH_L2; |
| } else if (flush_bits & RADV_CMD_FLAG_INV_L2_METADATA) { |
| gcr_cntl |= S_586_GLM_INV(1) | S_586_GLM_WB(1); |
| } |
| |
| if (flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) { |
| /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_CB_META */ |
| if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) { |
| /* Flush CMASK/FMASK/DCC. Will wait for idle later. */ |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0)); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_FLUSH_CB | RGP_FLUSH_INVAL_CB; |
| } |
| |
| /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_DB_META ? */ |
| if (gfx_level < GFX11 && (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB)) { |
| /* Flush HTILE. Will wait for idle later. */ |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0)); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_FLUSH_DB | RGP_FLUSH_INVAL_DB; |
| } |
| |
| /* First flush CB/DB, then L1/L2. */ |
| gcr_cntl |= S_586_SEQ(V_586_SEQ_FORWARD); |
| |
| if ((flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) == |
| (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) { |
| cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT; |
| } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) { |
| cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS; |
| } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) { |
| if (gfx_level == GFX11) { |
| cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT; |
| } else { |
| cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS; |
| } |
| } else { |
| assert(0); |
| } |
| } else { |
| /* Wait for graphics shaders to go idle if requested. */ |
| if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4)); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_PS_PARTIAL_FLUSH; |
| } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_VS_PARTIAL_FLUSH; |
| } |
| } |
| |
| if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4))); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_CS_PARTIAL_FLUSH; |
| } |
| |
| if (cb_db_event) { |
| if (gfx_level >= GFX11) { |
| /* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */ |
| unsigned glm_wb = G_586_GLM_WB(gcr_cntl); |
| unsigned glm_inv = G_586_GLM_INV(gcr_cntl); |
| unsigned glk_wb = G_586_GLK_WB(gcr_cntl); |
| unsigned glk_inv = G_586_GLK_INV(gcr_cntl); |
| unsigned glv_inv = G_586_GLV_INV(gcr_cntl); |
| unsigned gl1_inv = G_586_GL1_INV(gcr_cntl); |
| assert(G_586_GL2_US(gcr_cntl) == 0); |
| assert(G_586_GL2_RANGE(gcr_cntl) == 0); |
| assert(G_586_GL2_DISCARD(gcr_cntl) == 0); |
| unsigned gl2_inv = G_586_GL2_INV(gcr_cntl); |
| unsigned gl2_wb = G_586_GL2_WB(gcr_cntl); |
| unsigned gcr_seq = G_586_SEQ(gcr_cntl); |
| |
| gcr_cntl &= C_586_GLM_WB & C_586_GLM_INV & C_586_GLK_WB & C_586_GLK_INV & |
| C_586_GLV_INV & C_586_GL1_INV & C_586_GL2_INV & C_586_GL2_WB; /* keep SEQ */ |
| |
| /* Send an event that flushes caches. */ |
| radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0)); |
| radeon_emit(cs, S_490_EVENT_TYPE(cb_db_event) | |
| S_490_EVENT_INDEX(5) | |
| S_490_GLM_WB(glm_wb) | S_490_GLM_INV(glm_inv) | S_490_GLV_INV(glv_inv) | |
| S_490_GL1_INV(gl1_inv) | S_490_GL2_INV(gl2_inv) | S_490_GL2_WB(gl2_wb) | |
| S_490_SEQ(gcr_seq) | S_490_GLK_WB(glk_wb) | S_490_GLK_INV(glk_inv) | |
| S_490_PWS_ENABLE(1)); |
| radeon_emit(cs, 0); /* DST_SEL, INT_SEL, DATA_SEL */ |
| radeon_emit(cs, 0); /* ADDRESS_LO */ |
| radeon_emit(cs, 0); /* ADDRESS_HI */ |
| radeon_emit(cs, 0); /* DATA_LO */ |
| radeon_emit(cs, 0); /* DATA_HI */ |
| radeon_emit(cs, 0); /* INT_CTXID */ |
| |
| /* Wait for the event and invalidate remaining caches if needed. */ |
| radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0)); |
| radeon_emit(cs, S_580_PWS_STAGE_SEL(V_580_CP_PFP) | |
| S_580_PWS_COUNTER_SEL(V_580_TS_SELECT) | |
| S_580_PWS_ENA2(1) | |
| S_580_PWS_COUNT(0)); |
| radeon_emit(cs, 0xffffffff); /* GCR_SIZE */ |
| radeon_emit(cs, 0x01ffffff); /* GCR_SIZE_HI */ |
| radeon_emit(cs, 0); /* GCR_BASE_LO */ |
| radeon_emit(cs, 0); /* GCR_BASE_HI */ |
| radeon_emit(cs, S_585_PWS_ENA(1)); |
| radeon_emit(cs, gcr_cntl); /* GCR_CNTL */ |
| |
| gcr_cntl = 0; /* all done */ |
| } else { |
| /* CB/DB flush and invalidate (or possibly just a wait for a |
| * meta flush) via RELEASE_MEM. |
| * |
| * Combine this with other cache flushes when possible; this |
| * requires affected shaders to be idle, so do it after the |
| * CS_PARTIAL_FLUSH before (VS/PS partial flushes are always |
| * implied). |
| */ |
| /* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */ |
| unsigned glm_wb = G_586_GLM_WB(gcr_cntl); |
| unsigned glm_inv = G_586_GLM_INV(gcr_cntl); |
| unsigned glv_inv = G_586_GLV_INV(gcr_cntl); |
| unsigned gl1_inv = G_586_GL1_INV(gcr_cntl); |
| assert(G_586_GL2_US(gcr_cntl) == 0); |
| assert(G_586_GL2_RANGE(gcr_cntl) == 0); |
| assert(G_586_GL2_DISCARD(gcr_cntl) == 0); |
| unsigned gl2_inv = G_586_GL2_INV(gcr_cntl); |
| unsigned gl2_wb = G_586_GL2_WB(gcr_cntl); |
| unsigned gcr_seq = G_586_SEQ(gcr_cntl); |
| |
| gcr_cntl &= C_586_GLM_WB & C_586_GLM_INV & C_586_GLV_INV & C_586_GL1_INV & C_586_GL2_INV & |
| C_586_GL2_WB; /* keep SEQ */ |
| |
| assert(flush_cnt); |
| (*flush_cnt)++; |
| |
| si_cs_emit_write_event_eop( |
| cs, gfx_level, false, cb_db_event, |
| S_490_GLM_WB(glm_wb) | S_490_GLM_INV(glm_inv) | S_490_GLV_INV(glv_inv) | |
| S_490_GL1_INV(gl1_inv) | S_490_GL2_INV(gl2_inv) | S_490_GL2_WB(gl2_wb) | |
| S_490_SEQ(gcr_seq), |
| EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, flush_va, *flush_cnt, gfx9_eop_bug_va); |
| |
| radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va, *flush_cnt, 0xffffffff); |
| } |
| } |
| |
| /* VGT state sync */ |
| if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); |
| } |
| |
| /* Ignore fields that only modify the behavior of other fields. */ |
| if (gcr_cntl & C_586_GL1_RANGE & C_586_GL2_RANGE & C_586_SEQ) { |
| /* Flush caches and wait for the caches to assert idle. |
| * The cache flush is executed in the ME, but the PFP waits |
| * for completion. |
| */ |
| radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0)); |
| radeon_emit(cs, 0); /* CP_COHER_CNTL */ |
| radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */ |
| radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */ |
| radeon_emit(cs, 0); /* CP_COHER_BASE */ |
| radeon_emit(cs, 0); /* CP_COHER_BASE_HI */ |
| radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */ |
| radeon_emit(cs, gcr_cntl); /* GCR_CNTL */ |
| } else if ((cb_db_event || |
| (flush_bits & (RADV_CMD_FLAG_VS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH | |
| RADV_CMD_FLAG_CS_PARTIAL_FLUSH))) && |
| !is_mec) { |
| /* We need to ensure that PFP waits as well. */ |
| radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); |
| radeon_emit(cs, 0); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_PFP_SYNC_ME; |
| } |
| |
| if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) | EVENT_INDEX(0)); |
| } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) | EVENT_INDEX(0)); |
| } |
| } |
| |
| void |
| si_cs_emit_cache_flush(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level, uint32_t *flush_cnt, |
| uint64_t flush_va, bool is_mec, enum radv_cmd_flush_bits flush_bits, |
| enum rgp_flush_bits *sqtt_flush_bits, uint64_t gfx9_eop_bug_va) |
| { |
| unsigned cp_coher_cntl = 0; |
| uint32_t flush_cb_db = |
| flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB); |
| |
| if (gfx_level >= GFX10) { |
| /* GFX10 cache flush handling is quite different. */ |
| gfx10_cs_emit_cache_flush(cs, gfx_level, flush_cnt, flush_va, is_mec, flush_bits, |
| sqtt_flush_bits, gfx9_eop_bug_va); |
| return; |
| } |
| |
| if (flush_bits & RADV_CMD_FLAG_INV_ICACHE) { |
| cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1); |
| *sqtt_flush_bits |= RGP_FLUSH_INVAL_ICACHE; |
| } |
| if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) { |
| cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1); |
| *sqtt_flush_bits |= RGP_FLUSH_INVAL_SMEM_L0; |
| } |
| |
| if (gfx_level <= GFX8) { |
| if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) { |
| cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) | S_0085F0_CB0_DEST_BASE_ENA(1) | |
| S_0085F0_CB1_DEST_BASE_ENA(1) | S_0085F0_CB2_DEST_BASE_ENA(1) | |
| S_0085F0_CB3_DEST_BASE_ENA(1) | S_0085F0_CB4_DEST_BASE_ENA(1) | |
| S_0085F0_CB5_DEST_BASE_ENA(1) | S_0085F0_CB6_DEST_BASE_ENA(1) | |
| S_0085F0_CB7_DEST_BASE_ENA(1); |
| |
| /* Necessary for DCC */ |
| if (gfx_level >= GFX8) { |
| si_cs_emit_write_event_eop(cs, gfx_level, is_mec, V_028A90_FLUSH_AND_INV_CB_DATA_TS, 0, |
| EOP_DST_SEL_MEM, EOP_DATA_SEL_DISCARD, 0, 0, |
| gfx9_eop_bug_va); |
| } |
| |
| *sqtt_flush_bits |= RGP_FLUSH_FLUSH_CB | RGP_FLUSH_INVAL_CB; |
| } |
| if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) { |
| cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) | S_0085F0_DB_DEST_BASE_ENA(1); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_FLUSH_DB | RGP_FLUSH_INVAL_DB; |
| } |
| } |
| |
| if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0)); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_FLUSH_CB | RGP_FLUSH_INVAL_CB; |
| } |
| |
| if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0)); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_FLUSH_DB | RGP_FLUSH_INVAL_DB; |
| } |
| |
| if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4)); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_PS_PARTIAL_FLUSH; |
| } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_VS_PARTIAL_FLUSH; |
| } |
| |
| if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4)); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_CS_PARTIAL_FLUSH; |
| } |
| |
| if (gfx_level == GFX9 && flush_cb_db) { |
| unsigned cb_db_event, tc_flags; |
| |
| /* Set the CB/DB flush event. */ |
| cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT; |
| |
| /* These are the only allowed combinations. If you need to |
| * do multiple operations at once, do them separately. |
| * All operations that invalidate L2 also seem to invalidate |
| * metadata. Volatile (VOL) and WC flushes are not listed here. |
| * |
| * TC | TC_WB = writeback & invalidate L2 & L1 |
| * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC |
| * TC_WB | TC_NC = writeback L2 for MTYPE == NC |
| * TC | TC_NC = invalidate L2 for MTYPE == NC |
| * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.) |
| * TCL1 = invalidate L1 |
| */ |
| tc_flags = EVENT_TC_ACTION_ENA | EVENT_TC_MD_ACTION_ENA; |
| |
| *sqtt_flush_bits |= |
| RGP_FLUSH_FLUSH_CB | RGP_FLUSH_INVAL_CB | RGP_FLUSH_FLUSH_DB | RGP_FLUSH_INVAL_DB; |
| |
| /* Ideally flush TC together with CB/DB. */ |
| if (flush_bits & RADV_CMD_FLAG_INV_L2) { |
| /* Writeback and invalidate everything in L2 & L1. */ |
| tc_flags = EVENT_TC_ACTION_ENA | EVENT_TC_WB_ACTION_ENA; |
| |
| /* Clear the flags. */ |
| flush_bits &= ~(RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_WB_L2 | RADV_CMD_FLAG_INV_VCACHE); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_INVAL_L2; |
| } |
| |
| assert(flush_cnt); |
| (*flush_cnt)++; |
| |
| si_cs_emit_write_event_eop(cs, gfx_level, false, cb_db_event, tc_flags, EOP_DST_SEL_MEM, |
| EOP_DATA_SEL_VALUE_32BIT, flush_va, *flush_cnt, gfx9_eop_bug_va); |
| radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va, *flush_cnt, 0xffffffff); |
| } |
| |
| /* VGT state sync */ |
| if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); |
| } |
| |
| /* VGT streamout state sync */ |
| if (flush_bits & RADV_CMD_FLAG_VGT_STREAMOUT_SYNC) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0)); |
| } |
| |
| /* Make sure ME is idle (it executes most packets) before continuing. |
| * This prevents read-after-write hazards between PFP and ME. |
| */ |
| if ((cp_coher_cntl || (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE | |
| RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_WB_L2))) && |
| !is_mec) { |
| radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); |
| radeon_emit(cs, 0); |
| |
| *sqtt_flush_bits |= RGP_FLUSH_PFP_SYNC_ME; |
| } |
| |
| if ((flush_bits & RADV_CMD_FLAG_INV_L2) || |
| (gfx_level <= GFX7 && (flush_bits & RADV_CMD_FLAG_WB_L2))) { |
| si_emit_acquire_mem(cs, is_mec, gfx_level == GFX9, |
| cp_coher_cntl | S_0085F0_TC_ACTION_ENA(1) | S_0085F0_TCL1_ACTION_ENA(1) | |
| S_0301F0_TC_WB_ACTION_ENA(gfx_level >= GFX8)); |
| cp_coher_cntl = 0; |
| |
| *sqtt_flush_bits |= RGP_FLUSH_INVAL_L2 | RGP_FLUSH_INVAL_VMEM_L0; |
| } else { |
| if (flush_bits & RADV_CMD_FLAG_WB_L2) { |
| /* WB = write-back |
| * NC = apply to non-coherent MTYPEs |
| * (i.e. MTYPE <= 1, which is what we use everywhere) |
| * |
| * WB doesn't work without NC. |
| */ |
| si_emit_acquire_mem( |
| cs, is_mec, gfx_level == GFX9, |
| cp_coher_cntl | S_0301F0_TC_WB_ACTION_ENA(1) | S_0301F0_TC_NC_ACTION_ENA(1)); |
| cp_coher_cntl = 0; |
| |
| *sqtt_flush_bits |= RGP_FLUSH_FLUSH_L2 | RGP_FLUSH_INVAL_VMEM_L0; |
| } |
| if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) { |
| si_emit_acquire_mem(cs, is_mec, gfx_level == GFX9, |
| cp_coher_cntl | S_0085F0_TCL1_ACTION_ENA(1)); |
| cp_coher_cntl = 0; |
| |
| *sqtt_flush_bits |= RGP_FLUSH_INVAL_VMEM_L0; |
| } |
| } |
| |
| /* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle. |
| * Therefore, it should be last. Done in PFP. |
| */ |
| if (cp_coher_cntl) |
| si_emit_acquire_mem(cs, is_mec, gfx_level == GFX9, cp_coher_cntl); |
| |
| if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) | EVENT_INDEX(0)); |
| } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) | EVENT_INDEX(0)); |
| } |
| } |
| |
| void |
| si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer) |
| { |
| bool is_compute = cmd_buffer->qf == RADV_QUEUE_COMPUTE; |
| |
| if (is_compute) |
| cmd_buffer->state.flush_bits &= |
| ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META | |
| RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META | |
| RADV_CMD_FLAG_INV_L2_METADATA | RADV_CMD_FLAG_PS_PARTIAL_FLUSH | |
| RADV_CMD_FLAG_VS_PARTIAL_FLUSH | RADV_CMD_FLAG_VGT_FLUSH | |
| RADV_CMD_FLAG_START_PIPELINE_STATS | RADV_CMD_FLAG_STOP_PIPELINE_STATS); |
| |
| if (!cmd_buffer->state.flush_bits) { |
| radv_describe_barrier_end_delayed(cmd_buffer); |
| return; |
| } |
| |
| radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128); |
| |
| si_cs_emit_cache_flush(cmd_buffer->cs, cmd_buffer->device->physical_device->rad_info.gfx_level, |
| &cmd_buffer->gfx9_fence_idx, cmd_buffer->gfx9_fence_va, |
| radv_cmd_buffer_uses_mec(cmd_buffer), cmd_buffer->state.flush_bits, |
| &cmd_buffer->state.sqtt_flush_bits, cmd_buffer->gfx9_eop_bug_va); |
| |
| if (unlikely(cmd_buffer->device->trace_bo)) |
| radv_cmd_buffer_trace_emit(cmd_buffer); |
| |
| if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_INV_L2) |
| cmd_buffer->state.rb_noncoherent_dirty = false; |
| |
| /* Clear the caches that have been flushed to avoid syncing too much |
| * when there is some pending active queries. |
| */ |
| cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits; |
| |
| cmd_buffer->state.flush_bits = 0; |
| |
| /* If the driver used a compute shader for resetting a query pool, it |
| * should be finished at this point. |
| */ |
| cmd_buffer->pending_reset_query = false; |
| |
| radv_describe_barrier_end_delayed(cmd_buffer); |
| } |
| |
| /* sets the CP predication state using a boolean stored at va */ |
| void |
| si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool draw_visible, |
| unsigned pred_op, uint64_t va) |
| { |
| uint32_t op = 0; |
| |
| if (va) { |
| assert(pred_op == PREDICATION_OP_BOOL32 || pred_op == PREDICATION_OP_BOOL64); |
| |
| op = PRED_OP(pred_op); |
| |
| /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is |
| * zero, all rendering commands are discarded. Otherwise, they |
| * are discarded if the value is non zero. |
| */ |
| op |= draw_visible ? PREDICATION_DRAW_VISIBLE : PREDICATION_DRAW_NOT_VISIBLE; |
| } |
| if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) { |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0)); |
| radeon_emit(cmd_buffer->cs, op); |
| radeon_emit(cmd_buffer->cs, va); |
| radeon_emit(cmd_buffer->cs, va >> 32); |
| } else { |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0)); |
| radeon_emit(cmd_buffer->cs, va); |
| radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF)); |
| } |
| } |
| |
| /* Set this if you want the 3D engine to wait until CP DMA is done. |
| * It should be set on the last CP DMA packet. */ |
| #define CP_DMA_SYNC (1 << 0) |
| |
| /* Set this if the source data was used as a destination in a previous CP DMA |
| * packet. It's for preventing a read-after-write (RAW) hazard between two |
| * CP DMA packets. */ |
| #define CP_DMA_RAW_WAIT (1 << 1) |
| #define CP_DMA_USE_L2 (1 << 2) |
| #define CP_DMA_CLEAR (1 << 3) |
| |
| /* Alignment for optimal performance. */ |
| #define SI_CPDMA_ALIGNMENT 32 |
| |
| /* The max number of bytes that can be copied per packet. */ |
| static inline unsigned |
| cp_dma_max_byte_count(enum amd_gfx_level gfx_level) |
| { |
| unsigned max = gfx_level >= GFX11 ? 32767 : |
| gfx_level >= GFX9 ? S_415_BYTE_COUNT_GFX9(~0u) : S_415_BYTE_COUNT_GFX6(~0u); |
| |
| /* make it aligned for optimal performance */ |
| return max & ~(SI_CPDMA_ALIGNMENT - 1); |
| } |
| |
| /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear |
| * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit |
| * clear value. |
| */ |
| static void |
| si_cs_emit_cp_dma(struct radv_device *device, struct radeon_cmdbuf *cs, bool predicating, |
| uint64_t dst_va, uint64_t src_va, unsigned size, unsigned flags) |
| { |
| uint32_t header = 0, command = 0; |
| |
| assert(size <= cp_dma_max_byte_count(device->physical_device->rad_info.gfx_level)); |
| |
| radeon_check_space(device->ws, cs, 9); |
| if (device->physical_device->rad_info.gfx_level >= GFX9) |
| command |= S_415_BYTE_COUNT_GFX9(size); |
| else |
| command |= S_415_BYTE_COUNT_GFX6(size); |
| |
| /* Sync flags. */ |
| if (flags & CP_DMA_SYNC) |
| header |= S_411_CP_SYNC(1); |
| else { |
| if (device->physical_device->rad_info.gfx_level >= GFX9) |
| command |= S_415_DISABLE_WR_CONFIRM_GFX9(1); |
| else |
| command |= S_415_DISABLE_WR_CONFIRM_GFX6(1); |
| } |
| |
| if (flags & CP_DMA_RAW_WAIT) |
| command |= S_415_RAW_WAIT(1); |
| |
| /* Src and dst flags. */ |
| if (device->physical_device->rad_info.gfx_level >= GFX9 && !(flags & CP_DMA_CLEAR) && |
| src_va == dst_va) |
| header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */ |
| else if (flags & CP_DMA_USE_L2) |
| header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2); |
| |
| if (flags & CP_DMA_CLEAR) |
| header |= S_411_SRC_SEL(V_411_DATA); |
| else if (flags & CP_DMA_USE_L2) |
| header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX7) { |
| radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, predicating)); |
| radeon_emit(cs, header); |
| radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ |
| radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */ |
| radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ |
| radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */ |
| radeon_emit(cs, command); |
| } else { |
| assert(!(flags & CP_DMA_USE_L2)); |
| header |= S_411_SRC_ADDR_HI(src_va >> 32); |
| radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, predicating)); |
| radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ |
| radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */ |
| radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ |
| radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */ |
| radeon_emit(cs, command); |
| } |
| } |
| |
| static void |
| si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer, uint64_t dst_va, uint64_t src_va, unsigned size, |
| unsigned flags) |
| { |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| struct radv_device *device = cmd_buffer->device; |
| bool predicating = cmd_buffer->state.predicating; |
| |
| si_cs_emit_cp_dma(device, cs, predicating, dst_va, src_va, size, flags); |
| |
| /* CP DMA is executed in ME, but index buffers are read by PFP. |
| * This ensures that ME (CP DMA) is idle before PFP starts fetching |
| * indices. If we wanted to execute CP DMA in PFP, this packet |
| * should precede it. |
| */ |
| if (flags & CP_DMA_SYNC) { |
| if (cmd_buffer->qf == RADV_QUEUE_GENERAL) { |
| radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating)); |
| radeon_emit(cs, 0); |
| } |
| |
| /* CP will see the sync flag and wait for all DMAs to complete. */ |
| cmd_buffer->state.dma_is_busy = false; |
| } |
| |
| if (unlikely(cmd_buffer->device->trace_bo)) |
| radv_cmd_buffer_trace_emit(cmd_buffer); |
| } |
| |
| void |
| si_cs_cp_dma_prefetch(const struct radv_device *device, struct radeon_cmdbuf *cs, uint64_t va, |
| unsigned size, bool predicating) |
| { |
| struct radeon_winsys *ws = device->ws; |
| enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level; |
| uint32_t header = 0, command = 0; |
| |
| if (gfx_level >= GFX11) |
| size = MIN2(size, 32768 - SI_CPDMA_ALIGNMENT); |
| |
| assert(size <= cp_dma_max_byte_count(gfx_level)); |
| |
| radeon_check_space(ws, cs, 9); |
| |
| uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1); |
| uint64_t aligned_size = |
| ((va + size + SI_CPDMA_ALIGNMENT - 1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va; |
| |
| if (gfx_level >= GFX9) { |
| command |= S_415_BYTE_COUNT_GFX9(aligned_size) | |
| S_415_DISABLE_WR_CONFIRM_GFX9(1); |
| header |= S_411_DST_SEL(V_411_NOWHERE); |
| } else { |
| command |= S_415_BYTE_COUNT_GFX6(aligned_size) | |
| S_415_DISABLE_WR_CONFIRM_GFX6(1); |
| header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2); |
| } |
| |
| header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2); |
| |
| radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, predicating)); |
| radeon_emit(cs, header); |
| radeon_emit(cs, aligned_va); /* SRC_ADDR_LO [31:0] */ |
| radeon_emit(cs, aligned_va >> 32); /* SRC_ADDR_HI [31:0] */ |
| radeon_emit(cs, aligned_va); /* DST_ADDR_LO [31:0] */ |
| radeon_emit(cs, aligned_va >> 32); /* DST_ADDR_HI [31:0] */ |
| radeon_emit(cs, command); |
| } |
| |
| void |
| si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va, unsigned size) |
| { |
| si_cs_cp_dma_prefetch(cmd_buffer->device, cmd_buffer->cs, va, size, |
| cmd_buffer->state.predicating); |
| |
| if (unlikely(cmd_buffer->device->trace_bo)) |
| radv_cmd_buffer_trace_emit(cmd_buffer); |
| } |
| |
| static void |
| si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count, uint64_t remaining_size, |
| unsigned *flags) |
| { |
| |
| /* Flush the caches for the first copy only. |
| * Also wait for the previous CP DMA operations. |
| */ |
| if (cmd_buffer->state.flush_bits) { |
| si_emit_cache_flush(cmd_buffer); |
| *flags |= CP_DMA_RAW_WAIT; |
| } |
| |
| /* Do the synchronization after the last dma, so that all data |
| * is written to memory. |
| */ |
| if (byte_count == remaining_size) |
| *flags |= CP_DMA_SYNC; |
| } |
| |
| static void |
| si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size) |
| { |
| uint64_t va; |
| uint32_t offset; |
| unsigned dma_flags = 0; |
| unsigned buf_size = SI_CPDMA_ALIGNMENT * 2; |
| void *ptr; |
| |
| assert(size < SI_CPDMA_ALIGNMENT); |
| |
| radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, &offset, &ptr); |
| |
| va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); |
| va += offset; |
| |
| si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags); |
| |
| si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags); |
| } |
| |
| void |
| si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer, uint64_t src_va, uint64_t dest_va, |
| uint64_t size) |
| { |
| enum amd_gfx_level gfx_level = cmd_buffer->device->physical_device->rad_info.gfx_level; |
| uint64_t main_src_va, main_dest_va; |
| uint64_t skipped_size = 0, realign_size = 0; |
| |
| /* Assume that we are not going to sync after the last DMA operation. */ |
| cmd_buffer->state.dma_is_busy = true; |
| |
| if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO || |
| cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) { |
| /* If the size is not aligned, we must add a dummy copy at the end |
| * just to align the internal counter. Otherwise, the DMA engine |
| * would slow down by an order of magnitude for following copies. |
| */ |
| if (size % SI_CPDMA_ALIGNMENT) |
| realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT); |
| |
| /* If the copy begins unaligned, we must start copying from the next |
| * aligned block and the skipped part should be copied after everything |
| * else has been copied. Only the src alignment matters, not dst. |
| */ |
| if (src_va % SI_CPDMA_ALIGNMENT) { |
| skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT); |
| /* The main part will be skipped if the size is too small. */ |
| skipped_size = MIN2(skipped_size, size); |
| size -= skipped_size; |
| } |
| } |
| main_src_va = src_va + skipped_size; |
| main_dest_va = dest_va + skipped_size; |
| |
| while (size) { |
| unsigned dma_flags = 0; |
| unsigned byte_count = MIN2(size, cp_dma_max_byte_count(gfx_level)); |
| |
| if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) { |
| /* DMA operations via L2 are coherent and faster. |
| * TODO: GFX7-GFX8 should also support this but it |
| * requires tests/benchmarks. |
| * |
| * Also enable on GFX9 so we can use L2 at rest on GFX9+. On Raven |
| * this didn't seem to be worse. |
| * |
| * Note that we only use CP DMA for sizes < RADV_BUFFER_OPS_CS_THRESHOLD, |
| * which is 4k at the moment, so this is really unlikely to cause |
| * significant thrashing. |
| */ |
| dma_flags |= CP_DMA_USE_L2; |
| } |
| |
| si_cp_dma_prepare(cmd_buffer, byte_count, size + skipped_size + realign_size, &dma_flags); |
| |
| dma_flags &= ~CP_DMA_SYNC; |
| |
| si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va, byte_count, dma_flags); |
| |
| size -= byte_count; |
| main_src_va += byte_count; |
| main_dest_va += byte_count; |
| } |
| |
| if (skipped_size) { |
| unsigned dma_flags = 0; |
| |
| si_cp_dma_prepare(cmd_buffer, skipped_size, size + skipped_size + realign_size, &dma_flags); |
| |
| si_emit_cp_dma(cmd_buffer, dest_va, src_va, skipped_size, dma_flags); |
| } |
| if (realign_size) |
| si_cp_dma_realign_engine(cmd_buffer, realign_size); |
| } |
| |
| void |
| si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va, uint64_t size, |
| unsigned value) |
| { |
| if (!size) |
| return; |
| |
| assert(va % 4 == 0 && size % 4 == 0); |
| |
| enum amd_gfx_level gfx_level = cmd_buffer->device->physical_device->rad_info.gfx_level; |
| |
| /* Assume that we are not going to sync after the last DMA operation. */ |
| cmd_buffer->state.dma_is_busy = true; |
| |
| while (size) { |
| unsigned byte_count = MIN2(size, cp_dma_max_byte_count(gfx_level)); |
| unsigned dma_flags = CP_DMA_CLEAR; |
| |
| if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) { |
| /* DMA operations via L2 are coherent and faster. |
| * TODO: GFX7-GFX8 should also support this but it |
| * requires tests/benchmarks. |
| * |
| * Also enable on GFX9 so we can use L2 at rest on GFX9+. |
| */ |
| dma_flags |= CP_DMA_USE_L2; |
| } |
| |
| si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags); |
| |
| /* Emit the clear packet. */ |
| si_emit_cp_dma(cmd_buffer, va, value, byte_count, dma_flags); |
| |
| size -= byte_count; |
| va += byte_count; |
| } |
| } |
| |
| void |
| si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer) |
| { |
| if (cmd_buffer->device->physical_device->rad_info.gfx_level < GFX7) |
| return; |
| |
| if (!cmd_buffer->state.dma_is_busy) |
| return; |
| |
| /* Issue a dummy DMA that copies zero bytes. |
| * |
| * The DMA engine will see that there's no work to do and skip this |
| * DMA request, however, the CP will see the sync flag and still wait |
| * for all DMAs to complete. |
| */ |
| si_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC); |
| |
| cmd_buffer->state.dma_is_busy = false; |
| } |
| |
| /* For MSAA sample positions. */ |
| #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \ |
| ((((unsigned)(s0x)&0xf) << 0) | (((unsigned)(s0y)&0xf) << 4) | (((unsigned)(s1x)&0xf) << 8) | \ |
| (((unsigned)(s1y)&0xf) << 12) | (((unsigned)(s2x)&0xf) << 16) | \ |
| (((unsigned)(s2y)&0xf) << 20) | (((unsigned)(s3x)&0xf) << 24) | (((unsigned)(s3y)&0xf) << 28)) |
| |
| /* For obtaining location coordinates from registers */ |
| #define SEXT4(x) ((int)((x) | ((x)&0x8 ? 0xfffffff0 : 0))) |
| #define GET_SFIELD(reg, index) SEXT4(((reg) >> ((index)*4)) & 0xf) |
| #define GET_SX(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2) |
| #define GET_SY(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2 + 1) |
| |
| /* 1x MSAA */ |
| static const uint32_t sample_locs_1x = FILL_SREG(0, 0, 0, 0, 0, 0, 0, 0); |
| static const unsigned max_dist_1x = 0; |
| static const uint64_t centroid_priority_1x = 0x0000000000000000ull; |
| |
| /* 2xMSAA */ |
| static const uint32_t sample_locs_2x = FILL_SREG(4, 4, -4, -4, 0, 0, 0, 0); |
| static const unsigned max_dist_2x = 4; |
| static const uint64_t centroid_priority_2x = 0x1010101010101010ull; |
| |
| /* 4xMSAA */ |
| static const uint32_t sample_locs_4x = FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6); |
| static const unsigned max_dist_4x = 6; |
| static const uint64_t centroid_priority_4x = 0x3210321032103210ull; |
| |
| /* 8xMSAA */ |
| static const uint32_t sample_locs_8x[] = { |
| FILL_SREG(1, -3, -1, 3, 5, 1, -3, -5), |
| FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7), |
| /* The following are unused by hardware, but we emit them to IBs |
| * instead of multiple SET_CONTEXT_REG packets. */ |
| 0, |
| 0, |
| }; |
| static const unsigned max_dist_8x = 7; |
| static const uint64_t centroid_priority_8x = 0x7654321076543210ull; |
| |
| unsigned |
| radv_get_default_max_sample_dist(int log_samples) |
| { |
| unsigned max_dist[] = { |
| max_dist_1x, |
| max_dist_2x, |
| max_dist_4x, |
| max_dist_8x, |
| }; |
| return max_dist[log_samples]; |
| } |
| |
| void |
| radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples) |
| { |
| switch (nr_samples) { |
| default: |
| case 1: |
| radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2); |
| radeon_emit(cs, (uint32_t)centroid_priority_1x); |
| radeon_emit(cs, centroid_priority_1x >> 32); |
| radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_1x); |
| radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_1x); |
| radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_1x); |
| radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_1x); |
| break; |
| case 2: |
| radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2); |
| radeon_emit(cs, (uint32_t)centroid_priority_2x); |
| radeon_emit(cs, centroid_priority_2x >> 32); |
| radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_2x); |
| radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_2x); |
| radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_2x); |
| radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_2x); |
| break; |
| case 4: |
| radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2); |
| radeon_emit(cs, (uint32_t)centroid_priority_4x); |
| radeon_emit(cs, centroid_priority_4x >> 32); |
| radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_4x); |
| radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_4x); |
| radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_4x); |
| radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_4x); |
| break; |
| case 8: |
| radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2); |
| radeon_emit(cs, (uint32_t)centroid_priority_8x); |
| radeon_emit(cs, centroid_priority_8x >> 32); |
| radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14); |
| radeon_emit_array(cs, sample_locs_8x, 4); |
| radeon_emit_array(cs, sample_locs_8x, 4); |
| radeon_emit_array(cs, sample_locs_8x, 4); |
| radeon_emit_array(cs, sample_locs_8x, 2); |
| break; |
| } |
| } |
| |
| static void |
| radv_get_sample_position(struct radv_device *device, unsigned sample_count, unsigned sample_index, |
| float *out_value) |
| { |
| const uint32_t *sample_locs; |
| |
| switch (sample_count) { |
| case 1: |
| default: |
| sample_locs = &sample_locs_1x; |
| break; |
| case 2: |
| sample_locs = &sample_locs_2x; |
| break; |
| case 4: |
| sample_locs = &sample_locs_4x; |
| break; |
| case 8: |
| sample_locs = sample_locs_8x; |
| break; |
| } |
| |
| out_value[0] = (GET_SX(sample_locs, sample_index) + 8) / 16.0f; |
| out_value[1] = (GET_SY(sample_locs, sample_index) + 8) / 16.0f; |
| } |
| |
| void |
| radv_device_init_msaa(struct radv_device *device) |
| { |
| int i; |
| |
| radv_get_sample_position(device, 1, 0, device->sample_locations_1x[0]); |
| |
| for (i = 0; i < 2; i++) |
| radv_get_sample_position(device, 2, i, device->sample_locations_2x[i]); |
| for (i = 0; i < 4; i++) |
| radv_get_sample_position(device, 4, i, device->sample_locations_4x[i]); |
| for (i = 0; i < 8; i++) |
| radv_get_sample_position(device, 8, i, device->sample_locations_8x[i]); |
| } |
| |
| void |
| radv_emit_write_data_imm(struct radeon_cmdbuf *cs, unsigned engine_sel, uint64_t va, uint32_t imm) |
| { |
| radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0)); |
| radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(engine_sel)); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, imm); |
| } |