blob: b5123c5846dd84a83c8afc93c271acb94f51d45a [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "radv_meta.h"
#include "radv_private.h"
#include "sid.h"
enum radv_color_op {
FAST_CLEAR_ELIMINATE,
FMASK_DECOMPRESS,
DCC_DECOMPRESS,
};
static nir_shader *
build_dcc_decompress_compute_shader(struct radv_device *dev)
{
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_2D, false, GLSL_TYPE_FLOAT);
nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "dcc_decompress_compute");
/* We need at least 16/16/1 to cover an entire DCC block in a single workgroup. */
b.shader->info.workgroup_size[0] = 16;
b.shader->info.workgroup_size[1] = 16;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_image, img_type, "in_img");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *global_id = get_global_ids(&b, 2);
nir_ssa_def *img_coord = nir_vec4(&b, nir_channel(&b, global_id, 0),
nir_channel(&b, global_id, 1),
nir_ssa_undef(&b, 1, 32),
nir_ssa_undef(&b, 1, 32));
nir_ssa_def *data = nir_image_deref_load(
&b, 4, 32, &nir_build_deref_var(&b, input_img)->dest.ssa, img_coord, nir_ssa_undef(&b, 1, 32),
nir_imm_int(&b, 0), .image_dim = GLSL_SAMPLER_DIM_2D);
/* We need a NIR_SCOPE_DEVICE memory_scope because ACO will avoid
* creating a vmcnt(0) because it expects the L1 cache to keep memory
* operations in-order for the same workgroup. The vmcnt(0) seems
* necessary however. */
nir_scoped_barrier(&b, .execution_scope = NIR_SCOPE_WORKGROUP, .memory_scope = NIR_SCOPE_DEVICE,
.memory_semantics = NIR_MEMORY_ACQ_REL, .memory_modes = nir_var_mem_ssbo);
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, img_coord,
nir_ssa_undef(&b, 1, 32), data, nir_imm_int(&b, 0),
.image_dim = GLSL_SAMPLER_DIM_2D);
return b.shader;
}
static VkResult
create_dcc_compress_compute(struct radv_device *device)
{
VkResult result = VK_SUCCESS;
nir_shader *cs = build_dcc_decompress_compute_shader(device);
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
{.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(
radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc,
&device->meta_state.fast_clear_flush.dcc_decompress_compute_ds_layout);
if (result != VK_SUCCESS)
goto cleanup;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.fast_clear_flush.dcc_decompress_compute_ds_layout,
.pushConstantRangeCount = 0,
.pPushConstantRanges = NULL,
};
result = radv_CreatePipelineLayout(
radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc,
&device->meta_state.fast_clear_flush.dcc_decompress_compute_p_layout);
if (result != VK_SUCCESS)
goto cleanup;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.fast_clear_flush.dcc_decompress_compute_p_layout,
};
result = radv_CreateComputePipelines(
radv_device_to_handle(device), device->meta_state.cache, 1,
&vk_pipeline_info, NULL,
&device->meta_state.fast_clear_flush.dcc_decompress_compute_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
cleanup:
ralloc_free(cs);
return result;
}
static VkResult
create_pipeline_layout(struct radv_device *device, VkPipelineLayout *layout)
{
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 0,
.pSetLayouts = NULL,
.pushConstantRangeCount = 0,
.pPushConstantRanges = NULL,
};
return radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc, layout);
}
static VkResult
create_pipeline(struct radv_device *device, VkShaderModule vs_module_h, VkPipelineLayout layout)
{
VkResult result;
VkDevice device_h = radv_device_to_handle(device);
nir_shader *fs_module = radv_meta_build_nir_fs_noop(device);
if (!fs_module) {
/* XXX: Need more accurate error */
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto cleanup;
}
const VkPipelineShaderStageCreateInfo stages[2] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vs_module_h,
.pName = "main",
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = vk_shader_module_handle_from_nir(fs_module),
.pName = "main",
},
};
const VkPipelineVertexInputStateCreateInfo vi_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 0,
.vertexAttributeDescriptionCount = 0,
};
const VkPipelineInputAssemblyStateCreateInfo ia_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
};
const VkPipelineColorBlendStateCreateInfo blend_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOpEnable = false,
.attachmentCount = 1,
.pAttachments = (VkPipelineColorBlendAttachmentState[]){
{
.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
},
}};
const VkPipelineRasterizationStateCreateInfo rs_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.depthClampEnable = false,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
};
const VkFormat color_format = VK_FORMAT_R8_UNORM;
const VkPipelineRenderingCreateInfo rendering_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
.colorAttachmentCount = 1,
.pColorAttachmentFormats = &color_format,
};
result = radv_graphics_pipeline_create(
device_h, device->meta_state.cache,
&(VkGraphicsPipelineCreateInfo){
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = &rendering_create_info,
.stageCount = 2,
.pStages = stages,
.pVertexInputState = &vi_state,
.pInputAssemblyState = &ia_state,
.pViewportState =
&(VkPipelineViewportStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &rs_state,
.pMultisampleState =
&(VkPipelineMultisampleStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = NULL,
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pColorBlendState = &blend_state,
.pDynamicState =
&(VkPipelineDynamicStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates =
(VkDynamicState[]){
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
},
},
.layout = layout,
.renderPass = VK_NULL_HANDLE,
.subpass = 0,
},
&(struct radv_graphics_pipeline_create_info){
.use_rectlist = true,
.custom_blend_mode = V_028808_CB_ELIMINATE_FAST_CLEAR,
},
&device->meta_state.alloc, &device->meta_state.fast_clear_flush.cmask_eliminate_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
result = radv_graphics_pipeline_create(
device_h, device->meta_state.cache,
&(VkGraphicsPipelineCreateInfo){
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = &rendering_create_info,
.stageCount = 2,
.pStages = stages,
.pVertexInputState = &vi_state,
.pInputAssemblyState = &ia_state,
.pViewportState =
&(VkPipelineViewportStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &rs_state,
.pMultisampleState =
&(VkPipelineMultisampleStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = NULL,
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pColorBlendState = &blend_state,
.pDynamicState =
&(VkPipelineDynamicStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates =
(VkDynamicState[]){
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
},
},
.layout = layout,
.renderPass = VK_NULL_HANDLE,
.subpass = 0,
},
&(struct radv_graphics_pipeline_create_info){
.use_rectlist = true,
.custom_blend_mode = V_028808_CB_FMASK_DECOMPRESS,
},
&device->meta_state.alloc, &device->meta_state.fast_clear_flush.fmask_decompress_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
result = radv_graphics_pipeline_create(
device_h, device->meta_state.cache,
&(VkGraphicsPipelineCreateInfo){
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = &rendering_create_info,
.stageCount = 2,
.pStages = stages,
.pVertexInputState = &vi_state,
.pInputAssemblyState = &ia_state,
.pViewportState =
&(VkPipelineViewportStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &rs_state,
.pMultisampleState =
&(VkPipelineMultisampleStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = NULL,
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pColorBlendState = &blend_state,
.pDynamicState =
&(VkPipelineDynamicStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates =
(VkDynamicState[]){
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
},
},
.layout = layout,
.renderPass = VK_NULL_HANDLE,
.subpass = 0,
},
&(struct radv_graphics_pipeline_create_info){
.use_rectlist = true,
.custom_blend_mode = device->physical_device->rad_info.gfx_level >= GFX11
? V_028808_CB_DCC_DECOMPRESS_GFX11
: V_028808_CB_DCC_DECOMPRESS_GFX8,
},
&device->meta_state.alloc, &device->meta_state.fast_clear_flush.dcc_decompress_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
cleanup:
ralloc_free(fs_module);
return result;
}
void
radv_device_finish_meta_fast_clear_flush_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipeline(radv_device_to_handle(device),
state->fast_clear_flush.dcc_decompress_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->fast_clear_flush.fmask_decompress_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->fast_clear_flush.cmask_eliminate_pipeline, &state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->fast_clear_flush.p_layout,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->fast_clear_flush.dcc_decompress_compute_pipeline, &state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->fast_clear_flush.dcc_decompress_compute_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(
radv_device_to_handle(device), state->fast_clear_flush.dcc_decompress_compute_ds_layout,
&state->alloc);
}
static VkResult
radv_device_init_meta_fast_clear_flush_state_internal(struct radv_device *device)
{
VkResult res = VK_SUCCESS;
mtx_lock(&device->meta_state.mtx);
if (device->meta_state.fast_clear_flush.cmask_eliminate_pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
nir_shader *vs_module = radv_meta_build_nir_vs_generate_vertices(device);
if (!vs_module) {
/* XXX: Need more accurate error */
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto cleanup;
}
res = create_pipeline_layout(device, &device->meta_state.fast_clear_flush.p_layout);
if (res != VK_SUCCESS)
goto cleanup;
VkShaderModule vs_module_h = vk_shader_module_handle_from_nir(vs_module);
res = create_pipeline(device, vs_module_h, device->meta_state.fast_clear_flush.p_layout);
if (res != VK_SUCCESS)
goto cleanup;
res = create_dcc_compress_compute(device);
if (res != VK_SUCCESS)
goto cleanup;
cleanup:
ralloc_free(vs_module);
mtx_unlock(&device->meta_state.mtx);
return res;
}
VkResult
radv_device_init_meta_fast_clear_flush_state(struct radv_device *device, bool on_demand)
{
if (on_demand)
return VK_SUCCESS;
return radv_device_init_meta_fast_clear_flush_state_internal(device);
}
static void
radv_emit_set_predication_state_from_image(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image, uint64_t pred_offset,
bool value)
{
uint64_t va = 0;
if (value) {
va = radv_buffer_get_va(image->bindings[0].bo) + image->bindings[0].offset;
va += pred_offset;
}
si_emit_set_predication_state(cmd_buffer, true, PREDICATION_OP_BOOL64, va);
}
static void
radv_process_color_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, int level, int layer,
bool flush_cb)
{
struct radv_device *device = cmd_buffer->device;
struct radv_image_view iview;
uint32_t width, height;
width = radv_minify(image->info.width, range->baseMipLevel + level);
height = radv_minify(image->info.height, range->baseMipLevel + level);
radv_image_view_init(&iview, device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = radv_meta_get_view_type(image),
.format = image->vk.format,
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = range->baseMipLevel + level,
.levelCount = 1,
.baseArrayLayer = range->baseArrayLayer + layer,
.layerCount = 1,
},
},
0, NULL);
const VkRenderingAttachmentInfo color_att = {
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
.imageView = radv_image_view_to_handle(&iview),
.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
};
const VkRenderingInfo rendering_info = {
.sType = VK_STRUCTURE_TYPE_RENDERING_INFO,
.renderArea = {
.offset = { 0, 0 },
.extent = { width, height }
},
.layerCount = 1,
.colorAttachmentCount = 1,
.pColorAttachments = &color_att,
};
radv_CmdBeginRendering(radv_cmd_buffer_to_handle(cmd_buffer), &rendering_info);
if (flush_cb)
cmd_buffer->state.flush_bits |=
radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, image);
radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
if (flush_cb)
cmd_buffer->state.flush_bits |=
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, image);
radv_CmdEndRendering(radv_cmd_buffer_to_handle(cmd_buffer));
radv_image_view_finish(&iview);
}
static void
radv_process_color_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *subresourceRange, enum radv_color_op op)
{
struct radv_device *device = cmd_buffer->device;
struct radv_meta_saved_state saved_state;
bool old_predicating = false;
bool flush_cb = false;
uint64_t pred_offset;
VkPipeline *pipeline;
switch (op) {
case FAST_CLEAR_ELIMINATE:
pipeline = &device->meta_state.fast_clear_flush.cmask_eliminate_pipeline;
pred_offset = image->fce_pred_offset;
break;
case FMASK_DECOMPRESS:
pipeline = &device->meta_state.fast_clear_flush.fmask_decompress_pipeline;
pred_offset = 0; /* FMASK_DECOMPRESS is never predicated. */
/* Flushing CB is required before and after FMASK_DECOMPRESS. */
flush_cb = true;
break;
case DCC_DECOMPRESS:
pipeline = &device->meta_state.fast_clear_flush.dcc_decompress_pipeline;
pred_offset = image->dcc_pred_offset;
/* Flushing CB is required before and after DCC_DECOMPRESS. */
flush_cb = true;
break;
default:
unreachable("Invalid color op");
}
if (radv_dcc_enabled(image, subresourceRange->baseMipLevel) &&
(image->info.array_size != radv_get_layerCount(image, subresourceRange) ||
subresourceRange->baseArrayLayer != 0)) {
/* Only use predication if the image has DCC with mipmaps or
* if the range of layers covers the whole image because the
* predication is based on mip level.
*/
pred_offset = 0;
}
if (!*pipeline) {
VkResult ret;
ret = radv_device_init_meta_fast_clear_flush_state_internal(device);
if (ret != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, ret);
return;
}
}
radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE |
RADV_META_SAVE_RENDER);
if (pred_offset) {
pred_offset += 8 * subresourceRange->baseMipLevel;
old_predicating = cmd_buffer->state.predicating;
radv_emit_set_predication_state_from_image(cmd_buffer, image, pred_offset, true);
cmd_buffer->state.predicating = true;
}
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS,
*pipeline);
for (uint32_t l = 0; l < radv_get_levelCount(image, subresourceRange); ++l) {
uint32_t width, height;
/* Do not decompress levels without DCC. */
if (op == DCC_DECOMPRESS && !radv_dcc_enabled(image, subresourceRange->baseMipLevel + l))
continue;
width = radv_minify(image->info.width, subresourceRange->baseMipLevel + l);
height = radv_minify(image->info.height, subresourceRange->baseMipLevel + l);
radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkViewport){.x = 0,
.y = 0,
.width = width,
.height = height,
.minDepth = 0.0f,
.maxDepth = 1.0f});
radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkRect2D){
.offset = {0, 0},
.extent = {width, height},
});
for (uint32_t s = 0; s < radv_get_layerCount(image, subresourceRange); s++) {
radv_process_color_image_layer(cmd_buffer, image, subresourceRange, l, s, flush_cb);
}
}
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
if (pred_offset) {
pred_offset += 8 * subresourceRange->baseMipLevel;
cmd_buffer->state.predicating = old_predicating;
radv_emit_set_predication_state_from_image(cmd_buffer, image, pred_offset, false);
if (cmd_buffer->state.predication_type != -1) {
/* Restore previous conditional rendering user state. */
si_emit_set_predication_state(cmd_buffer, cmd_buffer->state.predication_type,
cmd_buffer->state.predication_op,
cmd_buffer->state.predication_va);
}
}
radv_meta_restore(&saved_state, cmd_buffer);
/* Clear the image's fast-clear eliminate predicate because FMASK_DECOMPRESS and DCC_DECOMPRESS
* also perform a fast-clear eliminate.
*/
radv_update_fce_metadata(cmd_buffer, image, subresourceRange, false);
/* Mark the image as being decompressed. */
if (op == DCC_DECOMPRESS)
radv_update_dcc_metadata(cmd_buffer, image, subresourceRange, false);
}
static void
radv_fast_clear_eliminate(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.fast_clear_eliminate = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
radv_process_color_image(cmd_buffer, image, subresourceRange, FAST_CLEAR_ELIMINATE);
}
static void
radv_fmask_decompress(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.fmask_decompress = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
radv_process_color_image(cmd_buffer, image, subresourceRange, FMASK_DECOMPRESS);
}
void
radv_fast_clear_flush_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
if (radv_image_has_fmask(image) && !image->tc_compatible_cmask) {
if (radv_image_has_dcc(image) && radv_image_has_cmask(image)) {
/* MSAA images with DCC and CMASK might have been fast-cleared and might require a FCE but
* FMASK_DECOMPRESS can't eliminate DCC fast clears.
*/
radv_fast_clear_eliminate(cmd_buffer, image, subresourceRange);
}
radv_fmask_decompress(cmd_buffer, image, subresourceRange);
} else {
/* Skip fast clear eliminate for images that support comp-to-single fast clears. */
if (image->support_comp_to_single)
return;
radv_fast_clear_eliminate(cmd_buffer, image, subresourceRange);
}
}
static void
radv_decompress_dcc_compute(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
struct radv_meta_saved_state saved_state;
struct radv_image_view load_iview = {0};
struct radv_image_view store_iview = {0};
struct radv_device *device = cmd_buffer->device;
cmd_buffer->state.flush_bits |=
radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, image);
if (!cmd_buffer->device->meta_state.fast_clear_flush.cmask_eliminate_pipeline) {
VkResult ret = radv_device_init_meta_fast_clear_flush_state_internal(cmd_buffer->device);
if (ret != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, ret);
return;
}
}
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_DESCRIPTORS | RADV_META_SAVE_COMPUTE_PIPELINE);
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.fast_clear_flush.dcc_decompress_compute_pipeline);
for (uint32_t l = 0; l < radv_get_levelCount(image, subresourceRange); l++) {
uint32_t width, height;
/* Do not decompress levels without DCC. */
if (!radv_dcc_enabled(image, subresourceRange->baseMipLevel + l))
continue;
width = radv_minify(image->info.width, subresourceRange->baseMipLevel + l);
height = radv_minify(image->info.height, subresourceRange->baseMipLevel + l);
for (uint32_t s = 0; s < radv_get_layerCount(image, subresourceRange); s++) {
radv_image_view_init(
&load_iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = image->vk.format,
.subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = subresourceRange->baseMipLevel + l,
.levelCount = 1,
.baseArrayLayer = subresourceRange->baseArrayLayer + s,
.layerCount = 1},
},
0, &(struct radv_image_view_extra_create_info){.enable_compression = true});
radv_image_view_init(
&store_iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = image->vk.format,
.subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = subresourceRange->baseMipLevel + l,
.levelCount = 1,
.baseArrayLayer = subresourceRange->baseArrayLayer + s,
.layerCount = 1},
},
0, &(struct radv_image_view_extra_create_info){.disable_compression = true});
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.fast_clear_flush.dcc_decompress_compute_p_layout, 0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(&load_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}},
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(&store_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}}});
radv_unaligned_dispatch(cmd_buffer, width, height, 1);
radv_image_view_finish(&load_iview);
radv_image_view_finish(&store_iview);
}
}
/* Mark this image as actually being decompressed. */
radv_update_dcc_metadata(cmd_buffer, image, subresourceRange, false);
radv_meta_restore(&saved_state, cmd_buffer);
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE |
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, image);
/* Initialize the DCC metadata as "fully expanded". */
cmd_buffer->state.flush_bits |= radv_init_dcc(cmd_buffer, image, subresourceRange, 0xffffffff);
}
void
radv_decompress_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.dcc_decompress = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
if (cmd_buffer->qf == RADV_QUEUE_GENERAL)
radv_process_color_image(cmd_buffer, image, subresourceRange, DCC_DECOMPRESS);
else
radv_decompress_dcc_compute(cmd_buffer, image, subresourceRange);
}