blob: 081ce4d1a825ddcc97393e00b1f5e2f9bb19f4f7 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/u_debug.h"
#include "util/disk_cache.h"
#include "util/macros.h"
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "vulkan/util/vk_util.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "aco_interface.h"
struct cache_entry {
union {
unsigned char sha1[SHA1_DIGEST_LENGTH];
uint32_t sha1_dw[5];
};
uint32_t binary_sizes[MESA_VULKAN_SHADER_STAGES];
uint32_t num_stack_sizes;
struct radv_shader *shaders[MESA_VULKAN_SHADER_STAGES];
struct radv_pipeline_slab *slab;
char code[0];
};
static void
radv_pipeline_cache_lock(struct radv_pipeline_cache *cache)
{
if (cache->flags & VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT)
return;
mtx_lock(&cache->mutex);
}
static void
radv_pipeline_cache_unlock(struct radv_pipeline_cache *cache)
{
if (cache->flags & VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT)
return;
mtx_unlock(&cache->mutex);
}
static bool
radv_is_cache_disabled(struct radv_device *device)
{
/* Pipeline caches can be disabled with RADV_DEBUG=nocache, with MESA_GLSL_CACHE_DISABLE=1 and
* when ACO_DEBUG is used. MESA_GLSL_CACHE_DISABLE is done elsewhere.
*/
return (device->instance->debug_flags & RADV_DEBUG_NO_CACHE) ||
(device->instance->perftest_flags & RADV_PERFTEST_GPL) ||
(device->physical_device->use_llvm ? 0 : aco_get_codegen_flags());
}
static void
radv_pipeline_cache_init(struct radv_pipeline_cache *cache, struct radv_device *device)
{
vk_object_base_init(&device->vk, &cache->base, VK_OBJECT_TYPE_PIPELINE_CACHE);
cache->device = device;
mtx_init(&cache->mutex, mtx_plain);
cache->flags = 0;
cache->kernel_count = 0;
cache->total_size = 0;
cache->table_size = 1024;
const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
cache->hash_table = malloc(byte_size);
/* We don't consider allocation failure fatal, we just start with a 0-sized
* cache. Disable caching when we want to keep shader debug info, since
* we don't get the debug info on cached shaders. */
if (cache->hash_table == NULL || radv_is_cache_disabled(device))
cache->table_size = 0;
else
memset(cache->hash_table, 0, byte_size);
}
static void
radv_pipeline_cache_finish(struct radv_pipeline_cache *cache)
{
for (unsigned i = 0; i < cache->table_size; ++i)
if (cache->hash_table[i]) {
for (int j = 0; j < MESA_VULKAN_SHADER_STAGES; ++j) {
if (cache->hash_table[i]->shaders[j])
radv_shader_unref(cache->device, cache->hash_table[i]->shaders[j]);
}
if (cache->hash_table[i]->slab)
radv_pipeline_slab_destroy(cache->device, cache->hash_table[i]->slab);
vk_free(&cache->alloc, cache->hash_table[i]);
}
mtx_destroy(&cache->mutex);
free(cache->hash_table);
vk_object_base_finish(&cache->base);
}
static uint32_t
entry_size(const struct cache_entry *entry)
{
size_t ret = sizeof(*entry);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
if (entry->binary_sizes[i])
ret += entry->binary_sizes[i];
ret += sizeof(struct radv_pipeline_shader_stack_size) * entry->num_stack_sizes;
ret = align(ret, alignof(struct cache_entry));
return ret;
}
void
radv_hash_shaders(unsigned char *hash, const struct radv_pipeline_stage *stages,
const struct radv_pipeline_layout *layout, const struct radv_pipeline_key *key,
uint32_t flags)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (key)
_mesa_sha1_update(&ctx, key, sizeof(*key));
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
_mesa_sha1_update(&ctx, stages[s].shader_sha1, sizeof(stages[s].shader_sha1));
}
_mesa_sha1_update(&ctx, &flags, 4);
_mesa_sha1_final(&ctx, hash);
}
void
radv_hash_rt_shaders(unsigned char *hash, const VkRayTracingPipelineCreateInfoKHR *pCreateInfo,
uint32_t flags)
{
RADV_FROM_HANDLE(radv_pipeline_layout, layout, pCreateInfo->layout);
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
for (uint32_t i = 0; i < pCreateInfo->stageCount; ++i) {
RADV_FROM_HANDLE(vk_shader_module, module, pCreateInfo->pStages[i].module);
const VkSpecializationInfo *spec_info = pCreateInfo->pStages[i].pSpecializationInfo;
const VkPipelineShaderStageModuleIdentifierCreateInfoEXT *iinfo =
vk_find_struct_const(pCreateInfo->pStages[i].pNext,
PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT);
if (module) {
_mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
} else {
assert(iinfo);
assert(iinfo->identifierSize <= VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT);
_mesa_sha1_update(&ctx, iinfo->pIdentifier, iinfo->identifierSize);
}
_mesa_sha1_update(&ctx, pCreateInfo->pStages[i].pName, strlen(pCreateInfo->pStages[i].pName));
if (spec_info && spec_info->mapEntryCount) {
_mesa_sha1_update(&ctx, spec_info->pMapEntries,
spec_info->mapEntryCount * sizeof spec_info->pMapEntries[0]);
_mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
}
}
for (uint32_t i = 0; i < pCreateInfo->groupCount; i++) {
_mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].type,
sizeof(pCreateInfo->pGroups[i].type));
_mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].generalShader,
sizeof(pCreateInfo->pGroups[i].generalShader));
_mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].anyHitShader,
sizeof(pCreateInfo->pGroups[i].anyHitShader));
_mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].closestHitShader,
sizeof(pCreateInfo->pGroups[i].closestHitShader));
_mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].intersectionShader,
sizeof(pCreateInfo->pGroups[i].intersectionShader));
}
if (!radv_rt_pipeline_has_dynamic_stack_size(pCreateInfo))
_mesa_sha1_update(&ctx, &pCreateInfo->maxPipelineRayRecursionDepth, 4);
const uint32_t pipeline_flags =
pCreateInfo->flags & (VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR |
VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR);
_mesa_sha1_update(&ctx, &pipeline_flags, 4);
_mesa_sha1_update(&ctx, &flags, 4);
_mesa_sha1_final(&ctx, hash);
}
static struct cache_entry *
radv_pipeline_cache_search_unlocked(struct radv_pipeline_cache *cache, const unsigned char *sha1)
{
const uint32_t mask = cache->table_size - 1;
const uint32_t start = (*(uint32_t *)sha1);
if (cache->table_size == 0)
return NULL;
for (uint32_t i = 0; i < cache->table_size; i++) {
const uint32_t index = (start + i) & mask;
struct cache_entry *entry = cache->hash_table[index];
if (!entry)
return NULL;
if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
return entry;
}
}
unreachable("hash table should never be full");
}
static struct cache_entry *
radv_pipeline_cache_search(struct radv_pipeline_cache *cache, const unsigned char *sha1)
{
struct cache_entry *entry;
radv_pipeline_cache_lock(cache);
entry = radv_pipeline_cache_search_unlocked(cache, sha1);
radv_pipeline_cache_unlock(cache);
return entry;
}
static void
radv_pipeline_cache_set_entry(struct radv_pipeline_cache *cache, struct cache_entry *entry)
{
const uint32_t mask = cache->table_size - 1;
const uint32_t start = entry->sha1_dw[0];
/* We'll always be able to insert when we get here. */
assert(cache->kernel_count < cache->table_size / 2);
for (uint32_t i = 0; i < cache->table_size; i++) {
const uint32_t index = (start + i) & mask;
if (!cache->hash_table[index]) {
cache->hash_table[index] = entry;
break;
}
}
cache->total_size += entry_size(entry);
cache->kernel_count++;
}
static VkResult
radv_pipeline_cache_grow(struct radv_pipeline_cache *cache)
{
const uint32_t table_size = cache->table_size * 2;
const uint32_t old_table_size = cache->table_size;
const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
struct cache_entry **table;
struct cache_entry **old_table = cache->hash_table;
table = malloc(byte_size);
if (table == NULL)
return vk_error(cache, VK_ERROR_OUT_OF_HOST_MEMORY);
cache->hash_table = table;
cache->table_size = table_size;
cache->kernel_count = 0;
cache->total_size = 0;
memset(cache->hash_table, 0, byte_size);
for (uint32_t i = 0; i < old_table_size; i++) {
struct cache_entry *entry = old_table[i];
if (!entry)
continue;
radv_pipeline_cache_set_entry(cache, entry);
}
free(old_table);
return VK_SUCCESS;
}
static void
radv_pipeline_cache_add_entry(struct radv_pipeline_cache *cache, struct cache_entry *entry)
{
if (cache->kernel_count == cache->table_size / 2)
radv_pipeline_cache_grow(cache);
/* Failing to grow that hash table isn't fatal, but may mean we don't
* have enough space to add this new kernel. Only add it if there's room.
*/
if (cache->kernel_count < cache->table_size / 2)
radv_pipeline_cache_set_entry(cache, entry);
}
bool
radv_create_shaders_from_pipeline_cache(
struct radv_device *device, struct radv_pipeline_cache *cache, const unsigned char *sha1,
struct radv_pipeline *pipeline, struct radv_pipeline_shader_stack_size **stack_sizes,
uint32_t *num_stack_sizes, bool *found_in_application_cache)
{
struct cache_entry *entry;
VkResult result;
if (!cache) {
cache = device->mem_cache;
*found_in_application_cache = false;
}
radv_pipeline_cache_lock(cache);
entry = radv_pipeline_cache_search_unlocked(cache, sha1);
if (!entry) {
*found_in_application_cache = false;
/* Don't cache when we want debug info, since this isn't
* present in the cache.
*/
if (radv_is_cache_disabled(device) || !device->physical_device->vk.disk_cache) {
radv_pipeline_cache_unlock(cache);
return false;
}
uint8_t disk_sha1[SHA1_DIGEST_LENGTH];
disk_cache_compute_key(device->physical_device->vk.disk_cache, sha1, SHA1_DIGEST_LENGTH, disk_sha1);
entry =
(struct cache_entry *)disk_cache_get(device->physical_device->vk.disk_cache, disk_sha1, NULL);
if (!entry) {
radv_pipeline_cache_unlock(cache);
return false;
} else {
size_t size = entry_size(entry);
struct cache_entry *new_entry =
vk_alloc(&cache->alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
if (!new_entry) {
free(entry);
radv_pipeline_cache_unlock(cache);
return false;
}
memcpy(new_entry, entry, entry_size(entry));
free(entry);
entry = new_entry;
if (!(device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE) ||
cache != device->mem_cache)
radv_pipeline_cache_add_entry(cache, new_entry);
}
}
struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL};
struct radv_shader_binary *gs_copy_binary = NULL;
bool needs_upload = false;
char *p = entry->code;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!entry->shaders[i] && entry->binary_sizes[i]) {
struct radv_shader_binary *binary = calloc(1, entry->binary_sizes[i]);
memcpy(binary, p, entry->binary_sizes[i]);
p += entry->binary_sizes[i];
entry->shaders[i] = radv_shader_create(device, binary, false, true, NULL);
needs_upload = true;
binaries[i] = binary;
} else if (entry->binary_sizes[i]) {
p += entry->binary_sizes[i];
}
}
memcpy(pipeline->shaders, entry->shaders, sizeof(entry->shaders));
if (pipeline->shaders[MESA_SHADER_GEOMETRY] &&
!pipeline->shaders[MESA_SHADER_GEOMETRY]->info.is_ngg) {
/* For the GS copy shader, RADV uses the compute shader slot to avoid a new cache entry. */
pipeline->gs_copy_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
pipeline->shaders[MESA_SHADER_COMPUTE] = NULL;
gs_copy_binary = binaries[MESA_SHADER_COMPUTE];
}
if (needs_upload) {
result = radv_upload_shaders(device, pipeline, binaries, gs_copy_binary);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (pipeline->shaders[i])
free(binaries[i]);
}
free(gs_copy_binary);
if (result != VK_SUCCESS) {
radv_pipeline_cache_unlock(cache);
return false;
}
entry->slab = pipeline->slab;
} else {
pipeline->slab = entry->slab;
pipeline->slab_bo = pipeline->slab->alloc->arena->bo;
}
if (num_stack_sizes) {
*num_stack_sizes = entry->num_stack_sizes;
if (entry->num_stack_sizes) {
*stack_sizes = malloc(entry->num_stack_sizes * sizeof(**stack_sizes));
memcpy(*stack_sizes, p, entry->num_stack_sizes * sizeof(**stack_sizes));
}
} else {
assert(!entry->num_stack_sizes);
}
p += entry->num_stack_sizes * sizeof(**stack_sizes);
if (device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE && cache == device->mem_cache)
vk_free(&cache->alloc, entry);
else {
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
if (entry->shaders[i])
radv_shader_ref(entry->shaders[i]);
p_atomic_inc(&entry->slab->ref_count);
}
assert((uintptr_t)p <= (uintptr_t)entry + entry_size(entry));
radv_pipeline_cache_unlock(cache);
return true;
}
void
radv_pipeline_cache_insert_shaders(struct radv_device *device, struct radv_pipeline_cache *cache,
const unsigned char *sha1, struct radv_pipeline *pipeline,
struct radv_shader_binary *const *binaries,
const struct radv_pipeline_shader_stack_size *stack_sizes,
uint32_t num_stack_sizes)
{
if (!cache)
cache = device->mem_cache;
radv_pipeline_cache_lock(cache);
struct cache_entry *entry = radv_pipeline_cache_search_unlocked(cache, sha1);
if (entry) {
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!entry->shaders[i])
continue;
radv_shader_unref(cache->device, pipeline->shaders[i]);
pipeline->shaders[i] = entry->shaders[i];
radv_shader_ref(pipeline->shaders[i]);
}
radv_pipeline_slab_destroy(cache->device, pipeline->slab);
pipeline->slab = entry->slab;
p_atomic_inc(&pipeline->slab->ref_count);
radv_pipeline_cache_unlock(cache);
return;
}
/* Don't cache when we want debug info, since this isn't
* present in the cache.
*/
if (radv_is_cache_disabled(device)) {
radv_pipeline_cache_unlock(cache);
return;
}
size_t size = sizeof(*entry) + sizeof(*stack_sizes) * num_stack_sizes;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
if (pipeline->shaders[i])
size += binaries[i]->total_size;
const size_t size_without_align = size;
size = align(size_without_align, alignof(struct cache_entry));
entry = vk_alloc(&cache->alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
if (!entry) {
radv_pipeline_cache_unlock(cache);
return;
}
memset(entry, 0, sizeof(*entry));
memcpy(entry->sha1, sha1, SHA1_DIGEST_LENGTH);
char *p = entry->code;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!pipeline->shaders[i])
continue;
entry->binary_sizes[i] = binaries[i]->total_size;
memcpy(p, binaries[i], binaries[i]->total_size);
p += binaries[i]->total_size;
}
if (num_stack_sizes) {
memcpy(p, stack_sizes, sizeof(*stack_sizes) * num_stack_sizes);
p += sizeof(*stack_sizes) * num_stack_sizes;
}
entry->num_stack_sizes = num_stack_sizes;
// Make valgrind happy by filling the alignment hole at the end.
assert(p == (char *)entry + size_without_align);
assert(sizeof(*entry) + (p - entry->code) == size_without_align);
memset((char *)entry + size_without_align, 0, size - size_without_align);
/* Always add cache items to disk. This will allow collection of
* compiled shaders by third parties such as steam, even if the app
* implements its own pipeline cache.
*
* Make sure to exclude meta shaders because they are stored in a different cache file.
*/
if (device->physical_device->vk.disk_cache && cache != radv_pipeline_cache_from_handle(device->meta_state.cache)) {
uint8_t disk_sha1[SHA1_DIGEST_LENGTH];
disk_cache_compute_key(device->physical_device->vk.disk_cache, sha1, SHA1_DIGEST_LENGTH, disk_sha1);
disk_cache_put(device->physical_device->vk.disk_cache, disk_sha1, entry, entry_size(entry),
NULL);
}
if (device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE && cache == device->mem_cache) {
vk_free2(&cache->alloc, NULL, entry);
radv_pipeline_cache_unlock(cache);
return;
}
/* We delay setting the shader so we have reproducible disk cache
* items.
*/
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!pipeline->shaders[i])
continue;
entry->shaders[i] = pipeline->shaders[i];
radv_shader_ref(pipeline->shaders[i]);
}
entry->slab = pipeline->slab;
p_atomic_inc(&pipeline->slab->ref_count);
radv_pipeline_cache_add_entry(cache, entry);
radv_pipeline_cache_unlock(cache);
return;
}
static bool
radv_pipeline_cache_load(struct radv_pipeline_cache *cache, const void *data, size_t size)
{
struct radv_device *device = cache->device;
struct vk_pipeline_cache_header header;
if (size < sizeof(header))
return false;
memcpy(&header, data, sizeof(header));
if (header.header_size < sizeof(header))
return false;
if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
return false;
if (header.vendor_id != ATI_VENDOR_ID)
return false;
if (header.device_id != device->physical_device->rad_info.pci_id)
return false;
if (memcmp(header.uuid, device->physical_device->cache_uuid, VK_UUID_SIZE) != 0)
return false;
char *end = (char *)data + size;
char *p = (char *)data + header.header_size;
while (end - p >= sizeof(struct cache_entry)) {
struct cache_entry *entry = (struct cache_entry *)p;
struct cache_entry *dest_entry;
size_t size_of_entry = entry_size(entry);
if (end - p < size_of_entry)
break;
dest_entry = vk_alloc(&cache->alloc, size_of_entry, 8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
if (dest_entry) {
memcpy(dest_entry, entry, size_of_entry);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
dest_entry->shaders[i] = NULL;
dest_entry->slab = NULL;
radv_pipeline_cache_add_entry(cache, dest_entry);
}
p += size_of_entry;
}
return true;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreatePipelineCache(VkDevice _device, const VkPipelineCacheCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineCache *pPipelineCache)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_pipeline_cache *cache;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
cache = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*cache), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cache == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
if (pAllocator)
cache->alloc = *pAllocator;
else
cache->alloc = device->vk.alloc;
radv_pipeline_cache_init(cache, device);
cache->flags = pCreateInfo->flags;
if (pCreateInfo->initialDataSize > 0) {
radv_pipeline_cache_load(cache, pCreateInfo->pInitialData, pCreateInfo->initialDataSize);
}
*pPipelineCache = radv_pipeline_cache_to_handle(cache);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroyPipelineCache(VkDevice _device, VkPipelineCache _cache,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
if (!cache)
return;
radv_pipeline_cache_finish(cache);
vk_free2(&device->vk.alloc, pAllocator, cache);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineCacheData(VkDevice _device, VkPipelineCache _cache, size_t *pDataSize, void *pData)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
struct vk_pipeline_cache_header *header;
VkResult result = VK_SUCCESS;
radv_pipeline_cache_lock(cache);
const size_t size = sizeof(*header) + cache->total_size;
if (pData == NULL) {
radv_pipeline_cache_unlock(cache);
*pDataSize = size;
return VK_SUCCESS;
}
if (*pDataSize < sizeof(*header)) {
radv_pipeline_cache_unlock(cache);
*pDataSize = 0;
return VK_INCOMPLETE;
}
void *p = pData, *end = (char *)pData + *pDataSize;
header = p;
header->header_size = align(sizeof(*header), alignof(struct cache_entry));
header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
header->vendor_id = ATI_VENDOR_ID;
header->device_id = device->physical_device->rad_info.pci_id;
memcpy(header->uuid, device->physical_device->cache_uuid, VK_UUID_SIZE);
p = (char *)p + header->header_size;
struct cache_entry *entry;
for (uint32_t i = 0; i < cache->table_size; i++) {
if (!cache->hash_table[i])
continue;
entry = cache->hash_table[i];
const uint32_t size_of_entry = entry_size(entry);
if ((char *)end < (char *)p + size_of_entry) {
result = VK_INCOMPLETE;
break;
}
memcpy(p, entry, size_of_entry);
for (int j = 0; j < MESA_VULKAN_SHADER_STAGES; ++j)
((struct cache_entry *)p)->shaders[j] = NULL;
((struct cache_entry *)p)->slab = NULL;
p = (char *)p + size_of_entry;
}
*pDataSize = (char *)p - (char *)pData;
radv_pipeline_cache_unlock(cache);
return result;
}
static void
radv_pipeline_cache_merge(struct radv_pipeline_cache *dst, struct radv_pipeline_cache *src)
{
for (uint32_t i = 0; i < src->table_size; i++) {
struct cache_entry *entry = src->hash_table[i];
if (!entry || radv_pipeline_cache_search(dst, entry->sha1))
continue;
radv_pipeline_cache_add_entry(dst, entry);
src->hash_table[i] = NULL;
}
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_MergePipelineCaches(VkDevice _device, VkPipelineCache destCache, uint32_t srcCacheCount,
const VkPipelineCache *pSrcCaches)
{
RADV_FROM_HANDLE(radv_pipeline_cache, dst, destCache);
for (uint32_t i = 0; i < srcCacheCount; i++) {
RADV_FROM_HANDLE(radv_pipeline_cache, src, pSrcCaches[i]);
radv_pipeline_cache_merge(dst, src);
}
return VK_SUCCESS;
}