| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "radv_shader.h" |
| #include "nir/nir.h" |
| #include "nir/nir_builder.h" |
| #include "nir/nir_xfb_info.h" |
| #include "spirv/nir_spirv.h" |
| #include "util/memstream.h" |
| #include "util/mesa-sha1.h" |
| #include "util/u_atomic.h" |
| #include "radv_debug.h" |
| #include "radv_meta.h" |
| #include "radv_private.h" |
| #include "radv_shader_args.h" |
| |
| #include "util/u_debug.h" |
| #include "ac_binary.h" |
| #include "ac_nir.h" |
| #if defined(USE_LIBELF) |
| #include "ac_rtld.h" |
| #endif |
| #include "aco_interface.h" |
| #include "sid.h" |
| #include "vk_format.h" |
| |
| #include "aco_shader_info.h" |
| #include "radv_aco_shader_info.h" |
| #ifdef LLVM_AVAILABLE |
| #include "ac_llvm_util.h" |
| #endif |
| |
| static void |
| get_nir_options_for_stage(struct radv_physical_device *device, gl_shader_stage stage) |
| { |
| bool split_fma = (stage <= MESA_SHADER_GEOMETRY || stage == MESA_SHADER_MESH) && |
| device->instance->debug_flags & RADV_DEBUG_SPLIT_FMA; |
| device->nir_options[stage] = (nir_shader_compiler_options){ |
| .vertex_id_zero_based = true, |
| .lower_scmp = true, |
| .lower_flrp16 = true, |
| .lower_flrp32 = true, |
| .lower_flrp64 = true, |
| .lower_device_index_to_zero = true, |
| .lower_fdiv = true, |
| .lower_fmod = true, |
| .lower_ineg = true, |
| .lower_bitfield_insert_to_bitfield_select = true, |
| .lower_bitfield_extract = true, |
| .lower_pack_snorm_4x8 = true, |
| .lower_pack_unorm_4x8 = true, |
| .lower_pack_half_2x16 = true, |
| .lower_pack_64_2x32 = true, |
| .lower_pack_64_4x16 = true, |
| .lower_pack_32_2x16 = true, |
| .lower_unpack_snorm_2x16 = true, |
| .lower_unpack_snorm_4x8 = true, |
| .lower_unpack_unorm_2x16 = true, |
| .lower_unpack_unorm_4x8 = true, |
| .lower_unpack_half_2x16 = true, |
| .lower_ffma16 = split_fma || device->rad_info.gfx_level < GFX9, |
| .lower_ffma32 = split_fma || device->rad_info.gfx_level < GFX10_3, |
| .lower_ffma64 = split_fma, |
| .lower_fpow = true, |
| .lower_mul_2x32_64 = true, |
| .lower_rotate = true, |
| .lower_iadd_sat = device->rad_info.gfx_level <= GFX8, |
| .lower_hadd = true, |
| .lower_mul_32x16 = true, |
| .lower_uclz = true, |
| .has_fsub = true, |
| .has_isub = true, |
| .has_sdot_4x8 = device->rad_info.has_accelerated_dot_product, |
| .has_sudot_4x8 = |
| device->rad_info.has_accelerated_dot_product && device->rad_info.gfx_level >= GFX11, |
| .has_udot_4x8 = device->rad_info.has_accelerated_dot_product, |
| .has_dot_2x16 = |
| device->rad_info.has_accelerated_dot_product && device->rad_info.gfx_level < GFX11, |
| .has_find_msb_rev = true, |
| .use_scoped_barrier = true, |
| #ifdef LLVM_AVAILABLE |
| .has_fmulz = !device->use_llvm || LLVM_VERSION_MAJOR >= 12, |
| #else |
| .has_fmulz = true, |
| #endif |
| .max_unroll_iterations = 32, |
| .max_unroll_iterations_aggressive = 128, |
| .use_interpolated_input_intrinsics = true, |
| .vectorize_vec2_16bit = true, |
| /* nir_lower_int64() isn't actually called for the LLVM backend, |
| * but this helps the loop unrolling heuristics. */ |
| .lower_int64_options = nir_lower_imul64 | nir_lower_imul_high64 | nir_lower_imul_2x32_64 | |
| nir_lower_divmod64 | nir_lower_minmax64 | nir_lower_iabs64 | |
| nir_lower_iadd_sat64, |
| .lower_doubles_options = nir_lower_drcp | nir_lower_dsqrt | nir_lower_drsq | nir_lower_ddiv, |
| .divergence_analysis_options = nir_divergence_view_index_uniform, |
| }; |
| } |
| |
| void |
| radv_get_nir_options(struct radv_physical_device *device) |
| { |
| for (gl_shader_stage stage = MESA_SHADER_VERTEX; stage < MESA_VULKAN_SHADER_STAGES; stage++) |
| get_nir_options_for_stage(device, stage); |
| } |
| |
| static uint8_t |
| vectorize_vec2_16bit(const nir_instr *instr, const void *_) |
| { |
| if (instr->type != nir_instr_type_alu) |
| return 0; |
| |
| const nir_alu_instr *alu = nir_instr_as_alu(instr); |
| const unsigned bit_size = alu->dest.dest.ssa.bit_size; |
| if (bit_size == 16) |
| return 2; |
| else |
| return 1; |
| } |
| |
| static bool |
| is_meta_shader(nir_shader *nir) |
| { |
| return nir && nir->info.internal; |
| } |
| |
| bool |
| radv_can_dump_shader(struct radv_device *device, nir_shader *nir, bool meta_shader) |
| { |
| if (!(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) |
| return false; |
| |
| if ((is_meta_shader(nir) || meta_shader) && |
| !(device->instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS)) |
| return false; |
| |
| return true; |
| } |
| |
| bool |
| radv_can_dump_shader_stats(struct radv_device *device, nir_shader *nir) |
| { |
| /* Only dump non-meta shader stats. */ |
| return device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS && !is_meta_shader(nir); |
| } |
| |
| void |
| radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively, bool allow_copies) |
| { |
| bool progress; |
| |
| do { |
| progress = false; |
| |
| NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp); |
| NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp); |
| |
| if (allow_copies) { |
| /* Only run this pass in the first call to |
| * radv_optimize_nir. Later calls assume that we've |
| * lowered away any copy_deref instructions and we |
| * don't want to introduce any more. |
| */ |
| NIR_PASS(progress, shader, nir_opt_find_array_copies); |
| } |
| |
| NIR_PASS(progress, shader, nir_opt_copy_prop_vars); |
| NIR_PASS(progress, shader, nir_opt_dead_write_vars); |
| NIR_PASS(_, shader, nir_lower_vars_to_ssa); |
| |
| NIR_PASS(_, shader, nir_lower_alu_width, vectorize_vec2_16bit, NULL); |
| NIR_PASS(_, shader, nir_lower_phis_to_scalar, true); |
| |
| NIR_PASS(progress, shader, nir_copy_prop); |
| NIR_PASS(progress, shader, nir_opt_remove_phis); |
| NIR_PASS(progress, shader, nir_opt_dce); |
| if (nir_opt_trivial_continues(shader)) { |
| progress = true; |
| NIR_PASS(progress, shader, nir_copy_prop); |
| NIR_PASS(progress, shader, nir_opt_remove_phis); |
| NIR_PASS(progress, shader, nir_opt_dce); |
| } |
| NIR_PASS(progress, shader, nir_opt_if, |
| nir_opt_if_aggressive_last_continue | nir_opt_if_optimize_phi_true_false); |
| NIR_PASS(progress, shader, nir_opt_dead_cf); |
| NIR_PASS(progress, shader, nir_opt_cse); |
| NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true); |
| NIR_PASS(progress, shader, nir_opt_constant_folding); |
| NIR_PASS(progress, shader, nir_opt_algebraic); |
| |
| NIR_PASS(progress, shader, nir_opt_undef); |
| |
| if (shader->options->max_unroll_iterations) { |
| NIR_PASS(progress, shader, nir_opt_loop_unroll); |
| } |
| } while (progress && !optimize_conservatively); |
| |
| NIR_PASS(progress, shader, nir_opt_shrink_vectors); |
| NIR_PASS(progress, shader, nir_remove_dead_variables, |
| nir_var_function_temp | nir_var_shader_in | nir_var_shader_out, NULL); |
| |
| if (shader->info.stage == MESA_SHADER_FRAGMENT && |
| (shader->info.fs.uses_discard || shader->info.fs.uses_demote)) { |
| NIR_PASS(progress, shader, nir_opt_conditional_discard); |
| NIR_PASS(progress, shader, nir_opt_move_discards_to_top); |
| } |
| |
| NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo); |
| } |
| |
| void |
| radv_optimize_nir_algebraic(nir_shader *nir, bool opt_offsets) |
| { |
| bool more_algebraic = true; |
| while (more_algebraic) { |
| more_algebraic = false; |
| NIR_PASS(_, nir, nir_copy_prop); |
| NIR_PASS(_, nir, nir_opt_dce); |
| NIR_PASS(_, nir, nir_opt_constant_folding); |
| NIR_PASS(_, nir, nir_opt_cse); |
| NIR_PASS(more_algebraic, nir, nir_opt_algebraic); |
| } |
| |
| if (opt_offsets) { |
| static const nir_opt_offsets_options offset_options = { |
| .uniform_max = 0, |
| .buffer_max = ~0, |
| .shared_max = ~0, |
| }; |
| NIR_PASS(_, nir, nir_opt_offsets, &offset_options); |
| } |
| |
| /* Do late algebraic optimization to turn add(a, |
| * neg(b)) back into subs, then the mandatory cleanup |
| * after algebraic. Note that it may produce fnegs, |
| * and if so then we need to keep running to squash |
| * fneg(fneg(a)). |
| */ |
| bool more_late_algebraic = true; |
| while (more_late_algebraic) { |
| more_late_algebraic = false; |
| NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late); |
| NIR_PASS(_, nir, nir_opt_constant_folding); |
| NIR_PASS(_, nir, nir_copy_prop); |
| NIR_PASS(_, nir, nir_opt_dce); |
| NIR_PASS(_, nir, nir_opt_cse); |
| } |
| } |
| |
| static void |
| shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align) |
| { |
| assert(glsl_type_is_vector_or_scalar(type)); |
| |
| uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8; |
| unsigned length = glsl_get_vector_elements(type); |
| *size = comp_size * length, *align = comp_size; |
| } |
| |
| struct radv_shader_debug_data { |
| struct radv_device *device; |
| const struct vk_object_base *object; |
| }; |
| |
| static void |
| radv_spirv_nir_debug(void *private_data, enum nir_spirv_debug_level level, size_t spirv_offset, |
| const char *message) |
| { |
| struct radv_shader_debug_data *debug_data = private_data; |
| struct radv_instance *instance = debug_data->device->instance; |
| |
| static const VkDebugReportFlagsEXT vk_flags[] = { |
| [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT, |
| [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT, |
| [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT, |
| }; |
| char buffer[256]; |
| |
| snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long)spirv_offset, message); |
| |
| vk_debug_report(&instance->vk, vk_flags[level], debug_data->object, 0, 0, "radv", buffer); |
| } |
| |
| static void |
| radv_compiler_debug(void *private_data, enum aco_compiler_debug_level level, const char *message) |
| { |
| struct radv_shader_debug_data *debug_data = private_data; |
| struct radv_instance *instance = debug_data->device->instance; |
| |
| static const VkDebugReportFlagsEXT vk_flags[] = { |
| [ACO_COMPILER_DEBUG_LEVEL_PERFWARN] = VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, |
| [ACO_COMPILER_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT, |
| }; |
| |
| /* VK_DEBUG_REPORT_DEBUG_BIT_EXT specifies diagnostic information |
| * from the implementation and layers. |
| */ |
| vk_debug_report(&instance->vk, vk_flags[level] | VK_DEBUG_REPORT_DEBUG_BIT_EXT, |
| NULL, 0, 0, "radv", message); |
| } |
| |
| static bool |
| lower_intrinsics(nir_shader *nir, const struct radv_pipeline_key *key) |
| { |
| nir_function_impl *entry = nir_shader_get_entrypoint(nir); |
| bool progress = false; |
| nir_builder b; |
| |
| nir_builder_init(&b, entry); |
| |
| nir_foreach_block (block, entry) { |
| nir_foreach_instr_safe (instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); |
| b.cursor = nir_before_instr(&intrin->instr); |
| |
| nir_ssa_def *def = NULL; |
| switch (intrin->intrinsic) { |
| case nir_intrinsic_is_sparse_texels_resident: |
| def = nir_ieq_imm(&b, intrin->src[0].ssa, 0); |
| break; |
| case nir_intrinsic_sparse_residency_code_and: |
| def = nir_ior(&b, intrin->src[0].ssa, intrin->src[1].ssa); |
| break; |
| case nir_intrinsic_load_view_index: |
| if (key->has_multiview_view_index) |
| continue; |
| def = nir_imm_zero(&b, 1, 32); |
| break; |
| default: |
| continue; |
| } |
| |
| nir_ssa_def_rewrite_uses(&intrin->dest.ssa, def); |
| |
| nir_instr_remove(instr); |
| progress = true; |
| } |
| } |
| |
| if (progress) |
| nir_metadata_preserve(entry, nir_metadata_block_index | nir_metadata_dominance); |
| else |
| nir_metadata_preserve(entry, nir_metadata_all); |
| |
| return progress; |
| } |
| |
| static bool |
| radv_lower_primitive_shading_rate(nir_shader *nir, enum amd_gfx_level gfx_level) |
| { |
| nir_function_impl *impl = nir_shader_get_entrypoint(nir); |
| bool progress = false; |
| |
| nir_builder b; |
| nir_builder_init(&b, impl); |
| |
| /* Iterate in reverse order since there should be only one deref store to PRIMITIVE_SHADING_RATE |
| * after lower_io_to_temporaries for vertex shaders. |
| */ |
| nir_foreach_block_reverse(block, impl) { |
| nir_foreach_instr_reverse(instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); |
| if (intr->intrinsic != nir_intrinsic_store_deref) |
| continue; |
| |
| nir_variable *var = nir_intrinsic_get_var(intr, 0); |
| if (var->data.mode != nir_var_shader_out || |
| var->data.location != VARYING_SLOT_PRIMITIVE_SHADING_RATE) |
| continue; |
| |
| b.cursor = nir_before_instr(instr); |
| |
| nir_ssa_def *val = nir_ssa_for_src(&b, intr->src[1], 1); |
| |
| /* x_rate = (shadingRate & (Horizontal2Pixels | Horizontal4Pixels)) ? 0x1 : 0x0; */ |
| nir_ssa_def *x_rate = nir_iand_imm(&b, val, 12); |
| x_rate = nir_b2i32(&b, nir_ine_imm(&b, x_rate, 0)); |
| |
| /* y_rate = (shadingRate & (Vertical2Pixels | Vertical4Pixels)) ? 0x1 : 0x0; */ |
| nir_ssa_def *y_rate = nir_iand_imm(&b, val, 3); |
| y_rate = nir_b2i32(&b, nir_ine_imm(&b, y_rate, 0)); |
| |
| nir_ssa_def *out = NULL; |
| |
| /* MS: |
| * Primitive shading rate is a per-primitive output, it is |
| * part of the second channel of the primitive export. |
| * Bits [28:31] = VRS rate |
| * This will be added to the other bits of that channel in the backend. |
| * |
| * VS, TES, GS: |
| * Primitive shading rate is a per-vertex output pos export. |
| * Bits [2:5] = VRS rate |
| * HW shading rate = (xRate << 2) | (yRate << 4) |
| * |
| * GFX11: 4-bit VRS_SHADING_RATE enum |
| * GFX10: X = low 2 bits, Y = high 2 bits |
| */ |
| unsigned x_rate_shift = 2; |
| unsigned y_rate_shift = 4; |
| |
| if (gfx_level >= GFX11) { |
| x_rate_shift = 4; |
| y_rate_shift = 2; |
| } |
| if (nir->info.stage == MESA_SHADER_MESH) { |
| x_rate_shift += 26; |
| y_rate_shift += 26; |
| } |
| |
| out = nir_ior(&b, nir_ishl_imm(&b, x_rate, x_rate_shift), nir_ishl_imm(&b, y_rate, y_rate_shift)); |
| |
| nir_instr_rewrite_src(&intr->instr, &intr->src[1], nir_src_for_ssa(out)); |
| |
| progress = true; |
| if (nir->info.stage == MESA_SHADER_VERTEX) |
| break; |
| } |
| if (nir->info.stage == MESA_SHADER_VERTEX && progress) |
| break; |
| } |
| |
| if (progress) |
| nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); |
| else |
| nir_metadata_preserve(impl, nir_metadata_all); |
| |
| return progress; |
| } |
| |
| bool |
| radv_force_primitive_shading_rate(nir_shader *nir, struct radv_device *device) |
| { |
| nir_function_impl *impl = nir_shader_get_entrypoint(nir); |
| bool progress = false; |
| |
| nir_builder b; |
| nir_builder_init(&b, impl); |
| |
| nir_foreach_block_reverse(block, impl) { |
| nir_foreach_instr_reverse(instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); |
| if (intr->intrinsic != nir_intrinsic_store_deref) |
| continue; |
| |
| nir_variable *var = nir_intrinsic_get_var(intr, 0); |
| if (var->data.mode != nir_var_shader_out || |
| var->data.location != VARYING_SLOT_POS) |
| continue; |
| |
| b.cursor = nir_after_instr(instr); |
| |
| nir_ssa_scalar scalar_idx = nir_ssa_scalar_resolved(intr->src[1].ssa, 3); |
| |
| /* Use coarse shading if the value of Pos.W can't be determined or if its value is != 1 |
| * (typical for non-GUI elements). |
| */ |
| if (!nir_ssa_scalar_is_const(scalar_idx) || |
| nir_ssa_scalar_as_uint(scalar_idx) != 0x3f800000u) { |
| |
| var = nir_variable_create(nir, nir_var_shader_out, glsl_int_type(), "vrs rate"); |
| var->data.location = VARYING_SLOT_PRIMITIVE_SHADING_RATE; |
| var->data.interpolation = INTERP_MODE_NONE; |
| |
| nir_ssa_def *vrs_rates = nir_load_force_vrs_rates_amd(&b); |
| |
| nir_ssa_def *pos_w = nir_channel(&b, intr->src[1].ssa, 3); |
| nir_ssa_def *val = nir_bcsel(&b, nir_fneu(&b, pos_w, nir_imm_float(&b, 1.0f)), |
| vrs_rates, nir_imm_int(&b, 0)); |
| |
| nir_deref_instr *deref = nir_build_deref_var(&b, var); |
| nir_store_deref(&b, deref, val, 0x1); |
| |
| /* Update outputs_written to reflect that the pass added a new output. */ |
| nir->info.outputs_written |= BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE); |
| |
| progress = true; |
| if (nir->info.stage == MESA_SHADER_VERTEX) |
| break; |
| } |
| } |
| if (nir->info.stage == MESA_SHADER_VERTEX && progress) |
| break; |
| } |
| |
| if (progress) |
| nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); |
| else |
| nir_metadata_preserve(impl, nir_metadata_all); |
| |
| return progress; |
| } |
| |
| bool |
| radv_lower_fs_intrinsics(nir_shader *nir, const struct radv_pipeline_stage *fs_stage, |
| const struct radv_pipeline_key *key) |
| { |
| const struct radv_shader_info *info = &fs_stage->info; |
| const struct radv_shader_args *args = &fs_stage->args; |
| nir_function_impl *impl = nir_shader_get_entrypoint(nir); |
| bool progress = false; |
| |
| nir_builder b; |
| nir_builder_init(&b, impl); |
| |
| nir_foreach_block(block, impl) { |
| nir_foreach_instr_safe(instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); |
| b.cursor = nir_after_instr(&intrin->instr); |
| |
| switch (intrin->intrinsic) { |
| case nir_intrinsic_load_sample_mask_in: { |
| uint8_t log2_ps_iter_samples; |
| |
| if (info->ps.uses_sample_shading) { |
| log2_ps_iter_samples = util_logbase2(key->ps.num_samples); |
| } else { |
| log2_ps_iter_samples = key->ps.log2_ps_iter_samples; |
| } |
| |
| nir_ssa_def *sample_coverage = |
| nir_load_vector_arg_amd(&b, 1, .base = args->ac.sample_coverage.arg_index); |
| |
| nir_ssa_def *def = NULL; |
| if (log2_ps_iter_samples) { |
| /* gl_SampleMaskIn[0] = (SampleCoverage & (1 << gl_SampleID)). */ |
| nir_ssa_def *sample_id = nir_load_sample_id(&b); |
| def = nir_iand(&b, sample_coverage, nir_ishl(&b, nir_imm_int(&b, 1u), sample_id)); |
| } else { |
| def = sample_coverage; |
| } |
| |
| nir_ssa_def_rewrite_uses(&intrin->dest.ssa, def); |
| |
| nir_instr_remove(instr); |
| progress = true; |
| break; |
| } |
| case nir_intrinsic_load_frag_coord: { |
| if (!key->adjust_frag_coord_z) |
| continue; |
| |
| if (!(nir_ssa_def_components_read(&intrin->dest.ssa) & (1 << 2))) |
| continue; |
| |
| nir_ssa_def *frag_z = nir_channel(&b, &intrin->dest.ssa, 2); |
| |
| /* adjusted_frag_z = fddx_fine(frag_z) * 0.0625 + frag_z */ |
| nir_ssa_def *adjusted_frag_z = nir_fddx_fine(&b, frag_z); |
| adjusted_frag_z = nir_ffma_imm1(&b, adjusted_frag_z, 0.0625f, frag_z); |
| |
| /* VRS Rate X = Ancillary[2:3] */ |
| nir_ssa_def *ancillary = |
| nir_load_vector_arg_amd(&b, 1, .base = args->ac.ancillary.arg_index); |
| nir_ssa_def *x_rate = nir_ubfe_imm(&b, ancillary, 2, 2); |
| |
| /* xRate = xRate == 0x1 ? adjusted_frag_z : frag_z. */ |
| nir_ssa_def *cond = nir_ieq_imm(&b, x_rate, 1); |
| frag_z = nir_bcsel(&b, cond, adjusted_frag_z, frag_z); |
| |
| nir_ssa_def *new_dest = nir_vector_insert_imm(&b, &intrin->dest.ssa, frag_z, 2); |
| nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, new_dest, new_dest->parent_instr); |
| |
| progress = true; |
| break; |
| } |
| case nir_intrinsic_load_barycentric_at_sample: { |
| nir_ssa_def *num_samples = nir_load_rasterization_samples_amd(&b); |
| nir_ssa_def *new_dest; |
| |
| if (key->dynamic_rasterization_samples) { |
| nir_ssa_def *res1, *res2; |
| |
| nir_push_if(&b, nir_ieq_imm(&b, num_samples, 1)); |
| { |
| res1 = nir_load_barycentric_pixel(&b, 32, |
| .interp_mode = nir_intrinsic_interp_mode(intrin)); |
| } |
| nir_push_else(&b, NULL); |
| { |
| nir_ssa_def *sample_pos = |
| nir_load_sample_positions_amd(&b, 32, intrin->src[0].ssa, num_samples); |
| |
| /* sample_pos -= 0.5 */ |
| sample_pos = nir_fsub(&b, sample_pos, nir_imm_float(&b, 0.5f)); |
| |
| res2 = nir_load_barycentric_at_offset(&b, 32, sample_pos, |
| .interp_mode = nir_intrinsic_interp_mode(intrin)); |
| } |
| nir_pop_if(&b, NULL); |
| |
| new_dest = nir_if_phi(&b, res1, res2); |
| } else { |
| if (!key->ps.num_samples) { |
| new_dest = |
| nir_load_barycentric_pixel(&b, 32, |
| .interp_mode = nir_intrinsic_interp_mode(intrin)); |
| } else { |
| nir_ssa_def *sample_pos = |
| nir_load_sample_positions_amd(&b, 32, intrin->src[0].ssa, num_samples); |
| |
| /* sample_pos -= 0.5 */ |
| sample_pos = nir_fsub(&b, sample_pos, nir_imm_float(&b, 0.5f)); |
| |
| new_dest = |
| nir_load_barycentric_at_offset(&b, 32, sample_pos, |
| .interp_mode = nir_intrinsic_interp_mode(intrin)); |
| } |
| } |
| |
| nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_dest); |
| nir_instr_remove(instr); |
| |
| progress = true; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| } |
| |
| if (progress) |
| nir_metadata_preserve(impl, 0); |
| else |
| nir_metadata_preserve(impl, nir_metadata_all); |
| |
| return progress; |
| } |
| |
| /* Emulates NV_mesh_shader first_task using first_vertex. */ |
| static bool |
| radv_lower_ms_workgroup_id(nir_shader *nir) |
| { |
| nir_function_impl *impl = nir_shader_get_entrypoint(nir); |
| bool progress = false; |
| nir_builder b; |
| nir_builder_init(&b, impl); |
| |
| nir_foreach_block(block, impl) { |
| nir_foreach_instr_safe(instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); |
| if (intrin->intrinsic != nir_intrinsic_load_workgroup_id) |
| continue; |
| |
| progress = true; |
| b.cursor = nir_after_instr(instr); |
| nir_ssa_def *x = nir_channel(&b, &intrin->dest.ssa, 0); |
| nir_ssa_def *x_full = nir_iadd(&b, x, nir_load_first_vertex(&b)); |
| nir_ssa_def *v = nir_vector_insert_imm(&b, &intrin->dest.ssa, x_full, 0); |
| nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, v, v->parent_instr); |
| } |
| } |
| |
| nir_metadata preserved = |
| progress ? (nir_metadata_block_index | nir_metadata_dominance) : nir_metadata_all; |
| nir_metadata_preserve(impl, preserved); |
| return progress; |
| } |
| |
| static bool |
| is_sincos(const nir_instr *instr, const void *_) |
| { |
| return instr->type == nir_instr_type_alu && |
| (nir_instr_as_alu(instr)->op == nir_op_fsin || nir_instr_as_alu(instr)->op == nir_op_fcos); |
| } |
| |
| static nir_ssa_def * |
| lower_sincos(struct nir_builder *b, nir_instr *instr, void *_) |
| { |
| nir_alu_instr *sincos = nir_instr_as_alu(instr); |
| nir_ssa_def *src = nir_fmul_imm(b, nir_ssa_for_alu_src(b, sincos, 0), 0.15915493667125702); |
| return sincos->op == nir_op_fsin ? nir_fsin_amd(b, src) : nir_fcos_amd(b, src); |
| } |
| |
| static bool |
| is_not_xfb_output(nir_variable *var, void *data) |
| { |
| if (var->data.mode != nir_var_shader_out) |
| return true; |
| |
| return !var->data.explicit_xfb_buffer && |
| !var->data.explicit_xfb_stride; |
| } |
| |
| nir_shader * |
| radv_shader_spirv_to_nir(struct radv_device *device, const struct radv_pipeline_stage *stage, |
| const struct radv_pipeline_key *key) |
| { |
| unsigned subgroup_size = 64, ballot_bit_size = 64; |
| if (key->cs.compute_subgroup_size) { |
| /* Only compute shaders currently support requiring a |
| * specific subgroup size. |
| */ |
| assert(stage->stage == MESA_SHADER_COMPUTE); |
| subgroup_size = key->cs.compute_subgroup_size; |
| ballot_bit_size = key->cs.compute_subgroup_size; |
| } |
| |
| nir_shader *nir; |
| |
| if (stage->internal_nir) { |
| /* Some things such as our meta clear/blit code will give us a NIR |
| * shader directly. In that case, we just ignore the SPIR-V entirely |
| * and just use the NIR shader. We don't want to alter meta and RT |
| * shaders IR directly, so clone it first. */ |
| nir = nir_shader_clone(NULL, stage->internal_nir); |
| nir_validate_shader(nir, "in internal shader"); |
| |
| assert(exec_list_length(&nir->functions) == 1); |
| } else { |
| uint32_t *spirv = (uint32_t *)stage->spirv.data; |
| assert(stage->spirv.size % 4 == 0); |
| |
| bool dump_meta = device->instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS; |
| if ((device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV) && |
| (!device->app_shaders_internal || dump_meta)) |
| radv_print_spirv(stage->spirv.data, stage->spirv.size, stderr); |
| |
| uint32_t num_spec_entries = 0; |
| struct nir_spirv_specialization *spec_entries = |
| vk_spec_info_to_nir_spirv(stage->spec_info, &num_spec_entries); |
| struct radv_shader_debug_data spirv_debug_data = { |
| .device = device, |
| .object = stage->spirv.object, |
| }; |
| const struct spirv_to_nir_options spirv_options = { |
| .caps = |
| { |
| .amd_fragment_mask = true, |
| .amd_gcn_shader = true, |
| .amd_image_gather_bias_lod = true, |
| .amd_image_read_write_lod = true, |
| .amd_shader_ballot = true, |
| .amd_shader_explicit_vertex_parameter = true, |
| .amd_trinary_minmax = true, |
| .demote_to_helper_invocation = true, |
| .derivative_group = true, |
| .descriptor_array_dynamic_indexing = true, |
| .descriptor_array_non_uniform_indexing = true, |
| .descriptor_indexing = true, |
| .device_group = true, |
| .draw_parameters = true, |
| .float_controls = true, |
| .float16 = device->physical_device->rad_info.has_packed_math_16bit, |
| .float32_atomic_add = true, |
| .float32_atomic_min_max = true, |
| .float64 = true, |
| .float64_atomic_min_max = true, |
| .geometry_streams = true, |
| .groups = true, |
| .image_atomic_int64 = true, |
| .image_ms_array = true, |
| .image_read_without_format = true, |
| .image_write_without_format = true, |
| .int8 = true, |
| .int16 = true, |
| .int64 = true, |
| .int64_atomics = true, |
| .integer_functions2 = true, |
| .mesh_shading = true, |
| .mesh_shading_nv = true, |
| .min_lod = true, |
| .multiview = true, |
| .physical_storage_buffer_address = true, |
| .post_depth_coverage = true, |
| .ray_cull_mask = true, |
| .ray_query = true, |
| .ray_tracing = true, |
| .ray_traversal_primitive_culling = true, |
| .runtime_descriptor_array = true, |
| .shader_clock = true, |
| .shader_viewport_index_layer = true, |
| .sparse_residency = true, |
| .stencil_export = true, |
| .storage_8bit = true, |
| .storage_16bit = true, |
| .storage_image_ms = true, |
| .subgroup_arithmetic = true, |
| .subgroup_ballot = true, |
| .subgroup_basic = true, |
| .subgroup_quad = true, |
| .subgroup_shuffle = true, |
| .subgroup_uniform_control_flow = true, |
| .subgroup_vote = true, |
| .tessellation = true, |
| .transform_feedback = true, |
| .variable_pointers = true, |
| .vk_memory_model = true, |
| .vk_memory_model_device_scope = true, |
| .fragment_shading_rate = device->physical_device->rad_info.gfx_level >= GFX10_3, |
| .workgroup_memory_explicit_layout = true, |
| }, |
| .ubo_addr_format = nir_address_format_vec2_index_32bit_offset, |
| .ssbo_addr_format = nir_address_format_vec2_index_32bit_offset, |
| .phys_ssbo_addr_format = nir_address_format_64bit_global, |
| .push_const_addr_format = nir_address_format_logical, |
| .shared_addr_format = nir_address_format_32bit_offset, |
| .constant_addr_format = nir_address_format_64bit_global, |
| .use_deref_buffer_array_length = true, |
| .debug = |
| { |
| .func = radv_spirv_nir_debug, |
| .private_data = &spirv_debug_data, |
| }, |
| }; |
| nir = spirv_to_nir(spirv, stage->spirv.size / 4, spec_entries, num_spec_entries, stage->stage, |
| stage->entrypoint, &spirv_options, |
| &device->physical_device->nir_options[stage->stage]); |
| nir->info.internal |= device->app_shaders_internal; |
| assert(nir->info.stage == stage->stage); |
| nir_validate_shader(nir, "after spirv_to_nir"); |
| |
| free(spec_entries); |
| |
| const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = { |
| .point_coord = true, |
| }; |
| NIR_PASS_V(nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings); |
| |
| /* We have to lower away local constant initializers right before we |
| * inline functions. That way they get properly initialized at the top |
| * of the function and not at the top of its caller. |
| */ |
| NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_function_temp); |
| NIR_PASS(_, nir, nir_lower_returns); |
| bool progress = false; |
| NIR_PASS(progress, nir, nir_inline_functions); |
| if (progress) { |
| NIR_PASS(_, nir, nir_opt_copy_prop_vars); |
| NIR_PASS(_, nir, nir_copy_prop); |
| } |
| NIR_PASS(_, nir, nir_opt_deref); |
| |
| /* Pick off the single entrypoint that we want */ |
| foreach_list_typed_safe(nir_function, func, node, &nir->functions) |
| { |
| if (func->is_entrypoint) |
| func->name = ralloc_strdup(func, "main"); |
| else |
| exec_node_remove(&func->node); |
| } |
| assert(exec_list_length(&nir->functions) == 1); |
| |
| /* Make sure we lower constant initializers on output variables so that |
| * nir_remove_dead_variables below sees the corresponding stores |
| */ |
| NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_shader_out); |
| |
| /* Now that we've deleted all but the main function, we can go ahead and |
| * lower the rest of the constant initializers. |
| */ |
| NIR_PASS(_, nir, nir_lower_variable_initializers, ~0); |
| |
| /* Split member structs. We do this before lower_io_to_temporaries so that |
| * it doesn't lower system values to temporaries by accident. |
| */ |
| NIR_PASS(_, nir, nir_split_var_copies); |
| NIR_PASS(_, nir, nir_split_per_member_structs); |
| |
| if (nir->info.stage == MESA_SHADER_FRAGMENT) |
| NIR_PASS(_, nir, nir_lower_io_to_vector, nir_var_shader_out); |
| if (nir->info.stage == MESA_SHADER_FRAGMENT) |
| NIR_PASS(_, nir, nir_lower_input_attachments, |
| &(nir_input_attachment_options){ |
| .use_fragcoord_sysval = true, |
| .use_layer_id_sysval = false, |
| }); |
| |
| nir_remove_dead_variables_options dead_vars_opts = { |
| .can_remove_var = is_not_xfb_output, |
| }; |
| NIR_PASS(_, nir, nir_remove_dead_variables, |
| nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared, |
| &dead_vars_opts); |
| |
| /* Variables can make nir_propagate_invariant more conservative |
| * than it needs to be. |
| */ |
| NIR_PASS(_, nir, nir_lower_global_vars_to_local); |
| NIR_PASS(_, nir, nir_lower_vars_to_ssa); |
| |
| NIR_PASS(_, nir, nir_propagate_invariant, key->invariant_geom); |
| |
| NIR_PASS(_, nir, nir_lower_clip_cull_distance_arrays); |
| |
| if (nir->info.stage == MESA_SHADER_VERTEX || |
| nir->info.stage == MESA_SHADER_TESS_EVAL || |
| nir->info.stage == MESA_SHADER_GEOMETRY) |
| NIR_PASS_V(nir, nir_shader_gather_xfb_info); |
| |
| NIR_PASS(_, nir, nir_lower_discard_or_demote, key->ps.lower_discard_to_demote); |
| |
| nir_lower_doubles_options lower_doubles = nir->options->lower_doubles_options; |
| |
| if (device->physical_device->rad_info.gfx_level == GFX6) { |
| /* GFX6 doesn't support v_floor_f64 and the precision |
| * of v_fract_f64 which is used to implement 64-bit |
| * floor is less than what Vulkan requires. |
| */ |
| lower_doubles |= nir_lower_dfloor; |
| } |
| |
| NIR_PASS(_, nir, nir_lower_doubles, NULL, lower_doubles); |
| |
| NIR_PASS(_, nir, nir_shader_lower_instructions, &is_sincos, &lower_sincos, NULL); |
| } |
| |
| NIR_PASS(_, nir, nir_lower_system_values); |
| nir_lower_compute_system_values_options csv_options = { |
| /* Mesh shaders run as NGG which can implement local_invocation_index from |
| * the wave ID in merged_wave_info, but they don't have local_invocation_ids. |
| */ |
| .lower_cs_local_id_to_index = nir->info.stage == MESA_SHADER_MESH, |
| .lower_local_invocation_index = nir->info.stage == MESA_SHADER_COMPUTE && |
| ((nir->info.workgroup_size[0] == 1) + |
| (nir->info.workgroup_size[1] == 1) + |
| (nir->info.workgroup_size[2] == 1)) == 2, |
| }; |
| NIR_PASS(_, nir, nir_lower_compute_system_values, &csv_options); |
| |
| if (nir->info.stage == MESA_SHADER_MESH) { |
| /* NV_mesh_shader: include first_task (aka. first_vertex) in workgroup ID. */ |
| NIR_PASS(_, nir, radv_lower_ms_workgroup_id); |
| |
| /* Mesh shaders only have a 1D "vertex index" which we use |
| * as "workgroup index" to emulate the 3D workgroup ID. |
| */ |
| nir_lower_compute_system_values_options o = { |
| .lower_workgroup_id_to_index = true, |
| }; |
| NIR_PASS(_, nir, nir_lower_compute_system_values, &o); |
| } |
| |
| /* Vulkan uses the separate-shader linking model */ |
| nir->info.separate_shader = true; |
| |
| nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); |
| |
| if (nir->info.ray_queries > 0) { |
| NIR_PASS(_, nir, nir_opt_ray_queries); |
| NIR_PASS(_, nir, radv_nir_lower_ray_queries, device); |
| } |
| |
| nir_lower_tex_options tex_options = { |
| .lower_txp = ~0, |
| .lower_txf_offset = true, |
| .lower_tg4_offsets = true, |
| .lower_txs_cube_array = true, |
| .lower_to_fragment_fetch_amd = device->physical_device->use_fmask, |
| .lower_lod_zero_width = true, |
| .lower_invalid_implicit_lod = true, |
| .lower_array_layer_round_even = true, |
| }; |
| |
| NIR_PASS(_, nir, nir_lower_tex, &tex_options); |
| |
| static const nir_lower_image_options image_options = { |
| .lower_cube_size = true, |
| }; |
| |
| NIR_PASS(_, nir, nir_lower_image, &image_options); |
| |
| NIR_PASS(_, nir, nir_lower_vars_to_ssa); |
| |
| if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY || |
| nir->info.stage == MESA_SHADER_FRAGMENT) { |
| NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true); |
| } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) { |
| NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, false); |
| } |
| |
| NIR_PASS(_, nir, nir_split_var_copies); |
| |
| NIR_PASS(_, nir, nir_lower_global_vars_to_local); |
| NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_function_temp, NULL); |
| bool gfx7minus = device->physical_device->rad_info.gfx_level <= GFX7; |
| NIR_PASS(_, nir, nir_lower_subgroups, |
| &(struct nir_lower_subgroups_options){ |
| .subgroup_size = subgroup_size, |
| .ballot_bit_size = ballot_bit_size, |
| .ballot_components = 1, |
| .lower_to_scalar = 1, |
| .lower_subgroup_masks = 1, |
| .lower_relative_shuffle = 1, |
| .lower_shuffle_to_32bit = 1, |
| /* TODO: Verify shared VGPRs on GFX11. */ |
| .lower_shuffle = device->physical_device->rad_info.gfx_level >= GFX11, |
| .lower_vote_eq = 1, |
| .lower_quad_broadcast_dynamic = 1, |
| .lower_quad_broadcast_dynamic_to_const = gfx7minus, |
| .lower_shuffle_to_swizzle_amd = 1, |
| }); |
| |
| NIR_PASS(_, nir, nir_lower_load_const_to_scalar); |
| NIR_PASS(_, nir, nir_opt_shrink_stores, !device->instance->disable_shrink_image_store); |
| |
| if (!key->optimisations_disabled) |
| radv_optimize_nir(nir, false, true); |
| |
| /* We call nir_lower_var_copies() after the first radv_optimize_nir() |
| * to remove any copies introduced by nir_opt_find_array_copies(). |
| */ |
| NIR_PASS(_, nir, nir_lower_var_copies); |
| |
| unsigned lower_flrp = (nir->options->lower_flrp16 ? 16 : 0) | |
| (nir->options->lower_flrp32 ? 32 : 0) | |
| (nir->options->lower_flrp64 ? 64 : 0); |
| if (lower_flrp != 0) { |
| bool progress = false; |
| NIR_PASS(progress, nir, nir_lower_flrp, lower_flrp, false /* always precise */); |
| if (progress) |
| NIR_PASS(_, nir, nir_opt_constant_folding); |
| } |
| |
| const nir_opt_access_options opt_access_options = { |
| .is_vulkan = true, |
| }; |
| NIR_PASS(_, nir, nir_opt_access, &opt_access_options); |
| |
| NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const, nir_address_format_32bit_offset); |
| |
| NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo | nir_var_mem_ssbo, |
| nir_address_format_vec2_index_32bit_offset); |
| |
| NIR_PASS(_, nir, lower_intrinsics, key); |
| |
| /* Lower deref operations for compute shared memory. */ |
| if (nir->info.stage == MESA_SHADER_COMPUTE || |
| nir->info.stage == MESA_SHADER_TASK || |
| nir->info.stage == MESA_SHADER_MESH) { |
| nir_variable_mode var_modes = nir_var_mem_shared; |
| |
| if (nir->info.stage == MESA_SHADER_TASK || |
| nir->info.stage == MESA_SHADER_MESH) |
| var_modes |= nir_var_mem_task_payload; |
| |
| if (!nir->info.shared_memory_explicit_layout) { |
| NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, var_modes, shared_var_info); |
| } |
| NIR_PASS(_, nir, nir_lower_explicit_io, var_modes, nir_address_format_32bit_offset); |
| |
| if (nir->info.zero_initialize_shared_memory && nir->info.shared_size > 0) { |
| const unsigned chunk_size = 16; /* max single store size */ |
| const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size); |
| NIR_PASS(_, nir, nir_zero_initialize_shared_memory, shared_size, chunk_size); |
| } |
| } |
| |
| NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global | nir_var_mem_constant, |
| nir_address_format_64bit_global); |
| |
| /* Lower large variables that are always constant with load_constant |
| * intrinsics, which get turned into PC-relative loads from a data |
| * section next to the shader. |
| */ |
| NIR_PASS(_, nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16); |
| |
| /* Lower primitive shading rate to match HW requirements. */ |
| if ((nir->info.stage == MESA_SHADER_VERTEX || |
| nir->info.stage == MESA_SHADER_GEOMETRY || |
| nir->info.stage == MESA_SHADER_MESH) && |
| nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) { |
| /* Lower primitive shading rate to match HW requirements. */ |
| NIR_PASS(_, nir, radv_lower_primitive_shading_rate, |
| device->physical_device->rad_info.gfx_level); |
| } |
| |
| /* Indirect lowering must be called after the radv_optimize_nir() loop |
| * has been called at least once. Otherwise indirect lowering can |
| * bloat the instruction count of the loop and cause it to be |
| * considered too large for unrolling. |
| */ |
| if (ac_nir_lower_indirect_derefs(nir, device->physical_device->rad_info.gfx_level) && |
| !key->optimisations_disabled && nir->info.stage != MESA_SHADER_COMPUTE) { |
| /* Optimize the lowered code before the linking optimizations. */ |
| radv_optimize_nir(nir, false, false); |
| } |
| |
| |
| return nir; |
| } |
| |
| static int |
| type_size_vec4(const struct glsl_type *type, bool bindless) |
| { |
| return glsl_count_attribute_slots(type, false); |
| } |
| |
| static nir_variable * |
| find_layer_in_var(nir_shader *nir) |
| { |
| nir_variable *var = nir_find_variable_with_location(nir, nir_var_shader_in, VARYING_SLOT_LAYER); |
| if (var != NULL) |
| return var; |
| |
| var = nir_variable_create(nir, nir_var_shader_in, glsl_int_type(), "layer id"); |
| var->data.location = VARYING_SLOT_LAYER; |
| var->data.interpolation = INTERP_MODE_FLAT; |
| return var; |
| } |
| |
| /* We use layered rendering to implement multiview, which means we need to map |
| * view_index to gl_Layer. The code generates a load from the layer_id sysval, |
| * but since we don't have a way to get at this information from the fragment |
| * shader, we also need to lower this to the gl_Layer varying. This pass |
| * lowers both to a varying load from the LAYER slot, before lowering io, so |
| * that nir_assign_var_locations() will give the LAYER varying the correct |
| * driver_location. |
| */ |
| |
| bool |
| radv_lower_view_index(nir_shader *nir, bool per_primitive) |
| { |
| bool progress = false; |
| nir_function_impl *entry = nir_shader_get_entrypoint(nir); |
| nir_builder b; |
| nir_builder_init(&b, entry); |
| |
| nir_variable *layer = NULL; |
| nir_foreach_block (block, entry) { |
| nir_foreach_instr_safe (instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr); |
| if (load->intrinsic != nir_intrinsic_load_view_index) |
| continue; |
| |
| if (!layer) |
| layer = find_layer_in_var(nir); |
| |
| layer->data.per_primitive = per_primitive; |
| b.cursor = nir_before_instr(instr); |
| nir_ssa_def *def = nir_load_var(&b, layer); |
| nir_ssa_def_rewrite_uses(&load->dest.ssa, def); |
| |
| /* Update inputs_read to reflect that the pass added a new input. */ |
| nir->info.inputs_read |= VARYING_BIT_LAYER; |
| if (per_primitive) |
| nir->info.per_primitive_inputs |= VARYING_BIT_LAYER; |
| |
| nir_instr_remove(instr); |
| progress = true; |
| } |
| } |
| |
| if (progress) |
| nir_metadata_preserve(entry, nir_metadata_block_index | nir_metadata_dominance); |
| else |
| nir_metadata_preserve(entry, nir_metadata_all); |
| |
| return progress; |
| } |
| |
| void |
| radv_lower_io(struct radv_device *device, nir_shader *nir) |
| { |
| if (nir->info.stage == MESA_SHADER_COMPUTE) |
| return; |
| |
| if (nir->info.stage == MESA_SHADER_FRAGMENT) { |
| nir_assign_io_var_locations(nir, nir_var_shader_in, &nir->num_inputs, MESA_SHADER_FRAGMENT); |
| } |
| |
| if (nir->info.stage == MESA_SHADER_VERTEX) { |
| NIR_PASS(_, nir, nir_lower_io, nir_var_shader_in, type_size_vec4, 0); |
| NIR_PASS(_, nir, nir_lower_io, nir_var_shader_out, type_size_vec4, |
| nir_lower_io_lower_64bit_to_32); |
| } else { |
| NIR_PASS(_, nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out, type_size_vec4, |
| nir_lower_io_lower_64bit_to_32); |
| } |
| |
| /* This pass needs actual constants */ |
| NIR_PASS(_, nir, nir_opt_constant_folding); |
| |
| NIR_PASS(_, nir, nir_io_add_const_offset_to_base, nir_var_shader_in | nir_var_shader_out); |
| |
| if (device->physical_device->use_ngg_streamout && nir->xfb_info) { |
| NIR_PASS_V(nir, nir_io_add_intrinsic_xfb_info); |
| |
| /* The total number of shader outputs is required for computing the pervertex LDS size for |
| * VS/TES when lowering NGG streamout. |
| */ |
| nir_assign_io_var_locations(nir, nir_var_shader_out, &nir->num_outputs, nir->info.stage); |
| } |
| } |
| |
| bool |
| radv_lower_io_to_mem(struct radv_device *device, struct radv_pipeline_stage *stage) |
| { |
| const struct radv_shader_info *info = &stage->info; |
| nir_shader *nir = stage->nir; |
| |
| if (nir->info.stage == MESA_SHADER_VERTEX) { |
| if (info->vs.as_ls) { |
| NIR_PASS_V(nir, ac_nir_lower_ls_outputs_to_mem, NULL, info->vs.tcs_in_out_eq, |
| info->vs.tcs_temp_only_input_mask); |
| return true; |
| } else if (info->vs.as_es) { |
| NIR_PASS_V(nir, ac_nir_lower_es_outputs_to_mem, NULL, |
| device->physical_device->rad_info.gfx_level, info->esgs_itemsize); |
| return true; |
| } |
| } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) { |
| NIR_PASS_V(nir, ac_nir_lower_hs_inputs_to_mem, NULL, info->vs.tcs_in_out_eq); |
| NIR_PASS_V(nir, ac_nir_lower_hs_outputs_to_mem, NULL, |
| device->physical_device->rad_info.gfx_level, |
| info->tcs.tes_reads_tess_factors, info->tcs.tes_inputs_read, |
| info->tcs.tes_patch_inputs_read, info->tcs.num_linked_outputs, |
| info->tcs.num_linked_patch_outputs, info->wave_size, |
| false, false, true); |
| |
| return true; |
| } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) { |
| NIR_PASS_V(nir, ac_nir_lower_tes_inputs_to_mem, NULL); |
| |
| if (info->tes.as_es) { |
| NIR_PASS_V(nir, ac_nir_lower_es_outputs_to_mem, NULL, |
| device->physical_device->rad_info.gfx_level, info->esgs_itemsize); |
| } |
| |
| return true; |
| } else if (nir->info.stage == MESA_SHADER_GEOMETRY) { |
| NIR_PASS_V(nir, ac_nir_lower_gs_inputs_to_mem, NULL, |
| device->physical_device->rad_info.gfx_level, false); |
| return true; |
| } else if (nir->info.stage == MESA_SHADER_TASK) { |
| ac_nir_apply_first_task_to_task_shader(nir); |
| ac_nir_lower_task_outputs_to_mem(nir, AC_TASK_PAYLOAD_ENTRY_BYTES, |
| device->physical_device->task_info.num_entries); |
| return true; |
| } else if (nir->info.stage == MESA_SHADER_MESH) { |
| ac_nir_lower_mesh_inputs_to_mem(nir, AC_TASK_PAYLOAD_ENTRY_BYTES, |
| device->physical_device->task_info.num_entries); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool |
| radv_consider_culling(const struct radv_physical_device *pdevice, struct nir_shader *nir, uint64_t ps_inputs_read, |
| unsigned num_vertices_per_primitive, const struct radv_shader_info *info) |
| { |
| /* Culling doesn't make sense for meta shaders. */ |
| if (is_meta_shader(nir)) |
| return false; |
| |
| /* We don't support culling with multiple viewports yet. */ |
| if (nir->info.outputs_written & (VARYING_BIT_VIEWPORT | VARYING_BIT_VIEWPORT_MASK)) |
| return false; |
| |
| /* We don't support culling with vertex shader prologs. */ |
| if (info->vs.has_prolog) |
| return false; |
| |
| if (!pdevice->use_ngg_culling) |
| return false; |
| |
| /* Shader based culling efficiency can depend on PS throughput. |
| * Estimate an upper limit for PS input param count based on GPU info. |
| */ |
| unsigned max_ps_params; |
| unsigned max_render_backends = pdevice->rad_info.max_render_backends; |
| unsigned max_se = pdevice->rad_info.max_se; |
| |
| if (max_render_backends / max_se == 4) |
| max_ps_params = 6; /* Navi21 and other GFX10.3 dGPUs. */ |
| else |
| max_ps_params = 4; /* Navi 1x. */ |
| |
| /* TODO: consider other heuristics here, such as PS execution time */ |
| if (util_bitcount64(ps_inputs_read & ~VARYING_BIT_POS) > max_ps_params) |
| return false; |
| |
| /* Only triangle culling is supported. */ |
| if (num_vertices_per_primitive != 3) |
| return false; |
| |
| /* When the shader writes memory, it is difficult to guarantee correctness. |
| * Future work: |
| * - if only write-only SSBOs are used |
| * - if we can prove that non-position outputs don't rely on memory stores |
| * then may be okay to keep the memory stores in the 1st shader part, and delete them from the 2nd. |
| */ |
| if (nir->info.writes_memory) |
| return false; |
| |
| /* When the shader relies on the subgroup invocation ID, we'd break it, because the ID changes after the culling. |
| * Future work: try to save this to LDS and reload, but it can still be broken in subtle ways. |
| */ |
| if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SUBGROUP_INVOCATION)) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| setup_ngg_lds_layout(struct radv_device *device, nir_shader *nir, struct radv_shader_info *info, |
| unsigned max_vtx_in) |
| { |
| unsigned scratch_lds_base = 0; |
| gl_shader_stage stage = nir->info.stage; |
| |
| if (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL) { |
| /* Get pervertex LDS usage. */ |
| bool uses_instanceid = |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID); |
| bool uses_primtive_id = |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID); |
| bool streamout_enabled = nir->xfb_info && device->physical_device->use_ngg_streamout; |
| unsigned pervertex_lds_bytes = |
| ac_ngg_nogs_get_pervertex_lds_size(stage, |
| nir->num_outputs, |
| streamout_enabled, |
| info->outinfo.export_prim_id, |
| false, /* user edge flag */ |
| info->has_ngg_culling, |
| uses_instanceid, |
| uses_primtive_id); |
| |
| unsigned total_es_lds_bytes = pervertex_lds_bytes * max_vtx_in; |
| scratch_lds_base = ALIGN(total_es_lds_bytes, 8u); |
| } else if (stage == MESA_SHADER_GEOMETRY) { |
| unsigned esgs_ring_lds_bytes = info->ngg_info.esgs_ring_size; |
| unsigned gs_total_out_vtx_bytes = info->ngg_info.ngg_emit_size * 4u; |
| scratch_lds_base = |
| ALIGN(esgs_ring_lds_bytes + gs_total_out_vtx_bytes, 8u /* for the repacking code */); |
| } else { |
| /* not handled here */ |
| return; |
| } |
| |
| /* Get scratch LDS usage. */ |
| unsigned scratch_lds_size = |
| ac_ngg_get_scratch_lds_size(stage, |
| info->workgroup_size, |
| info->wave_size, |
| device->physical_device->use_ngg_streamout, |
| info->has_ngg_culling); |
| |
| /* Get total LDS usage. */ |
| nir->info.shared_size = scratch_lds_base + scratch_lds_size; |
| |
| /* Record scratch base for abi lower of nir_load_lds_ngg_scratch_base_amd. */ |
| info->ngg_info.scratch_lds_base = scratch_lds_base; |
| } |
| |
| void radv_lower_ngg(struct radv_device *device, struct radv_pipeline_stage *ngg_stage, |
| const struct radv_pipeline_key *pl_key) |
| { |
| const struct radv_shader_info *info = &ngg_stage->info; |
| nir_shader *nir = ngg_stage->nir; |
| |
| assert(nir->info.stage == MESA_SHADER_VERTEX || |
| nir->info.stage == MESA_SHADER_TESS_EVAL || |
| nir->info.stage == MESA_SHADER_GEOMETRY || |
| nir->info.stage == MESA_SHADER_MESH); |
| |
| const struct gfx10_ngg_info *ngg_info = &info->ngg_info; |
| unsigned num_vertices_per_prim = 3; |
| |
| /* Get the number of vertices per input primitive */ |
| if (nir->info.stage == MESA_SHADER_TESS_EVAL) { |
| if (nir->info.tess.point_mode) |
| num_vertices_per_prim = 1; |
| else if (nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES) |
| num_vertices_per_prim = 2; |
| |
| /* Manually mark the primitive ID used, so the shader can repack it. */ |
| if (info->outinfo.export_prim_id) |
| BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID); |
| |
| } else if (nir->info.stage == MESA_SHADER_VERTEX) { |
| num_vertices_per_prim = radv_get_num_vertices_per_prim(pl_key); |
| |
| /* Manually mark the instance ID used, so the shader can repack it. */ |
| if (pl_key->vs.instance_rate_inputs) |
| BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID); |
| |
| } else if (nir->info.stage == MESA_SHADER_GEOMETRY) { |
| num_vertices_per_prim = nir->info.gs.vertices_in; |
| } else if (nir->info.stage == MESA_SHADER_MESH) { |
| if (nir->info.mesh.primitive_type == SHADER_PRIM_POINTS) |
| num_vertices_per_prim = 1; |
| else if (nir->info.mesh.primitive_type == SHADER_PRIM_LINES) |
| num_vertices_per_prim = 2; |
| else |
| assert(nir->info.mesh.primitive_type == SHADER_PRIM_TRIANGLES); |
| } else { |
| unreachable("NGG needs to be VS, TES or GS."); |
| } |
| |
| /* Invocations that process an input vertex */ |
| unsigned max_vtx_in = MIN2(256, ngg_info->hw_max_esverts); |
| |
| setup_ngg_lds_layout(device, nir, &ngg_stage->info, max_vtx_in); |
| |
| ac_nir_lower_ngg_options options = {0}; |
| options.family = device->physical_device->rad_info.family; |
| options.gfx_level = device->physical_device->rad_info.gfx_level; |
| options.max_workgroup_size = info->workgroup_size; |
| options.wave_size = info->wave_size; |
| options.vs_output_param_offset = info->outinfo.vs_output_param_offset; |
| options.can_cull = nir->info.stage != MESA_SHADER_GEOMETRY && info->has_ngg_culling; |
| options.disable_streamout = !device->physical_device->use_ngg_streamout; |
| options.has_gen_prim_query = info->has_ngg_prim_query; |
| options.has_xfb_prim_query = info->has_ngg_xfb_query; |
| |
| if (nir->info.stage == MESA_SHADER_VERTEX || |
| nir->info.stage == MESA_SHADER_TESS_EVAL) { |
| assert(info->is_ngg); |
| |
| if (info->has_ngg_culling) |
| radv_optimize_nir_algebraic(nir, false); |
| |
| options.num_vertices_per_primitive = num_vertices_per_prim; |
| options.early_prim_export = info->has_ngg_early_prim_export; |
| options.passthrough = info->is_ngg_passthrough; |
| options.primitive_id_location = info->outinfo.export_prim_id ? VARYING_SLOT_PRIMITIVE_ID : -1; |
| options.instance_rate_inputs = pl_key->vs.instance_rate_inputs; |
| |
| NIR_PASS_V(nir, ac_nir_lower_ngg_nogs, &options); |
| |
| /* Increase ESGS ring size so the LLVM binary contains the correct LDS size. */ |
| ngg_stage->info.ngg_info.esgs_ring_size = nir->info.shared_size; |
| } else if (nir->info.stage == MESA_SHADER_GEOMETRY) { |
| assert(info->is_ngg); |
| |
| options.gs_out_vtx_bytes = info->gs.gsvs_vertex_size; |
| |
| NIR_PASS_V(nir, ac_nir_lower_ngg_gs, &options); |
| } else if (nir->info.stage == MESA_SHADER_MESH) { |
| bool scratch_ring = false; |
| NIR_PASS_V(nir, ac_nir_lower_ngg_ms, &scratch_ring, info->wave_size, pl_key->has_multiview_view_index); |
| ngg_stage->info.ms.needs_ms_scratch_ring = scratch_ring; |
| } else { |
| unreachable("invalid SW stage passed to radv_lower_ngg"); |
| } |
| } |
| |
| static unsigned |
| get_size_class(unsigned size, bool round_up) |
| { |
| size = round_up ? util_logbase2_ceil(size) : util_logbase2(size); |
| unsigned size_class = |
| MAX2(size, RADV_SHADER_ALLOC_MIN_SIZE_CLASS) - RADV_SHADER_ALLOC_MIN_SIZE_CLASS; |
| return MIN2(size_class, RADV_SHADER_ALLOC_NUM_FREE_LISTS - 1); |
| } |
| |
| static void |
| remove_hole(struct radv_device *device, union radv_shader_arena_block *hole) |
| { |
| unsigned size_class = get_size_class(hole->size, false); |
| list_del(&hole->freelist); |
| if (list_is_empty(&device->shader_free_lists[size_class])) |
| device->shader_free_list_mask &= ~(1u << size_class); |
| } |
| |
| static void |
| add_hole(struct radv_device *device, union radv_shader_arena_block *hole) |
| { |
| unsigned size_class = get_size_class(hole->size, false); |
| list_addtail(&hole->freelist, &device->shader_free_lists[size_class]); |
| device->shader_free_list_mask |= 1u << size_class; |
| } |
| |
| static union radv_shader_arena_block * |
| alloc_block_obj(struct radv_device *device) |
| { |
| if (!list_is_empty(&device->shader_block_obj_pool)) { |
| union radv_shader_arena_block *block = |
| list_first_entry(&device->shader_block_obj_pool, union radv_shader_arena_block, pool); |
| list_del(&block->pool); |
| return block; |
| } |
| |
| return malloc(sizeof(union radv_shader_arena_block)); |
| } |
| |
| static void |
| free_block_obj(struct radv_device *device, union radv_shader_arena_block *block) |
| { |
| list_add(&block->pool, &device->shader_block_obj_pool); |
| } |
| |
| /* Segregated fit allocator, implementing a good-fit allocation policy. |
| * |
| * This is an variation of sequential fit allocation with several lists of free blocks ("holes") |
| * instead of one. Each list of holes only contains holes of a certain range of sizes, so holes that |
| * are too small can easily be ignored while allocating. Because this also ignores holes that are |
| * larger than necessary (approximating best-fit allocation), this could be described as a |
| * "good-fit" allocator. |
| * |
| * Typically, shaders are allocated and only free'd when the device is destroyed. For this pattern, |
| * this should allocate blocks for shaders fast and with no fragmentation, while still allowing |
| * free'd memory to be re-used. |
| */ |
| union radv_shader_arena_block * |
| radv_alloc_shader_memory(struct radv_device *device, uint32_t size, void *ptr) |
| { |
| size = align(size, RADV_SHADER_ALLOC_ALIGNMENT); |
| |
| mtx_lock(&device->shader_arena_mutex); |
| |
| /* Try to use an existing hole. Unless the shader is very large, this should only have to look |
| * at the first one available. |
| */ |
| unsigned free_list_mask = BITFIELD_MASK(RADV_SHADER_ALLOC_NUM_FREE_LISTS); |
| unsigned size_class = |
| ffs(device->shader_free_list_mask & (free_list_mask << get_size_class(size, true))); |
| if (size_class) { |
| size_class--; |
| |
| list_for_each_entry(union radv_shader_arena_block, hole, |
| &device->shader_free_lists[size_class], freelist) |
| { |
| if (hole->size < size) |
| continue; |
| |
| assert(hole->offset % RADV_SHADER_ALLOC_ALIGNMENT == 0); |
| |
| if (size == hole->size) { |
| remove_hole(device, hole); |
| hole->freelist.next = ptr; |
| mtx_unlock(&device->shader_arena_mutex); |
| return hole; |
| } else { |
| union radv_shader_arena_block *alloc = alloc_block_obj(device); |
| if (!alloc) { |
| mtx_unlock(&device->shader_arena_mutex); |
| return NULL; |
| } |
| list_addtail(&alloc->list, &hole->list); |
| alloc->freelist.prev = NULL; |
| alloc->freelist.next = ptr; |
| alloc->arena = hole->arena; |
| alloc->offset = hole->offset; |
| alloc->size = size; |
| |
| remove_hole(device, hole); |
| hole->offset += size; |
| hole->size -= size; |
| add_hole(device, hole); |
| |
| mtx_unlock(&device->shader_arena_mutex); |
| return alloc; |
| } |
| } |
| } |
| |
| /* Allocate a new shader arena. */ |
| struct radv_shader_arena *arena = calloc(1, sizeof(struct radv_shader_arena)); |
| union radv_shader_arena_block *alloc = NULL, *hole = NULL; |
| if (!arena) |
| goto fail; |
| |
| unsigned arena_size = |
| MAX2(RADV_SHADER_ALLOC_MIN_ARENA_SIZE |
| << MIN2(RADV_SHADER_ALLOC_MAX_ARENA_SIZE_SHIFT, device->shader_arena_shift), |
| size); |
| VkResult result = device->ws->buffer_create( |
| device->ws, arena_size, RADV_SHADER_ALLOC_ALIGNMENT, RADEON_DOMAIN_VRAM, |
| RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT | |
| (device->physical_device->rad_info.cpdma_prefetch_writes_memory ? 0 |
| : RADEON_FLAG_READ_ONLY), |
| RADV_BO_PRIORITY_SHADER, 0, &arena->bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| |
| list_inithead(&arena->entries); |
| |
| arena->ptr = (char *)device->ws->buffer_map(arena->bo); |
| if (!arena->ptr) |
| goto fail; |
| |
| alloc = alloc_block_obj(device); |
| hole = arena_size - size > 0 ? alloc_block_obj(device) : alloc; |
| if (!alloc || !hole) |
| goto fail; |
| list_addtail(&alloc->list, &arena->entries); |
| alloc->freelist.prev = NULL; |
| alloc->freelist.next = ptr; |
| alloc->arena = arena; |
| alloc->offset = 0; |
| alloc->size = size; |
| |
| if (hole != alloc) { |
| hole->arena = arena; |
| hole->offset = size; |
| hole->size = arena_size - size; |
| |
| list_addtail(&hole->list, &arena->entries); |
| add_hole(device, hole); |
| } |
| |
| ++device->shader_arena_shift; |
| list_addtail(&arena->list, &device->shader_arenas); |
| |
| mtx_unlock(&device->shader_arena_mutex); |
| return alloc; |
| |
| fail: |
| mtx_unlock(&device->shader_arena_mutex); |
| free(alloc); |
| free(hole); |
| if (arena && arena->bo) |
| device->ws->buffer_destroy(device->ws, arena->bo); |
| free(arena); |
| return NULL; |
| } |
| |
| static union radv_shader_arena_block * |
| get_hole(struct radv_shader_arena *arena, struct list_head *head) |
| { |
| if (head == &arena->entries) |
| return NULL; |
| |
| union radv_shader_arena_block *hole = list_entry(head, union radv_shader_arena_block, list); |
| return hole->freelist.prev ? hole : NULL; |
| } |
| |
| void |
| radv_free_shader_memory(struct radv_device *device, union radv_shader_arena_block *alloc) |
| { |
| mtx_lock(&device->shader_arena_mutex); |
| |
| union radv_shader_arena_block *hole_prev = get_hole(alloc->arena, alloc->list.prev); |
| union radv_shader_arena_block *hole_next = get_hole(alloc->arena, alloc->list.next); |
| |
| union radv_shader_arena_block *hole = alloc; |
| |
| /* merge with previous hole */ |
| if (hole_prev) { |
| remove_hole(device, hole_prev); |
| |
| hole_prev->size += hole->size; |
| list_del(&hole->list); |
| free_block_obj(device, hole); |
| |
| hole = hole_prev; |
| } |
| |
| /* merge with next hole */ |
| if (hole_next) { |
| remove_hole(device, hole_next); |
| |
| hole_next->offset -= hole->size; |
| hole_next->size += hole->size; |
| list_del(&hole->list); |
| free_block_obj(device, hole); |
| |
| hole = hole_next; |
| } |
| |
| if (list_is_singular(&hole->list)) { |
| struct radv_shader_arena *arena = hole->arena; |
| free_block_obj(device, hole); |
| |
| device->ws->buffer_destroy(device->ws, arena->bo); |
| list_del(&arena->list); |
| free(arena); |
| } else { |
| add_hole(device, hole); |
| } |
| |
| mtx_unlock(&device->shader_arena_mutex); |
| } |
| |
| void |
| radv_init_shader_arenas(struct radv_device *device) |
| { |
| mtx_init(&device->shader_arena_mutex, mtx_plain); |
| |
| device->shader_free_list_mask = 0; |
| |
| list_inithead(&device->shader_arenas); |
| list_inithead(&device->shader_block_obj_pool); |
| for (unsigned i = 0; i < RADV_SHADER_ALLOC_NUM_FREE_LISTS; i++) |
| list_inithead(&device->shader_free_lists[i]); |
| } |
| |
| void |
| radv_destroy_shader_arenas(struct radv_device *device) |
| { |
| list_for_each_entry_safe(union radv_shader_arena_block, block, &device->shader_block_obj_pool, |
| pool) free(block); |
| |
| list_for_each_entry_safe(struct radv_shader_arena, arena, &device->shader_arenas, list) |
| { |
| device->ws->buffer_destroy(device->ws, arena->bo); |
| free(arena); |
| } |
| mtx_destroy(&device->shader_arena_mutex); |
| } |
| |
| /* For the UMR disassembler. */ |
| #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */ |
| #define DEBUGGER_NUM_MARKERS 5 |
| |
| static unsigned |
| radv_get_shader_binary_size(size_t code_size) |
| { |
| return code_size + DEBUGGER_NUM_MARKERS * 4; |
| } |
| |
| static bool |
| radv_should_use_wgp_mode(const struct radv_device *device, gl_shader_stage stage, |
| const struct radv_shader_info *info) |
| { |
| enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level; |
| switch (stage) { |
| case MESA_SHADER_COMPUTE: |
| case MESA_SHADER_TESS_CTRL: |
| return chip >= GFX10; |
| case MESA_SHADER_GEOMETRY: |
| return chip == GFX10 || (chip >= GFX10_3 && !info->is_ngg); |
| case MESA_SHADER_VERTEX: |
| case MESA_SHADER_TESS_EVAL: |
| return chip == GFX10 && info->is_ngg; |
| default: |
| return false; |
| } |
| } |
| |
| static void |
| radv_postprocess_config(const struct radv_device *device, const struct ac_shader_config *config_in, |
| const struct radv_shader_info *info, gl_shader_stage stage, |
| const struct radv_shader_args *args, |
| struct ac_shader_config *config_out) |
| { |
| const struct radv_physical_device *pdevice = device->physical_device; |
| bool scratch_enabled = config_in->scratch_bytes_per_wave > 0; |
| bool trap_enabled = !!device->trap_handler_shader; |
| unsigned vgpr_comp_cnt = 0; |
| unsigned num_input_vgprs = args->ac.num_vgprs_used; |
| |
| if (stage == MESA_SHADER_FRAGMENT) { |
| num_input_vgprs = ac_get_fs_input_vgpr_cnt(config_in, NULL, NULL, NULL); |
| } |
| |
| unsigned num_vgprs = MAX2(config_in->num_vgprs, num_input_vgprs); |
| /* +2 for the ring offsets, +3 for scratch wave offset and VCC */ |
| unsigned num_sgprs = MAX2(config_in->num_sgprs, args->ac.num_sgprs_used + 2 + 3); |
| unsigned num_shared_vgprs = config_in->num_shared_vgprs; |
| /* shared VGPRs are introduced in Navi and are allocated in blocks of 8 (RDNA ref 3.6.5) */ |
| assert((pdevice->rad_info.gfx_level >= GFX10 && num_shared_vgprs % 8 == 0) || |
| (pdevice->rad_info.gfx_level < GFX10 && num_shared_vgprs == 0)); |
| unsigned num_shared_vgpr_blocks = num_shared_vgprs / 8; |
| unsigned excp_en = 0; |
| |
| *config_out = *config_in; |
| config_out->num_vgprs = num_vgprs; |
| config_out->num_sgprs = num_sgprs; |
| config_out->num_shared_vgprs = num_shared_vgprs; |
| |
| config_out->rsrc2 = S_00B12C_USER_SGPR(args->num_user_sgprs) | |
| S_00B12C_SCRATCH_EN(scratch_enabled) | S_00B12C_TRAP_PRESENT(trap_enabled); |
| |
| if (trap_enabled) { |
| /* Configure the shader exceptions like memory violation, etc. |
| * TODO: Enable (and validate) more exceptions. |
| */ |
| excp_en = 1 << 8; /* mem_viol */ |
| } |
| |
| if (!pdevice->use_ngg_streamout) { |
| config_out->rsrc2 |= |
| S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) | S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) | |
| S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) | S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) | |
| S_00B12C_SO_EN(!!info->so.num_outputs); |
| } |
| |
| config_out->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) / (info->wave_size == 32 ? 8 : 4)) | |
| S_00B848_DX10_CLAMP(1) | S_00B848_FLOAT_MODE(config_out->float_mode); |
| |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(args->num_user_sgprs >> 5); |
| } else { |
| config_out->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8); |
| config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(args->num_user_sgprs >> 5); |
| } |
| |
| bool wgp_mode = radv_should_use_wgp_mode(device, stage, info); |
| |
| switch (stage) { |
| case MESA_SHADER_TESS_EVAL: |
| if (info->is_ngg) { |
| config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10); |
| config_out->rsrc2 |= S_00B22C_OC_LDS_EN(1) | S_00B22C_EXCP_EN(excp_en); |
| } else if (info->tes.as_es) { |
| assert(pdevice->rad_info.gfx_level <= GFX8); |
| vgpr_comp_cnt = info->uses_prim_id ? 3 : 2; |
| |
| config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en); |
| } else { |
| bool enable_prim_id = info->outinfo.export_prim_id || info->uses_prim_id; |
| vgpr_comp_cnt = enable_prim_id ? 3 : 2; |
| |
| config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10); |
| config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en); |
| } |
| config_out->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks); |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| if (pdevice->rad_info.gfx_level >= GFX9) { |
| /* We need at least 2 components for LS. |
| * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID). |
| * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. |
| */ |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| if (info->vs.needs_instance_id) { |
| vgpr_comp_cnt = 3; |
| } else if (pdevice->rad_info.gfx_level <= GFX10_3) { |
| vgpr_comp_cnt = 1; |
| } |
| config_out->rsrc2 |= S_00B42C_EXCP_EN_GFX6(excp_en); |
| } else { |
| vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1; |
| config_out->rsrc2 |= S_00B42C_EXCP_EN_GFX9(excp_en); |
| } |
| } else { |
| config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en); |
| } |
| config_out->rsrc1 |= |
| S_00B428_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10) | S_00B428_WGP_MODE(wgp_mode); |
| config_out->rsrc2 |= S_00B42C_SHARED_VGPR_CNT(num_shared_vgpr_blocks); |
| break; |
| case MESA_SHADER_VERTEX: |
| if (info->is_ngg) { |
| config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10); |
| } else if (info->vs.as_ls) { |
| assert(pdevice->rad_info.gfx_level <= GFX8); |
| /* We need at least 2 components for LS. |
| * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID). |
| * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. |
| */ |
| vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1; |
| } else if (info->vs.as_es) { |
| assert(pdevice->rad_info.gfx_level <= GFX8); |
| /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */ |
| vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0; |
| } else { |
| /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID) |
| * If PrimID is disabled. InstanceID / StepRate1 is loaded instead. |
| * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. |
| */ |
| if (info->vs.needs_instance_id && pdevice->rad_info.gfx_level >= GFX10) { |
| vgpr_comp_cnt = 3; |
| } else if (info->outinfo.export_prim_id) { |
| vgpr_comp_cnt = 2; |
| } else if (info->vs.needs_instance_id) { |
| vgpr_comp_cnt = 1; |
| } else { |
| vgpr_comp_cnt = 0; |
| } |
| |
| config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10); |
| } |
| config_out->rsrc2 |= |
| S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en); |
| break; |
| case MESA_SHADER_MESH: |
| config_out->rsrc1 |= S_00B228_MEM_ORDERED(1); |
| config_out->rsrc2 |= |
| S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en); |
| break; |
| case MESA_SHADER_FRAGMENT: |
| config_out->rsrc1 |= S_00B028_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10); |
| config_out->rsrc2 |= S_00B02C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | |
| S_00B02C_EXCP_EN(excp_en); |
| break; |
| case MESA_SHADER_GEOMETRY: |
| config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10); |
| config_out->rsrc2 |= |
| S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B22C_EXCP_EN(excp_en); |
| break; |
| case MESA_SHADER_COMPUTE: |
| case MESA_SHADER_TASK: |
| config_out->rsrc1 |= |
| S_00B848_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10) | S_00B848_WGP_MODE(wgp_mode); |
| config_out->rsrc2 |= S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) | |
| S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) | |
| S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) | |
| S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 |
| : info->cs.uses_thread_id[1] ? 1 |
| : 0) | |
| S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) | |
| S_00B84C_LDS_SIZE(config_in->lds_size) | S_00B84C_EXCP_EN(excp_en); |
| config_out->rsrc3 |= S_00B8A0_SHARED_VGPR_CNT(num_shared_vgpr_blocks); |
| |
| break; |
| default: |
| unreachable("unsupported shader type"); |
| break; |
| } |
| |
| if (pdevice->rad_info.gfx_level >= GFX10 && info->is_ngg && |
| (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || |
| stage == MESA_SHADER_GEOMETRY || stage == MESA_SHADER_MESH)) { |
| unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt; |
| gl_shader_stage es_stage = stage; |
| if (stage == MESA_SHADER_GEOMETRY) |
| es_stage = info->gs.es_type; |
| |
| /* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID) */ |
| if (es_stage == MESA_SHADER_VERTEX) { |
| es_vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 0; |
| } else if (es_stage == MESA_SHADER_TESS_EVAL) { |
| bool enable_prim_id = info->outinfo.export_prim_id || info->uses_prim_id; |
| es_vgpr_comp_cnt = enable_prim_id ? 3 : 2; |
| } else if (es_stage == MESA_SHADER_MESH) { |
| es_vgpr_comp_cnt = 0; |
| } else { |
| unreachable("Unexpected ES shader stage"); |
| } |
| |
| /* GS vertex offsets in NGG: |
| * - in passthrough mode, they are all packed into VGPR0 |
| * - in the default mode: VGPR0: offsets 0, 1; VGPR1: offsets 2, 3 |
| * |
| * The vertex offset 2 is always needed when NGG isn't in passthrough mode |
| * and uses triangle input primitives, including with NGG culling. |
| */ |
| bool need_gs_vtx_offset2 = !info->is_ngg_passthrough || info->gs.vertices_in >= 3; |
| |
| /* TES only needs vertex offset 2 for triangles or quads. */ |
| if (stage == MESA_SHADER_TESS_EVAL) |
| need_gs_vtx_offset2 &= info->tes._primitive_mode == TESS_PRIMITIVE_TRIANGLES || |
| info->tes._primitive_mode == TESS_PRIMITIVE_QUADS; |
| |
| if (info->uses_invocation_id) { |
| gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ |
| } else if (info->uses_prim_id || (es_stage == MESA_SHADER_VERTEX && |
| info->outinfo.export_prim_id)) { |
| gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ |
| } else if (need_gs_vtx_offset2) { |
| gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ |
| } else { |
| gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 (or passthrough prim) */ |
| } |
| |
| /* Disable the WGP mode on gfx10.3 because it can hang. (it |
| * happened on VanGogh) Let's disable it on all chips that |
| * disable exactly 1 CU per SA for GS. |
| */ |
| config_out->rsrc1 |= |
| S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode); |
| config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | |
| S_00B22C_LDS_SIZE(config_in->lds_size) | |
| S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL); |
| } else if (pdevice->rad_info.gfx_level >= GFX9 && stage == MESA_SHADER_GEOMETRY) { |
| unsigned es_type = info->gs.es_type; |
| unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt; |
| |
| if (es_type == MESA_SHADER_VERTEX) { |
| /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */ |
| if (info->vs.needs_instance_id) { |
| es_vgpr_comp_cnt = pdevice->rad_info.gfx_level >= GFX10 ? 3 : 1; |
| } else { |
| es_vgpr_comp_cnt = 0; |
| } |
| } else if (es_type == MESA_SHADER_TESS_EVAL) { |
| es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2; |
| } else { |
| unreachable("invalid shader ES type"); |
| } |
| |
| /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and |
| * VGPR[0:4] are always loaded. |
| */ |
| if (info->uses_invocation_id) { |
| gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ |
| } else if (info->uses_prim_id) { |
| gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ |
| } else if (info->gs.vertices_in >= 3) { |
| gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ |
| } else { |
| gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ |
| } |
| |
| config_out->rsrc1 |= |
| S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode); |
| config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | |
| S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL); |
| } else if (pdevice->rad_info.gfx_level >= GFX9 && stage == MESA_SHADER_TESS_CTRL) { |
| config_out->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt); |
| } else { |
| config_out->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt); |
| } |
| } |
| |
| #if defined(USE_LIBELF) |
| static bool |
| radv_open_rtld_binary(struct radv_device *device, const struct radv_shader *shader, |
| const struct radv_shader_binary *binary, struct ac_rtld_binary *rtld_binary) |
| { |
| const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data; |
| size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size; |
| struct ac_rtld_symbol lds_symbols[3]; |
| unsigned num_lds_symbols = 0; |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX9 && |
| (binary->stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg) && |
| !binary->is_gs_copy_shader) { |
| struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; |
| sym->name = "esgs_ring"; |
| sym->size = binary->info.ngg_info.esgs_ring_size; |
| sym->align = 64 * 1024; |
| } |
| |
| if (binary->info.is_ngg && binary->stage == MESA_SHADER_GEOMETRY) { |
| struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; |
| sym->name = "ngg_emit"; |
| sym->size = binary->info.ngg_info.ngg_emit_size * 4; |
| sym->align = 4; |
| |
| sym = &lds_symbols[num_lds_symbols++]; |
| sym->name = "ngg_scratch"; |
| sym->size = 8; |
| sym->align = 4; |
| } |
| |
| struct ac_rtld_open_info open_info = { |
| .info = &device->physical_device->rad_info, |
| .shader_type = binary->stage, |
| .wave_size = binary->info.wave_size, |
| .num_parts = 1, |
| .elf_ptrs = &elf_data, |
| .elf_sizes = &elf_size, |
| .num_shared_lds_symbols = num_lds_symbols, |
| .shared_lds_symbols = lds_symbols, |
| }; |
| |
| return ac_rtld_open(rtld_binary, open_info); |
| } |
| #endif |
| |
| bool |
| radv_shader_binary_upload(struct radv_device *device, const struct radv_shader_binary *binary, |
| struct radv_shader *shader, void *dest_ptr) |
| { |
| if (binary->type == RADV_BINARY_TYPE_RTLD) { |
| #if !defined(USE_LIBELF) |
| return false; |
| #else |
| struct ac_rtld_binary rtld_binary = {0}; |
| |
| if (!radv_open_rtld_binary(device, shader, binary, &rtld_binary)) { |
| free(shader); |
| return false; |
| } |
| |
| struct ac_rtld_upload_info info = { |
| .binary = &rtld_binary, |
| .rx_va = radv_shader_get_va(shader), |
| .rx_ptr = dest_ptr, |
| }; |
| |
| if (!ac_rtld_upload(&info)) { |
| radv_shader_unref(device, shader); |
| ac_rtld_close(&rtld_binary); |
| return false; |
| } |
| |
| shader->code_ptr = dest_ptr; |
| ac_rtld_close(&rtld_binary); |
| #endif |
| } else { |
| struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary; |
| memcpy(dest_ptr, bin->data + bin->stats_size, bin->code_size); |
| |
| /* Add end-of-code markers for the UMR disassembler. */ |
| uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4; |
| for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++) |
| ptr32[i] = DEBUGGER_END_OF_CODE_MARKER; |
| |
| shader->code_ptr = dest_ptr; |
| } |
| |
| return true; |
| } |
| |
| struct radv_shader * |
| radv_shader_create(struct radv_device *device, const struct radv_shader_binary *binary, |
| bool keep_shader_info, bool from_cache, const struct radv_shader_args *args) |
| { |
| struct ac_shader_config config = {0}; |
| struct radv_shader *shader = calloc(1, sizeof(struct radv_shader)); |
| if (!shader) |
| return NULL; |
| |
| shader->ref_count = 1; |
| |
| if (binary->type == RADV_BINARY_TYPE_RTLD) { |
| #if !defined(USE_LIBELF) |
| free(shader); |
| return NULL; |
| #else |
| struct ac_rtld_binary rtld_binary = {0}; |
| |
| if (!radv_open_rtld_binary(device, shader, binary, &rtld_binary)) { |
| free(shader); |
| return NULL; |
| } |
| |
| if (!ac_rtld_read_config(&device->physical_device->rad_info, &rtld_binary, &config)) { |
| ac_rtld_close(&rtld_binary); |
| free(shader); |
| return NULL; |
| } |
| |
| if (rtld_binary.lds_size > 0) { |
| unsigned encode_granularity = device->physical_device->rad_info.lds_encode_granularity; |
| config.lds_size = DIV_ROUND_UP(rtld_binary.lds_size, encode_granularity); |
| } |
| if (!config.lds_size && binary->stage == MESA_SHADER_TESS_CTRL) { |
| /* This is used for reporting LDS statistics */ |
| config.lds_size = binary->info.tcs.num_lds_blocks; |
| } |
| |
| assert(!binary->info.has_ngg_culling || config.lds_size); |
| |
| shader->code_size = rtld_binary.rx_size; |
| shader->exec_size = rtld_binary.exec_size; |
| ac_rtld_close(&rtld_binary); |
| #endif |
| } else { |
| assert(binary->type == RADV_BINARY_TYPE_LEGACY); |
| config = ((struct radv_shader_binary_legacy *)binary)->base.config; |
| shader->code_size = |
| radv_get_shader_binary_size(((struct radv_shader_binary_legacy *)binary)->code_size); |
| shader->exec_size = ((struct radv_shader_binary_legacy *)binary)->exec_size; |
| } |
| |
| shader->info = binary->info; |
| |
| if (from_cache) { |
| /* Copy the shader binary configuration from the cache. */ |
| memcpy(&shader->config, &binary->config, sizeof(shader->config)); |
| } else { |
| assert(args); |
| radv_postprocess_config(device, &config, &binary->info, binary->stage, args, &shader->config); |
| } |
| |
| if (binary->type == RADV_BINARY_TYPE_RTLD) { |
| #if !defined(USE_LIBELF) |
| free(shader); |
| return NULL; |
| #else |
| struct radv_shader_binary_rtld *bin = (struct radv_shader_binary_rtld *)binary; |
| struct ac_rtld_binary rtld_binary = {0}; |
| |
| if (!radv_open_rtld_binary(device, shader, binary, &rtld_binary)) { |
| free(shader); |
| return NULL; |
| } |
| |
| if (keep_shader_info || (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) { |
| const char *disasm_data; |
| size_t disasm_size; |
| if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data, |
| &disasm_size)) { |
| radv_shader_unref(device, shader); |
| ac_rtld_close(&rtld_binary); |
| return NULL; |
| } |
| |
| shader->ir_string = |
| bin->llvm_ir_size ? strdup((const char *)(bin->data + bin->elf_size)) : NULL; |
| shader->disasm_string = malloc(disasm_size + 1); |
| memcpy(shader->disasm_string, disasm_data, disasm_size); |
| shader->disasm_string[disasm_size] = 0; |
| } |
| ac_rtld_close(&rtld_binary); |
| #endif |
| } else { |
| struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary; |
| |
| shader->ir_string = |
| bin->ir_size ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size)) : NULL; |
| shader->disasm_string = |
| bin->disasm_size |
| ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size + bin->ir_size)) |
| : NULL; |
| |
| if (bin->stats_size) { |
| shader->statistics = calloc(bin->stats_size, 1); |
| memcpy(shader->statistics, bin->data, bin->stats_size); |
| } |
| } |
| return shader; |
| } |
| |
| static struct radv_shader_part * |
| radv_shader_part_create(struct radv_shader_part_binary *binary, unsigned wave_size) |
| { |
| uint32_t code_size = radv_get_shader_binary_size(binary->code_size); |
| struct radv_shader_part *shader_part; |
| |
| shader_part = calloc(1, sizeof(struct radv_shader_part)); |
| if (!shader_part) |
| return NULL; |
| |
| shader_part->ref_count = 1; |
| shader_part->binary = binary; |
| shader_part->code_size = code_size; |
| shader_part->rsrc1 = S_00B848_VGPRS((binary->num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) | |
| S_00B228_SGPRS((binary->num_sgprs - 1) / 8); |
| shader_part->num_preserved_sgprs = binary->num_preserved_sgprs; |
| shader_part->disasm_string = |
| binary->disasm_size ? strdup((const char *)(binary->data + binary->code_size)) : NULL; |
| |
| return shader_part; |
| } |
| |
| void |
| radv_shader_part_binary_upload(const struct radv_shader_part_binary *binary, void *dest_ptr) |
| { |
| memcpy(dest_ptr, binary->data, binary->code_size); |
| |
| /* Add end-of-code markers for the UMR disassembler. */ |
| uint32_t *ptr32 = (uint32_t *)dest_ptr + binary->code_size / 4; |
| for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++) |
| ptr32[i] = DEBUGGER_END_OF_CODE_MARKER; |
| } |
| |
| static char * |
| radv_dump_nir_shaders(struct nir_shader *const *shaders, int shader_count) |
| { |
| char *data = NULL; |
| char *ret = NULL; |
| size_t size = 0; |
| struct u_memstream mem; |
| if (u_memstream_open(&mem, &data, &size)) { |
| FILE *const memf = u_memstream_get(&mem); |
| for (int i = 0; i < shader_count; ++i) |
| nir_print_shader(shaders[i], memf); |
| u_memstream_close(&mem); |
| } |
| |
| ret = malloc(size + 1); |
| if (ret) { |
| memcpy(ret, data, size); |
| ret[size] = 0; |
| } |
| free(data); |
| return ret; |
| } |
| |
| static void |
| radv_aco_build_shader_binary(void **bin, |
| gl_shader_stage stage, |
| bool is_gs_copy_shader, |
| const struct ac_shader_config *config, |
| const char *llvm_ir_str, |
| unsigned llvm_ir_size, |
| const char *disasm_str, |
| unsigned disasm_size, |
| uint32_t *statistics, |
| uint32_t stats_size, |
| uint32_t exec_size, |
| const uint32_t *code, |
| uint32_t code_dw) |
| { |
| struct radv_shader_binary **binary = (struct radv_shader_binary **)bin; |
| size_t size = llvm_ir_size; |
| |
| size += disasm_size; |
| size += stats_size; |
| |
| size += code_dw * sizeof(uint32_t) + sizeof(struct radv_shader_binary_legacy); |
| |
| /* We need to calloc to prevent unintialized data because this will be used |
| * directly for the disk cache. Uninitialized data can appear because of |
| * padding in the struct or because legacy_binary->data can be at an offset |
| * from the start less than sizeof(radv_shader_binary_legacy). */ |
| struct radv_shader_binary_legacy *legacy_binary = (struct radv_shader_binary_legacy *)calloc(size, 1); |
| legacy_binary->base.type = RADV_BINARY_TYPE_LEGACY; |
| legacy_binary->base.stage = stage; |
| legacy_binary->base.is_gs_copy_shader = is_gs_copy_shader; |
| legacy_binary->base.total_size = size; |
| legacy_binary->base.config = *config; |
| |
| if (stats_size) |
| memcpy(legacy_binary->data, statistics, stats_size); |
| legacy_binary->stats_size = stats_size; |
| |
| memcpy(legacy_binary->data + legacy_binary->stats_size, code, |
| code_dw * sizeof(uint32_t)); |
| legacy_binary->exec_size = exec_size; |
| legacy_binary->code_size = code_dw * sizeof(uint32_t); |
| |
| legacy_binary->disasm_size = 0; |
| legacy_binary->ir_size = llvm_ir_size; |
| |
| memcpy((char*)legacy_binary->data + legacy_binary->stats_size + legacy_binary->code_size, |
| llvm_ir_str, llvm_ir_size); |
| |
| legacy_binary->disasm_size = disasm_size; |
| if (disasm_size) { |
| memcpy((char*)legacy_binary->data + legacy_binary->stats_size + |
| legacy_binary->code_size + llvm_ir_size, disasm_str, |
| disasm_size); |
| } |
| *binary = (struct radv_shader_binary*)legacy_binary; |
| } |
| |
| static struct radv_shader * |
| shader_compile(struct radv_device *device, struct nir_shader *const *shaders, int shader_count, gl_shader_stage stage, |
| const struct radv_shader_info *info, const struct radv_shader_args *args, |
| struct radv_nir_compiler_options *options, bool gs_copy_shader, |
| bool trap_handler_shader, bool keep_shader_info, bool keep_statistic_info, |
| struct radv_shader_binary **binary_out) |
| { |
| enum radeon_family chip_family = device->physical_device->rad_info.family; |
| struct radv_shader_binary *binary = NULL; |
| |
| struct radv_shader_debug_data debug_data = { |
| .device = device, |
| .object = NULL, |
| }; |
| |
| options->family = chip_family; |
| options->gfx_level = device->physical_device->rad_info.gfx_level; |
| options->has_3d_cube_border_color_mipmap = device->physical_device->rad_info.has_3d_cube_border_color_mipmap; |
| options->dump_shader = radv_can_dump_shader(device, shaders[0], gs_copy_shader || trap_handler_shader); |
| options->dump_preoptir = |
| options->dump_shader && device->instance->debug_flags & RADV_DEBUG_PREOPTIR; |
| options->record_ir = keep_shader_info; |
| options->record_stats = keep_statistic_info; |
| options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR; |
| options->address32_hi = device->physical_device->rad_info.address32_hi; |
| options->has_ls_vgpr_init_bug = device->physical_device->rad_info.has_ls_vgpr_init_bug; |
| options->enable_mrt_output_nan_fixup = |
| !is_meta_shader(shaders[0]) && options->key.ps.enable_mrt_output_nan_fixup; |
| options->debug.func = radv_compiler_debug; |
| options->debug.private_data = &debug_data; |
| |
| #ifdef LLVM_AVAILABLE |
| if (radv_use_llvm_for_stage(device, stage) || options->dump_shader || options->record_ir) |
| ac_init_llvm_once(); |
| |
| if (radv_use_llvm_for_stage(device, stage)) { |
| llvm_compile_shader(options, info, shader_count, shaders, &binary, args); |
| #else |
| if (false) { |
| #endif |
| } else { |
| struct aco_shader_info ac_info; |
| struct aco_compiler_options ac_opts; |
| radv_aco_convert_opts(&ac_opts, options); |
| radv_aco_convert_shader_info(&ac_info, info); |
| aco_compile_shader(&ac_opts, &ac_info, shader_count, shaders, args, &radv_aco_build_shader_binary, (void **)&binary); |
| } |
| |
| binary->info = *info; |
| |
| struct radv_shader *shader = radv_shader_create(device, binary, keep_shader_info, false, args); |
| if (!shader) { |
| free(binary); |
| return NULL; |
| } |
| |
| if (options->dump_shader) { |
| fprintf(stderr, "%s", radv_get_shader_name(info, shaders[0]->info.stage)); |
| for (int i = 1; i < shader_count; ++i) |
| fprintf(stderr, " + %s", radv_get_shader_name(info, shaders[i]->info.stage)); |
| |
| fprintf(stderr, "\ndisasm:\n%s\n", shader->disasm_string); |
| } |
| |
| if (keep_shader_info) { |
| shader->nir_string = radv_dump_nir_shaders(shaders, shader_count); |
| } |
| |
| /* Copy the shader binary configuration to store it in the cache. */ |
| memcpy(&binary->config, &shader->config, sizeof(binary->config)); |
| |
| *binary_out = binary; |
| return shader; |
| } |
| |
| struct radv_shader * |
| radv_shader_nir_to_asm(struct radv_device *device, struct radv_pipeline_stage *pl_stage, |
| struct nir_shader *const *shaders, int shader_count, |
| const struct radv_pipeline_key *key, bool keep_shader_info, |
| bool keep_statistic_info, struct radv_shader_binary **binary_out) |
| { |
| gl_shader_stage stage = shaders[shader_count - 1]->info.stage; |
| struct radv_nir_compiler_options options = {0}; |
| |
| if (key) |
| options.key = *key; |
| |
| options.robust_buffer_access = device->robust_buffer_access; |
| options.wgp_mode = radv_should_use_wgp_mode(device, stage, &pl_stage->info); |
| |
| return shader_compile(device, shaders, shader_count, stage, &pl_stage->info, |
| &pl_stage->args, &options, false, false, keep_shader_info, |
| keep_statistic_info, binary_out); |
| } |
| |
| struct radv_shader * |
| radv_create_gs_copy_shader(struct radv_device *device, struct nir_shader *shader, |
| const struct radv_shader_info *info, const struct radv_shader_args *args, |
| struct radv_shader_binary **binary_out, bool keep_shader_info, |
| bool keep_statistic_info, bool disable_optimizations) |
| { |
| struct radv_nir_compiler_options options = {0}; |
| gl_shader_stage stage = MESA_SHADER_VERTEX; |
| |
| options.key.optimisations_disabled = disable_optimizations; |
| |
| return shader_compile(device, &shader, 1, stage, info, args, &options, true, false, |
| keep_shader_info, keep_statistic_info, binary_out); |
| } |
| |
| struct radv_trap_handler_shader * |
| radv_create_trap_handler_shader(struct radv_device *device) |
| { |
| struct radv_nir_compiler_options options = {0}; |
| struct radv_shader *shader = NULL; |
| struct radv_shader_binary *binary = NULL; |
| struct radv_shader_info info = {0}; |
| struct radv_pipeline_key key = {0}; |
| struct radv_trap_handler_shader *trap; |
| |
| trap = malloc(sizeof(struct radv_trap_handler_shader)); |
| if (!trap) |
| return NULL; |
| |
| nir_builder b = radv_meta_init_shader(device, MESA_SHADER_COMPUTE, "meta_trap_handler"); |
| |
| options.wgp_mode = radv_should_use_wgp_mode(device, MESA_SHADER_COMPUTE, &info); |
| info.wave_size = 64; |
| |
| struct radv_shader_args args; |
| args.explicit_scratch_args = true; |
| args.is_trap_handler_shader = true; |
| radv_declare_shader_args(device->physical_device->rad_info.gfx_level, &key, &info, |
| MESA_SHADER_COMPUTE, false, MESA_SHADER_VERTEX, &args); |
| |
| shader = shader_compile(device, &b.shader, 1, MESA_SHADER_COMPUTE, &info, &args, &options, |
| false, true, false, false, &binary); |
| |
| trap->alloc = radv_alloc_shader_memory(device, shader->code_size, NULL); |
| |
| trap->bo = trap->alloc->arena->bo; |
| char *dest_ptr = trap->alloc->arena->ptr + trap->alloc->offset; |
| |
| struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary; |
| memcpy(dest_ptr, bin->data, bin->code_size); |
| |
| ralloc_free(b.shader); |
| free(shader); |
| free(binary); |
| |
| return trap; |
| } |
| |
| uint64_t radv_trap_handler_shader_get_va(const struct radv_trap_handler_shader *trap) |
| { |
| return radv_buffer_get_va(trap->alloc->arena->bo) + trap->alloc->offset; |
| } |
| |
| void |
| radv_trap_handler_shader_destroy(struct radv_device *device, struct radv_trap_handler_shader *trap) |
| { |
| if (!trap) |
| return; |
| |
| radv_free_shader_memory(device, trap->alloc); |
| free(trap); |
| } |
| |
| static void radv_aco_build_shader_part(void **bin, |
| uint32_t num_sgprs, |
| uint32_t num_vgprs, |
| uint32_t num_preserved_sgprs, |
| const uint32_t *code, |
| uint32_t code_size, |
| const char *disasm_str, |
| uint32_t disasm_size) |
| { |
| struct radv_shader_part_binary **binary = (struct radv_shader_part_binary **)bin; |
| size_t size = code_size * sizeof(uint32_t) + sizeof(struct radv_shader_part_binary); |
| |
| size += disasm_size; |
| struct radv_shader_part_binary *part_binary = (struct radv_shader_part_binary *)calloc(size, 1); |
| |
| part_binary->num_sgprs = num_sgprs; |
| part_binary->num_vgprs = num_vgprs; |
| part_binary->num_preserved_sgprs = num_preserved_sgprs; |
| part_binary->code_size = code_size * sizeof(uint32_t); |
| memcpy(part_binary->data, code, part_binary->code_size); |
| if (disasm_size) { |
| memcpy((char*)part_binary->data + part_binary->code_size, |
| disasm_str, disasm_size); |
| part_binary->disasm_size = disasm_size; |
| } |
| |
| *binary = part_binary; |
| } |
| |
| struct radv_shader_part * |
| radv_create_vs_prolog(struct radv_device *device, const struct radv_vs_prolog_key *key) |
| { |
| struct radv_shader_part *prolog; |
| struct radv_shader_args args = {0}; |
| struct radv_nir_compiler_options options = {0}; |
| options.family = device->physical_device->rad_info.family; |
| options.gfx_level = device->physical_device->rad_info.gfx_level; |
| options.has_3d_cube_border_color_mipmap = device->physical_device->rad_info.has_3d_cube_border_color_mipmap; |
| options.address32_hi = device->physical_device->rad_info.address32_hi; |
| options.dump_shader = device->instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS; |
| options.record_ir = device->instance->debug_flags & RADV_DEBUG_HANG; |
| |
| struct radv_shader_info info = {0}; |
| info.wave_size = key->wave32 ? 32 : 64; |
| info.vs.needs_instance_id = true; |
| info.vs.needs_base_instance = true; |
| info.vs.needs_draw_id = true; |
| info.vs.use_per_attribute_vb_descs = true; |
| info.vs.vb_desc_usage_mask = BITFIELD_MASK(key->num_attributes); |
| info.vs.has_prolog = true; |
| info.vs.as_ls = key->as_ls; |
| info.is_ngg = key->is_ngg; |
| |
| struct radv_pipeline_key pipeline_key = {0}; |
| |
| args.explicit_scratch_args = true; |
| radv_declare_shader_args(options.gfx_level, &pipeline_key, &info, key->next_stage, |
| key->next_stage != MESA_SHADER_VERTEX, MESA_SHADER_VERTEX, &args); |
| |
| info.user_sgprs_locs = args.user_sgprs_locs; |
| info.inline_push_constant_mask = args.ac.inline_push_const_mask; |
| |
| #ifdef LLVM_AVAILABLE |
| if (options.dump_shader || options.record_ir) |
| ac_init_llvm_once(); |
| #endif |
| |
| struct radv_shader_part_binary *binary = NULL; |
| struct aco_shader_info ac_info; |
| struct aco_vs_prolog_key ac_key; |
| struct aco_compiler_options ac_opts; |
| radv_aco_convert_shader_info(&ac_info, &info); |
| radv_aco_convert_opts(&ac_opts, &options); |
| radv_aco_convert_vs_prolog_key(&ac_key, key); |
| aco_compile_vs_prolog(&ac_opts, &ac_info, &ac_key, &args, &radv_aco_build_shader_part, |
| (void **)&binary); |
| |
| prolog = radv_shader_part_create(binary, info.wave_size); |
| if (!prolog) |
| goto fail_create; |
| |
| prolog->nontrivial_divisors = key->state->nontrivial_divisors; |
| |
| /* Allocate memory and upload the prolog. */ |
| prolog->alloc = radv_alloc_shader_memory(device, prolog->code_size, NULL); |
| if (!prolog->alloc) |
| goto fail_alloc; |
| |
| prolog->bo = prolog->alloc->arena->bo; |
| prolog->va = radv_buffer_get_va(prolog->bo) + prolog->alloc->offset; |
| |
| void *dest_ptr = prolog->alloc->arena->ptr + prolog->alloc->offset; |
| radv_shader_part_binary_upload(binary, dest_ptr); |
| |
| if (options.dump_shader) { |
| fprintf(stderr, "Vertex prolog"); |
| fprintf(stderr, "\ndisasm:\n%s\n", prolog->disasm_string); |
| } |
| |
| free(prolog->binary); |
| prolog->binary = NULL; |
| |
| return prolog; |
| |
| fail_alloc: |
| radv_shader_part_destroy(device, prolog); |
| fail_create: |
| free(binary); |
| return NULL; |
| } |
| |
| struct radv_shader_part * |
| radv_create_ps_epilog(struct radv_device *device, const struct radv_ps_epilog_key *key) |
| { |
| struct radv_shader_part *epilog; |
| struct radv_shader_args args = {0}; |
| struct radv_nir_compiler_options options = {0}; |
| options.family = device->physical_device->rad_info.family; |
| options.gfx_level = device->physical_device->rad_info.gfx_level; |
| options.address32_hi = device->physical_device->rad_info.address32_hi; |
| options.dump_shader = device->instance->debug_flags & RADV_DEBUG_DUMP_EPILOGS; |
| options.record_ir = device->instance->debug_flags & RADV_DEBUG_HANG; |
| options.dump_preoptir = device->instance->debug_flags & RADV_DEBUG_DUMP_EPILOGS; |
| options.dump_shader = device->instance->debug_flags & RADV_DEBUG_DUMP_EPILOGS; |
| |
| struct radv_shader_info info = {0}; |
| info.wave_size = key->wave32 ? 32 : 64; |
| info.workgroup_size = 64; |
| |
| radv_declare_ps_epilog_args(device->physical_device->rad_info.gfx_level, key, &args); |
| |
| #ifdef LLVM_AVAILABLE |
| if (options.dump_shader || options.record_ir) |
| ac_init_llvm_once(); |
| #endif |
| |
| struct radv_shader_part_binary *binary = NULL; |
| struct aco_shader_info ac_info; |
| struct aco_ps_epilog_key ac_key; |
| struct aco_compiler_options ac_opts; |
| radv_aco_convert_shader_info(&ac_info, &info); |
| radv_aco_convert_opts(&ac_opts, &options); |
| radv_aco_convert_ps_epilog_key(&ac_key, key); |
| aco_compile_ps_epilog(&ac_opts, &ac_info, &ac_key, &args, &radv_aco_build_shader_part, |
| (void **)&binary); |
| |
| epilog = radv_shader_part_create(binary, info.wave_size); |
| if (!epilog) |
| goto fail_create; |
| |
| /* Allocate memory and upload the epilog. */ |
| epilog->alloc = radv_alloc_shader_memory(device, epilog->code_size, NULL); |
| if (!epilog->alloc) |
| goto fail_alloc; |
| |
| epilog->bo = epilog->alloc->arena->bo; |
| epilog->va = radv_buffer_get_va(epilog->bo) + epilog->alloc->offset; |
| |
| void *dest_ptr = epilog->alloc->arena->ptr + epilog->alloc->offset; |
| radv_shader_part_binary_upload(binary, dest_ptr); |
| |
| if (options.dump_shader) { |
| fprintf(stderr, "Fragment epilog"); |
| fprintf(stderr, "\ndisasm:\n%s\n", epilog->disasm_string); |
| } |
| |
| free(epilog->binary); |
| epilog->binary = NULL; |
| |
| return epilog; |
| |
| fail_alloc: |
| radv_shader_part_destroy(device, epilog); |
| fail_create: |
| free(binary); |
| return NULL; |
| } |
| |
| void |
| radv_shader_destroy(struct radv_device *device, struct radv_shader *shader) |
| { |
| assert(shader->ref_count == 0); |
| |
| free(shader->spirv); |
| free(shader->nir_string); |
| free(shader->disasm_string); |
| free(shader->ir_string); |
| free(shader->statistics); |
| free(shader); |
| } |
| |
| void |
| radv_shader_part_destroy(struct radv_device *device, struct radv_shader_part *shader_part) |
| { |
| assert(shader_part->ref_count == 0); |
| |
| if (shader_part->alloc) |
| radv_free_shader_memory(device, shader_part->alloc); |
| free(shader_part->binary); |
| free(shader_part->disasm_string); |
| free(shader_part); |
| } |
| |
| uint64_t |
| radv_shader_get_va(const struct radv_shader *shader) |
| { |
| return shader->va; |
| } |
| |
| struct radv_shader * |
| radv_find_shader(struct radv_device *device, uint64_t pc) |
| { |
| mtx_lock(&device->shader_arena_mutex); |
| list_for_each_entry(struct radv_shader_arena, arena, &device->shader_arenas, list) |
| { |
| #ifdef __GNUC__ |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wshadow" |
| #endif |
| list_for_each_entry(union radv_shader_arena_block, block, &arena->entries, list) |
| { |
| #ifdef __GNUC__ |
| #pragma GCC diagnostic pop |
| #endif |
| uint64_t start = radv_buffer_get_va(block->arena->bo) + block->offset; |
| if (!block->freelist.prev && pc >= start && pc < start + block->size) { |
| mtx_unlock(&device->shader_arena_mutex); |
| |
| struct radv_pipeline *pipeline = (struct radv_pipeline *)block->freelist.next; |
| for (uint32_t i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| struct radv_shader *shader = pipeline->shaders[i]; |
| if (!shader) |
| continue; |
| |
| if (pc >= shader->va && |
| pc < shader->va + align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT)) |
| return shader; |
| } |
| } |
| } |
| } |
| |
| mtx_unlock(&device->shader_arena_mutex); |
| return NULL; |
| } |
| |
| const char * |
| radv_get_shader_name(const struct radv_shader_info *info, gl_shader_stage stage) |
| { |
| switch (stage) { |
| case MESA_SHADER_VERTEX: |
| if (info->vs.as_ls) |
| return "Vertex Shader as LS"; |
| else if (info->vs.as_es) |
| return "Vertex Shader as ES"; |
| else if (info->is_ngg) |
| return "Vertex Shader as ESGS"; |
| else |
| return "Vertex Shader as VS"; |
| case MESA_SHADER_TESS_CTRL: |
| return "Tessellation Control Shader"; |
| case MESA_SHADER_TESS_EVAL: |
|