blob: 8991c804779186e0b806b5af09ea6fad01dbbc59 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir/nir_builder.h"
#include "radv_meta.h"
/*
* GFX queue: Compute shader implementation of image->buffer copy
* Compute queue: implementation also of buffer->image, image->image, and image clear.
*/
static nir_shader *
build_nir_itob_compute_shader(struct radv_device *dev, bool is_3d)
{
enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D;
const struct glsl_type *sampler_type = glsl_sampler_type(dim, false, false, GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_BUF, false, GLSL_TYPE_FLOAT);
nir_builder b =
radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, is_3d ? "meta_itob_cs_3d" : "meta_itob_cs");
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *global_id = get_global_ids(&b, is_3d ? 3 : 2);
nir_ssa_def *offset =
nir_load_push_constant(&b, is_3d ? 3 : 2, 32, nir_imm_int(&b, 0), .range = is_3d ? 12 : 8);
nir_ssa_def *stride = nir_load_push_constant(&b, 1, 32, nir_imm_int(&b, 12), .range = 16);
nir_ssa_def *img_coord = nir_iadd(&b, global_id, offset);
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3);
tex->sampler_dim = dim;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(nir_trim_vector(&b, img_coord, 2 + is_3d));
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = nir_type_float32;
tex->is_array = false;
tex->coord_components = is_3d ? 3 : 2;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *pos_x = nir_channel(&b, global_id, 0);
nir_ssa_def *pos_y = nir_channel(&b, global_id, 1);
nir_ssa_def *tmp = nir_imul(&b, pos_y, stride);
tmp = nir_iadd(&b, tmp, pos_x);
nir_ssa_def *coord = nir_vec4(&b, tmp, tmp, tmp, tmp);
nir_ssa_def *outval = &tex->dest.ssa;
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, coord,
nir_ssa_undef(&b, 1, 32), outval, nir_imm_int(&b, 0),
.image_dim = GLSL_SAMPLER_DIM_BUF);
return b.shader;
}
/* Image to buffer - don't write use image accessors */
static VkResult
radv_device_init_meta_itob_state(struct radv_device *device)
{
VkResult result;
nir_shader *cs = build_nir_itob_compute_shader(device, false);
nir_shader *cs_3d = build_nir_itob_compute_shader(device, true);
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
{.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&device->meta_state.alloc,
&device->meta_state.itob.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.itob.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
};
result =
radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc, &device->meta_state.itob.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.itob.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
device->meta_state.cache, 1,
&vk_pipeline_info, NULL, &device->meta_state.itob.pipeline);
if (result != VK_SUCCESS)
goto fail;
VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs_3d),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info_3d = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage_3d,
.flags = 0,
.layout = device->meta_state.itob.img_p_layout,
};
result = radv_CreateComputePipelines(
radv_device_to_handle(device), device->meta_state.cache, 1,
&vk_pipeline_info_3d, NULL, &device->meta_state.itob.pipeline_3d);
if (result != VK_SUCCESS)
goto fail;
ralloc_free(cs_3d);
ralloc_free(cs);
return VK_SUCCESS;
fail:
ralloc_free(cs);
ralloc_free(cs_3d);
return result;
}
static void
radv_device_finish_meta_itob_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->itob.img_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->itob.img_ds_layout, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->itob.pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->itob.pipeline_3d, &state->alloc);
}
static nir_shader *
build_nir_btoi_compute_shader(struct radv_device *dev, bool is_3d)
{
enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D;
const struct glsl_type *buf_type =
glsl_sampler_type(GLSL_SAMPLER_DIM_BUF, false, false, GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_image_type(dim, false, GLSL_TYPE_FLOAT);
nir_builder b =
radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, is_3d ? "meta_btoi_cs_3d" : "meta_btoi_cs");
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, buf_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *global_id = get_global_ids(&b, is_3d ? 3 : 2);
nir_ssa_def *offset =
nir_load_push_constant(&b, is_3d ? 3 : 2, 32, nir_imm_int(&b, 0), .range = is_3d ? 12 : 8);
nir_ssa_def *stride = nir_load_push_constant(&b, 1, 32, nir_imm_int(&b, 12), .range = 16);
nir_ssa_def *pos_x = nir_channel(&b, global_id, 0);
nir_ssa_def *pos_y = nir_channel(&b, global_id, 1);
nir_ssa_def *buf_coord = nir_imul(&b, pos_y, stride);
buf_coord = nir_iadd(&b, buf_coord, pos_x);
nir_ssa_def *coord = nir_iadd(&b, global_id, offset);
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3);
tex->sampler_dim = GLSL_SAMPLER_DIM_BUF;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(buf_coord);
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = nir_type_float32;
tex->is_array = false;
tex->coord_components = 1;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *outval = &tex->dest.ssa;
nir_ssa_def *img_coord = nir_vec4(&b, nir_channel(&b, coord, 0),
nir_channel(&b, coord, 1),
is_3d ? nir_channel(&b, coord, 2) : nir_ssa_undef(&b, 1, 32),
nir_ssa_undef(&b, 1, 32));
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, img_coord,
nir_ssa_undef(&b, 1, 32), outval, nir_imm_int(&b, 0), .image_dim = dim);
return b.shader;
}
/* Buffer to image - don't write use image accessors */
static VkResult
radv_device_init_meta_btoi_state(struct radv_device *device)
{
VkResult result;
nir_shader *cs = build_nir_btoi_compute_shader(device, false);
nir_shader *cs_3d = build_nir_btoi_compute_shader(device, true);
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
{.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&device->meta_state.alloc,
&device->meta_state.btoi.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.btoi.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
};
result =
radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc, &device->meta_state.btoi.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.btoi.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
device->meta_state.cache, 1,
&vk_pipeline_info, NULL, &device->meta_state.btoi.pipeline);
if (result != VK_SUCCESS)
goto fail;
VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs_3d),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info_3d = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage_3d,
.flags = 0,
.layout = device->meta_state.btoi.img_p_layout,
};
result = radv_CreateComputePipelines(
radv_device_to_handle(device), device->meta_state.cache, 1,
&vk_pipeline_info_3d, NULL, &device->meta_state.btoi.pipeline_3d);
ralloc_free(cs_3d);
ralloc_free(cs);
return VK_SUCCESS;
fail:
ralloc_free(cs_3d);
ralloc_free(cs);
return result;
}
static void
radv_device_finish_meta_btoi_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->btoi.img_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->btoi.img_ds_layout, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->btoi.pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->btoi.pipeline_3d, &state->alloc);
}
/* Buffer to image - special path for R32G32B32 */
static nir_shader *
build_nir_btoi_r32g32b32_compute_shader(struct radv_device *dev)
{
const struct glsl_type *buf_type =
glsl_sampler_type(GLSL_SAMPLER_DIM_BUF, false, false, GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_BUF, false, GLSL_TYPE_FLOAT);
nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_btoi_r32g32b32_cs");
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, buf_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *global_id = get_global_ids(&b, 2);
nir_ssa_def *offset = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
nir_ssa_def *pitch = nir_load_push_constant(&b, 1, 32, nir_imm_int(&b, 8), .range = 12);
nir_ssa_def *stride = nir_load_push_constant(&b, 1, 32, nir_imm_int(&b, 12), .range = 16);
nir_ssa_def *pos_x = nir_channel(&b, global_id, 0);
nir_ssa_def *pos_y = nir_channel(&b, global_id, 1);
nir_ssa_def *buf_coord = nir_imul(&b, pos_y, stride);
buf_coord = nir_iadd(&b, buf_coord, pos_x);
nir_ssa_def *img_coord = nir_iadd(&b, global_id, offset);
nir_ssa_def *global_pos = nir_iadd(&b, nir_imul(&b, nir_channel(&b, img_coord, 1), pitch),
nir_imul_imm(&b, nir_channel(&b, img_coord, 0), 3));
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3);
tex->sampler_dim = GLSL_SAMPLER_DIM_BUF;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(buf_coord);
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = nir_type_float32;
tex->is_array = false;
tex->coord_components = 1;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *outval = &tex->dest.ssa;
for (int chan = 0; chan < 3; chan++) {
nir_ssa_def *local_pos = nir_iadd_imm(&b, global_pos, chan);
nir_ssa_def *coord = nir_vec4(&b, local_pos, local_pos, local_pos, local_pos);
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, coord,
nir_ssa_undef(&b, 1, 32), nir_channel(&b, outval, chan),
nir_imm_int(&b, 0), .image_dim = GLSL_SAMPLER_DIM_BUF);
}
return b.shader;
}
static VkResult
radv_device_init_meta_btoi_r32g32b32_state(struct radv_device *device)
{
VkResult result;
nir_shader *cs = build_nir_btoi_r32g32b32_compute_shader(device);
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
{.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&device->meta_state.alloc,
&device->meta_state.btoi_r32g32b32.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.btoi_r32g32b32.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc,
&device->meta_state.btoi_r32g32b32.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.btoi_r32g32b32.img_p_layout,
};
result = radv_CreateComputePipelines(
radv_device_to_handle(device), device->meta_state.cache, 1,
&vk_pipeline_info, NULL, &device->meta_state.btoi_r32g32b32.pipeline);
fail:
ralloc_free(cs);
return result;
}
static void
radv_device_finish_meta_btoi_r32g32b32_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->btoi_r32g32b32.img_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(
radv_device_to_handle(device), state->btoi_r32g32b32.img_ds_layout, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->btoi_r32g32b32.pipeline,
&state->alloc);
}
static nir_shader *
build_nir_itoi_compute_shader(struct radv_device *dev, bool is_3d, int samples)
{
bool is_multisampled = samples > 1;
enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D
: is_multisampled ? GLSL_SAMPLER_DIM_MS
: GLSL_SAMPLER_DIM_2D;
const struct glsl_type *buf_type = glsl_sampler_type(dim, false, false, GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_image_type(dim, false, GLSL_TYPE_FLOAT);
nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE,
is_3d ? "meta_itoi_cs_3d-%d" : "meta_itoi_cs-%d", samples);
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, buf_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *global_id = get_global_ids(&b, is_3d ? 3 : 2);
nir_ssa_def *src_offset =
nir_load_push_constant(&b, is_3d ? 3 : 2, 32, nir_imm_int(&b, 0), .range = is_3d ? 12 : 8);
nir_ssa_def *dst_offset =
nir_load_push_constant(&b, is_3d ? 3 : 2, 32, nir_imm_int(&b, 12), .range = is_3d ? 24 : 20);
nir_ssa_def *src_coord = nir_iadd(&b, global_id, src_offset);
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_ssa_def *dst_coord = nir_iadd(&b, global_id, dst_offset);
nir_tex_instr *tex_instr[8];
for (uint32_t i = 0; i < samples; i++) {
tex_instr[i] = nir_tex_instr_create(b.shader, is_multisampled ? 4 : 3);
nir_tex_instr *tex = tex_instr[i];
tex->sampler_dim = dim;
tex->op = is_multisampled ? nir_texop_txf_ms : nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(nir_trim_vector(&b, src_coord, 2 + is_3d));
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
if (is_multisampled) {
tex->src[3].src_type = nir_tex_src_ms_index;
tex->src[3].src = nir_src_for_ssa(nir_imm_int(&b, i));
}
tex->dest_type = nir_type_float32;
tex->is_array = false;
tex->coord_components = is_3d ? 3 : 2;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
}
nir_ssa_def *img_coord = nir_vec4(&b, nir_channel(&b, dst_coord, 0),
nir_channel(&b, dst_coord, 1),
is_3d ? nir_channel(&b, dst_coord, 2) : nir_ssa_undef(&b, 1, 32),
nir_ssa_undef(&b, 1, 32));
for (uint32_t i = 0; i < samples; i++) {
nir_ssa_def *outval = &tex_instr[i]->dest.ssa;
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, img_coord,
nir_imm_int(&b, i), outval, nir_imm_int(&b, 0), .image_dim = dim);
}
return b.shader;
}
static VkResult
create_itoi_pipeline(struct radv_device *device, int samples, VkPipeline *pipeline)
{
struct radv_meta_state *state = &device->meta_state;
nir_shader *cs = build_nir_itoi_compute_shader(device, false, samples);
VkResult result;
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = state->itoi.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
state->cache, 1,
&vk_pipeline_info, NULL, pipeline);
ralloc_free(cs);
return result;
}
/* image to image - don't write use image accessors */
static VkResult
radv_device_init_meta_itoi_state(struct radv_device *device)
{
VkResult result;
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
{.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&device->meta_state.alloc,
&device->meta_state.itoi.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.itoi.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 24},
};
result =
radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc, &device->meta_state.itoi.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; i++) {
uint32_t samples = 1 << i;
result = create_itoi_pipeline(device, samples, &device->meta_state.itoi.pipeline[i]);
if (result != VK_SUCCESS)
goto fail;
}
nir_shader *cs_3d = build_nir_itoi_compute_shader(device, true, 1);
VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs_3d),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info_3d = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage_3d,
.flags = 0,
.layout = device->meta_state.itoi.img_p_layout,
};
result = radv_CreateComputePipelines(
radv_device_to_handle(device), device->meta_state.cache, 1,
&vk_pipeline_info_3d, NULL, &device->meta_state.itoi.pipeline_3d);
ralloc_free(cs_3d);
return VK_SUCCESS;
fail:
return result;
}
static void
radv_device_finish_meta_itoi_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->itoi.img_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->itoi.img_ds_layout, &state->alloc);
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
radv_DestroyPipeline(radv_device_to_handle(device), state->itoi.pipeline[i], &state->alloc);
}
radv_DestroyPipeline(radv_device_to_handle(device), state->itoi.pipeline_3d, &state->alloc);
}
static nir_shader *
build_nir_itoi_r32g32b32_compute_shader(struct radv_device *dev)
{
const struct glsl_type *type =
glsl_sampler_type(GLSL_SAMPLER_DIM_BUF, false, false, GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_BUF, false, GLSL_TYPE_FLOAT);
nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_itoi_r32g32b32_cs");
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, type, "input_img");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img =
nir_variable_create(b.shader, nir_var_image, img_type, "output_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *global_id = get_global_ids(&b, 2);
nir_ssa_def *src_offset = nir_load_push_constant(&b, 3, 32, nir_imm_int(&b, 0), .range = 12);
nir_ssa_def *dst_offset = nir_load_push_constant(&b, 3, 32, nir_imm_int(&b, 12), .range = 24);
nir_ssa_def *src_stride = nir_channel(&b, src_offset, 2);
nir_ssa_def *dst_stride = nir_channel(&b, dst_offset, 2);
nir_ssa_def *src_img_coord = nir_iadd(&b, global_id, src_offset);
nir_ssa_def *dst_img_coord = nir_iadd(&b, global_id, dst_offset);
nir_ssa_def *src_global_pos =
nir_iadd(&b, nir_imul(&b, nir_channel(&b, src_img_coord, 1), src_stride),
nir_imul_imm(&b, nir_channel(&b, src_img_coord, 0), 3));
nir_ssa_def *dst_global_pos =
nir_iadd(&b, nir_imul(&b, nir_channel(&b, dst_img_coord, 1), dst_stride),
nir_imul_imm(&b, nir_channel(&b, dst_img_coord, 0), 3));
for (int chan = 0; chan < 3; chan++) {
/* src */
nir_ssa_def *src_local_pos = nir_iadd_imm(&b, src_global_pos, chan);
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3);
tex->sampler_dim = GLSL_SAMPLER_DIM_BUF;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(src_local_pos);
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = nir_type_float32;
tex->is_array = false;
tex->coord_components = 1;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *outval = &tex->dest.ssa;
/* dst */
nir_ssa_def *dst_local_pos = nir_iadd_imm(&b, dst_global_pos, chan);
nir_ssa_def *dst_coord =
nir_vec4(&b, dst_local_pos, dst_local_pos, dst_local_pos, dst_local_pos);
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, dst_coord,
nir_ssa_undef(&b, 1, 32), nir_channel(&b, outval, 0),
nir_imm_int(&b, 0), .image_dim = GLSL_SAMPLER_DIM_BUF);
}
return b.shader;
}
/* Image to image - special path for R32G32B32 */
static VkResult
radv_device_init_meta_itoi_r32g32b32_state(struct radv_device *device)
{
VkResult result;
nir_shader *cs = build_nir_itoi_r32g32b32_compute_shader(device);
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
{.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&device->meta_state.alloc,
&device->meta_state.itoi_r32g32b32.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.itoi_r32g32b32.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 24},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc,
&device->meta_state.itoi_r32g32b32.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.itoi_r32g32b32.img_p_layout,
};
result = radv_CreateComputePipelines(
radv_device_to_handle(device), device->meta_state.cache, 1,
&vk_pipeline_info, NULL, &device->meta_state.itoi_r32g32b32.pipeline);
fail:
ralloc_free(cs);
return result;
}
static void
radv_device_finish_meta_itoi_r32g32b32_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->itoi_r32g32b32.img_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(
radv_device_to_handle(device), state->itoi_r32g32b32.img_ds_layout, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->itoi_r32g32b32.pipeline,
&state->alloc);
}
static nir_shader *
build_nir_cleari_compute_shader(struct radv_device *dev, bool is_3d, int samples)
{
bool is_multisampled = samples > 1;
enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D
: is_multisampled ? GLSL_SAMPLER_DIM_MS
: GLSL_SAMPLER_DIM_2D;
const struct glsl_type *img_type = glsl_image_type(dim, false, GLSL_TYPE_FLOAT);
nir_builder b = radv_meta_init_shader(
dev, MESA_SHADER_COMPUTE, is_3d ? "meta_cleari_cs_3d-%d" : "meta_cleari_cs-%d", samples);
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 0;
nir_ssa_def *global_id = get_global_ids(&b, 2);
nir_ssa_def *clear_val = nir_load_push_constant(&b, 4, 32, nir_imm_int(&b, 0), .range = 16);
nir_ssa_def *layer = nir_load_push_constant(&b, 1, 32, nir_imm_int(&b, 16), .range = 20);
nir_ssa_def *comps[4];
comps[0] = nir_channel(&b, global_id, 0);
comps[1] = nir_channel(&b, global_id, 1);
comps[2] = layer;
comps[3] = nir_ssa_undef(&b, 1, 32);
global_id = nir_vec(&b, comps, 4);
for (uint32_t i = 0; i < samples; i++) {
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, global_id,
nir_imm_int(&b, i), clear_val, nir_imm_int(&b, 0), .image_dim = dim);
}
return b.shader;
}
static VkResult
create_cleari_pipeline(struct radv_device *device, int samples, VkPipeline *pipeline)
{
nir_shader *cs = build_nir_cleari_compute_shader(device, false, samples);
VkResult result;
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.cleari.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
device->meta_state.cache, 1,
&vk_pipeline_info, NULL, pipeline);
ralloc_free(cs);
return result;
}
static VkResult
radv_device_init_meta_cleari_state(struct radv_device *device)
{
VkResult result;
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&device->meta_state.alloc,
&device->meta_state.cleari.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.cleari.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 20},
};
result =
radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc, &device->meta_state.cleari.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; i++) {
uint32_t samples = 1 << i;
result = create_cleari_pipeline(device, samples, &device->meta_state.cleari.pipeline[i]);
if (result != VK_SUCCESS)
goto fail;
}
nir_shader *cs_3d = build_nir_cleari_compute_shader(device, true, 1);
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs_3d),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info_3d = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage_3d,
.flags = 0,
.layout = device->meta_state.cleari.img_p_layout,
};
result = radv_CreateComputePipelines(
radv_device_to_handle(device), device->meta_state.cache, 1,
&vk_pipeline_info_3d, NULL, &device->meta_state.cleari.pipeline_3d);
ralloc_free(cs_3d);
return VK_SUCCESS;
fail:
return result;
}
static void
radv_device_finish_meta_cleari_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->cleari.img_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->cleari.img_ds_layout, &state->alloc);
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
radv_DestroyPipeline(radv_device_to_handle(device), state->cleari.pipeline[i], &state->alloc);
}
radv_DestroyPipeline(radv_device_to_handle(device), state->cleari.pipeline_3d, &state->alloc);
}
/* Special path for clearing R32G32B32 images using a compute shader. */
static nir_shader *
build_nir_cleari_r32g32b32_compute_shader(struct radv_device *dev)
{
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_BUF, false, GLSL_TYPE_FLOAT);
nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_cleari_r32g32b32_cs");
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 0;
nir_ssa_def *global_id = get_global_ids(&b, 2);
nir_ssa_def *clear_val = nir_load_push_constant(&b, 3, 32, nir_imm_int(&b, 0), .range = 12);
nir_ssa_def *stride = nir_load_push_constant(&b, 1, 32, nir_imm_int(&b, 12), .range = 16);
nir_ssa_def *global_x = nir_channel(&b, global_id, 0);
nir_ssa_def *global_y = nir_channel(&b, global_id, 1);
nir_ssa_def *global_pos =
nir_iadd(&b, nir_imul(&b, global_y, stride), nir_imul_imm(&b, global_x, 3));
for (unsigned chan = 0; chan < 3; chan++) {
nir_ssa_def *local_pos = nir_iadd_imm(&b, global_pos, chan);
nir_ssa_def *coord = nir_vec4(&b, local_pos, local_pos, local_pos, local_pos);
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, coord,
nir_ssa_undef(&b, 1, 32), nir_channel(&b, clear_val, chan),
nir_imm_int(&b, 0), .image_dim = GLSL_SAMPLER_DIM_BUF);
}
return b.shader;
}
static VkResult
radv_device_init_meta_cleari_r32g32b32_state(struct radv_device *device)
{
VkResult result;
nir_shader *cs = build_nir_cleari_r32g32b32_compute_shader(device);
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&device->meta_state.alloc,
&device->meta_state.cleari_r32g32b32.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.cleari_r32g32b32.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc,
&device->meta_state.cleari_r32g32b32.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.cleari_r32g32b32.img_p_layout,
};
result = radv_CreateComputePipelines(
radv_device_to_handle(device), device->meta_state.cache, 1,
&vk_pipeline_info, NULL, &device->meta_state.cleari_r32g32b32.pipeline);
fail:
ralloc_free(cs);
return result;
}
static void
radv_device_finish_meta_cleari_r32g32b32_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->cleari_r32g32b32.img_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(
radv_device_to_handle(device), state->cleari_r32g32b32.img_ds_layout, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->cleari_r32g32b32.pipeline,
&state->alloc);
}
void
radv_device_finish_meta_bufimage_state(struct radv_device *device)
{
radv_device_finish_meta_itob_state(device);
radv_device_finish_meta_btoi_state(device);
radv_device_finish_meta_btoi_r32g32b32_state(device);
radv_device_finish_meta_itoi_state(device);
radv_device_finish_meta_itoi_r32g32b32_state(device);
radv_device_finish_meta_cleari_state(device);
radv_device_finish_meta_cleari_r32g32b32_state(device);
}
VkResult
radv_device_init_meta_bufimage_state(struct radv_device *device)
{
VkResult result;
result = radv_device_init_meta_itob_state(device);
if (result != VK_SUCCESS)
return result;
result = radv_device_init_meta_btoi_state(device);
if (result != VK_SUCCESS)
return result;
result = radv_device_init_meta_btoi_r32g32b32_state(device);
if (result != VK_SUCCESS)
return result;
result = radv_device_init_meta_itoi_state(device);
if (result != VK_SUCCESS)
return result;
result = radv_device_init_meta_itoi_r32g32b32_state(device);
if (result != VK_SUCCESS)
return result;
result = radv_device_init_meta_cleari_state(device);
if (result != VK_SUCCESS)
return result;
result = radv_device_init_meta_cleari_r32g32b32_state(device);
if (result != VK_SUCCESS)
return result;
return VK_SUCCESS;
}
static void
create_iview(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *surf,
struct radv_image_view *iview, VkFormat format, VkImageAspectFlagBits aspects)
{
if (format == VK_FORMAT_UNDEFINED)
format = surf->format;
radv_image_view_init(iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(surf->image),
.viewType = radv_meta_get_view_type(surf->image),
.format = format,
.subresourceRange = {.aspectMask = aspects,
.baseMipLevel = surf->level,
.levelCount = 1,
.baseArrayLayer = surf->layer,
.layerCount = 1},
},
0, &(struct radv_image_view_extra_create_info){
.disable_compression = surf->disable_compression,
});
}
static void
create_bview(struct radv_cmd_buffer *cmd_buffer, struct radv_buffer *buffer, unsigned offset,
VkFormat format, struct radv_buffer_view *bview)
{
radv_buffer_view_init(bview, cmd_buffer->device,
&(VkBufferViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,
.flags = 0,
.buffer = radv_buffer_to_handle(buffer),
.format = format,
.offset = offset,
.range = VK_WHOLE_SIZE,
});
}
static void
create_buffer_from_image(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *surf,
VkBufferUsageFlagBits usage, VkBuffer *buffer)
{
struct radv_device *device = cmd_buffer->device;
struct radv_device_memory mem;
radv_device_memory_init(&mem, device, surf->image->bindings[0].bo);
radv_CreateBuffer(radv_device_to_handle(device),
&(VkBufferCreateInfo){
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.flags = 0,
.size = surf->image->size,
.usage = usage,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
},
NULL, buffer);
radv_BindBufferMemory2(radv_device_to_handle(device), 1,
(VkBindBufferMemoryInfo[]){{
.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
.buffer = *buffer,
.memory = radv_device_memory_to_handle(&mem),
.memoryOffset = surf->image->bindings[0].offset,
}});
radv_device_memory_finish(&mem);
}
static void
create_bview_for_r32g32b32(struct radv_cmd_buffer *cmd_buffer, struct radv_buffer *buffer,
unsigned offset, VkFormat src_format, struct radv_buffer_view *bview)
{
VkFormat format;
switch (src_format) {
case VK_FORMAT_R32G32B32_UINT:
format = VK_FORMAT_R32_UINT;
break;
case VK_FORMAT_R32G32B32_SINT:
format = VK_FORMAT_R32_SINT;
break;
case VK_FORMAT_R32G32B32_SFLOAT:
format = VK_FORMAT_R32_SFLOAT;
break;
default:
unreachable("invalid R32G32B32 format");
}
radv_buffer_view_init(bview, cmd_buffer->device,
&(VkBufferViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,
.flags = 0,
.buffer = radv_buffer_to_handle(buffer),
.format = format,
.offset = offset,
.range = VK_WHOLE_SIZE,
});
}
/* GFX9+ has an issue where the HW does not calculate mipmap degradations
* for block-compressed images correctly (see the comment in
* radv_image_view_init). Some texels are unaddressable and cannot be copied
* to/from by a compute shader. Here we will perform a buffer copy to copy the
* texels that the hardware missed.
*
* GFX10 will not use this workaround because it can be fixed by adjusting its
* image view descriptors instead.
*/
static void
fixup_gfx9_cs_copy(struct radv_cmd_buffer *cmd_buffer,
const struct radv_meta_blit2d_buffer *buf_bsurf,
const struct radv_meta_blit2d_surf *img_bsurf,
const struct radv_meta_blit2d_rect *rect, bool to_image)
{
const unsigned mip_level = img_bsurf->level;
const struct radv_image *image = img_bsurf->image;
const struct radeon_surf *surf = &image->planes[0].surface;
const struct radv_device *device = cmd_buffer->device;
const struct radeon_info *rad_info = &device->physical_device->rad_info;
struct ac_addrlib *addrlib = device->ws->get_addrlib(device->ws);
/* GFX10 will use a different workaround unless this is not a 2D image */
if (rad_info->gfx_level < GFX9 ||
(rad_info->gfx_level >= GFX10 && image->vk.image_type == VK_IMAGE_TYPE_2D) ||
image->vk.mip_levels == 1 || !vk_format_is_block_compressed(image->vk.format))
return;
/* The physical extent of the base mip */
VkExtent2D hw_base_extent = {surf->u.gfx9.base_mip_width, surf->u.gfx9.base_mip_height};
/* The hardware-calculated extent of the selected mip
* (naive divide-by-two integer math)
*/
VkExtent2D hw_mip_extent = {radv_minify(hw_base_extent.width, mip_level),
radv_minify(hw_base_extent.height, mip_level)};
/* The actual extent we want to copy */
VkExtent2D mip_extent = {rect->width, rect->height};
VkOffset2D mip_offset = {to_image ? rect->dst_x : rect->src_x,
to_image ? rect->dst_y : rect->src_y};
if (hw_mip_extent.width >= mip_offset.x + mip_extent.width &&
hw_mip_extent.height >= mip_offset.y + mip_extent.height)
return;
if (!to_image) {
/* If we are writing to a buffer, then we need to wait for the compute
* shader to finish because it may write over the unaddressable texels
* while we're fixing them. If we're writing to an image, we do not need
* to wait because the compute shader cannot write to those texels
*/
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_INV_VCACHE;
}
for (uint32_t y = 0; y < mip_extent.width; y++) {
uint32_t coordY = y + mip_offset.y;
/* If the default copy algorithm (done previously) has already seen this
* scanline, then we can bias the starting X coordinate over to skip the
* region already copied by the default copy.
*/
uint32_t x = (coordY < hw_mip_extent.height) ? hw_mip_extent.width : 0;
for (; x < mip_extent.width; x++) {
uint32_t coordX = x + mip_offset.x;
uint64_t addr = ac_surface_addr_from_coord(addrlib, rad_info, surf, &image->info,
mip_level, coordX, coordY, img_bsurf->layer,
image->vk.image_type == VK_IMAGE_TYPE_3D);
struct radeon_winsys_bo *img_bo = image->bindings[0].bo;
struct radeon_winsys_bo *mem_bo = buf_bsurf->buffer->bo;
const uint64_t img_offset = image->bindings[0].offset + addr;
/* buf_bsurf->offset already includes the layer offset */
const uint64_t mem_offset = buf_bsurf->buffer->offset +
buf_bsurf->offset +
y * buf_bsurf->pitch * surf->bpe +
x * surf->bpe;
if (to_image) {
radv_copy_buffer(cmd_buffer, mem_bo, img_bo, mem_offset, img_offset, surf->bpe);
} else {
radv_copy_buffer(cmd_buffer, img_bo, mem_bo, img_offset, mem_offset, surf->bpe);
}
}
}
}
static unsigned
get_image_stride_for_r32g32b32(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *surf)
{
unsigned stride;
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) {
stride = surf->image->planes[0].surface.u.gfx9.surf_pitch;
} else {
stride = surf->image->planes[0].surface.u.legacy.level[0].nblk_x * 3;
}
return stride;
}
static void
itob_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src,
struct radv_buffer_view *dst)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.itob.img_p_layout, 0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]){radv_buffer_view_to_handle(dst)},
}});
}
void
radv_meta_image_to_buffer(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *src,
struct radv_meta_blit2d_buffer *dst, unsigned num_rects,
struct radv_meta_blit2d_rect *rects)
{
VkPipeline pipeline = cmd_buffer->device->meta_state.itob.pipeline;
struct radv_device *device = cmd_buffer->device;
struct radv_image_view src_view;
struct radv_buffer_view dst_view;
create_iview(cmd_buffer, src, &src_view, VK_FORMAT_UNDEFINED, src->aspect_mask);
create_bview(cmd_buffer, dst->buffer, dst->offset, dst->format, &dst_view);
itob_bind_descriptors(cmd_buffer, &src_view, &dst_view);
if (src->image->vk.image_type == VK_IMAGE_TYPE_3D)
pipeline = cmd_buffer->device->meta_state.itob.pipeline_3d;
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline);
for (unsigned r = 0; r < num_rects; ++r) {
unsigned push_constants[4] = {rects[r].src_x, rects[r].src_y, src->layer, dst->pitch};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.itob.img_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0,
16, push_constants);
radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1);
fixup_gfx9_cs_copy(cmd_buffer, dst, src, &rects[r], false);
}
radv_image_view_finish(&src_view);
radv_buffer_view_finish(&dst_view);
}
static void
btoi_r32g32b32_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_buffer_view *src,
struct radv_buffer_view *dst)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.btoi_r32g32b32.img_p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]){radv_buffer_view_to_handle(src)},
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]){radv_buffer_view_to_handle(dst)},
}});
}
static void
radv_meta_buffer_to_image_cs_r32g32b32(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_buffer *src,
struct radv_meta_blit2d_surf *dst, unsigned num_rects,
struct radv_meta_blit2d_rect *rects)
{
VkPipeline pipeline = cmd_buffer->device->meta_state.btoi_r32g32b32.pipeline;
struct radv_device *device = cmd_buffer->device;
struct radv_buffer_view src_view, dst_view;
unsigned dst_offset = 0;
unsigned stride;
VkBuffer buffer;
/* This special btoi path for R32G32B32 formats will write the linear
* image as a buffer with the same underlying memory. The compute
* shader will copy all components separately using a R32 format.
*/
create_buffer_from_image(cmd_buffer, dst, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, &buffer);
create_bview(cmd_buffer, src->buffer, src->offset, src->format, &src_view);
create_bview_for_r32g32b32(cmd_buffer, radv_buffer_from_handle(buffer), dst_offset, dst->format,
&dst_view);
btoi_r32g32b32_bind_descriptors(cmd_buffer, &src_view, &dst_view);
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline);
stride = get_image_stride_for_r32g32b32(cmd_buffer, dst);
for (unsigned r = 0; r < num_rects; ++r) {
unsigned push_constants[4] = {
rects[r].dst_x,
rects[r].dst_y,
stride,
src->pitch,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.btoi_r32g32b32.img_p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, push_constants);
radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1);
}
radv_buffer_view_finish(&src_view);
radv_buffer_view_finish(&dst_view);
radv_DestroyBuffer(radv_device_to_handle(device), buffer, NULL);
}
static void
btoi_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_buffer_view *src,
struct radv_image_view *dst)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.btoi.img_p_layout, 0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]){radv_buffer_view_to_handle(src)},
},
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dst),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}}});
}
void
radv_meta_buffer_to_image_cs(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_buffer *src, struct radv_meta_blit2d_surf *dst,
unsigned num_rects, struct radv_meta_blit2d_rect *rects)
{
VkPipeline pipeline = cmd_buffer->device->meta_state.btoi.pipeline;
struct radv_device *device = cmd_buffer->device;
struct radv_buffer_view src_view;
struct radv_image_view dst_view;
if (dst->image->vk.format == VK_FORMAT_R32G32B32_UINT ||
dst->image->vk.format == VK_FORMAT_R32G32B32_SINT ||
dst->image->vk.format == VK_FORMAT_R32G32B32_SFLOAT) {
radv_meta_buffer_to_image_cs_r32g32b32(cmd_buffer, src, dst, num_rects, rects);
return;
}
create_bview(cmd_buffer, src->buffer, src->offset, src->format, &src_view);
create_iview(cmd_buffer, dst, &dst_view, VK_FORMAT_UNDEFINED, dst->aspect_mask);
btoi_bind_descriptors(cmd_buffer, &src_view, &dst_view);
if (dst->image->vk.image_type == VK_IMAGE_TYPE_3D)
pipeline = cmd_buffer->device->meta_state.btoi.pipeline_3d;
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline);
for (unsigned r = 0; r < num_rects; ++r) {
unsigned push_constants[4] = {
rects[r].dst_x,
rects[r].dst_y,
dst->layer,
src->pitch,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.btoi.img_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0,
16, push_constants);
radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1);
fixup_gfx9_cs_copy(cmd_buffer, src, dst, &rects[r], true);
}
radv_image_view_finish(&dst_view);
radv_buffer_view_finish(&src_view);
}
static void
itoi_r32g32b32_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_buffer_view *src,
struct radv_buffer_view *dst)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.itoi_r32g32b32.img_p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]){radv_buffer_view_to_handle(src)},
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]){radv_buffer_view_to_handle(dst)},
}});
}
static void
radv_meta_image_to_image_cs_r32g32b32(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *src,
struct radv_meta_blit2d_surf *dst, unsigned num_rects,
struct radv_meta_blit2d_rect *rects)
{
VkPipeline pipeline = cmd_buffer->device->meta_state.itoi_r32g32b32.pipeline;
struct radv_device *device = cmd_buffer->device;
struct radv_buffer_view src_view, dst_view;
unsigned src_offset = 0, dst_offset = 0;
unsigned src_stride, dst_stride;
VkBuffer src_buffer, dst_buffer;
/* 96-bit formats are only compatible to themselves. */
assert(dst->format == VK_FORMAT_R32G32B32_UINT || dst->format == VK_FORMAT_R32G32B32_SINT ||
dst->format == VK_FORMAT_R32G32B32_SFLOAT);
/* This special itoi path for R32G32B32 formats will write the linear
* image as a buffer with the same underlying memory. The compute
* shader will copy all components separately using a R32 format.
*/
create_buffer_from_image(cmd_buffer, src, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, &src_buffer);
create_buffer_from_image(cmd_buffer, dst, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, &dst_buffer);
create_bview_for_r32g32b32(cmd_buffer, radv_buffer_from_handle(src_buffer), src_offset,
src->format, &src_view);
create_bview_for_r32g32b32(cmd_buffer, radv_buffer_from_handle(dst_buffer), dst_offset,
dst->format, &dst_view);
itoi_r32g32b32_bind_descriptors(cmd_buffer, &src_view, &dst_view);
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline);
src_stride = get_image_stride_for_r32g32b32(cmd_buffer, src);
dst_stride = get_image_stride_for_r32g32b32(cmd_buffer, dst);
for (unsigned r = 0; r < num_rects; ++r) {
unsigned push_constants[6] = {
rects[r].src_x, rects[r].src_y, src_stride, rects[r].dst_x, rects[r].dst_y, dst_stride,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.itoi_r32g32b32.img_p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 24, push_constants);
radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1);
}
radv_buffer_view_finish(&src_view);
radv_buffer_view_finish(&dst_view);
radv_DestroyBuffer(radv_device_to_handle(device), src_buffer, NULL);
radv_DestroyBuffer(radv_device_to_handle(device), dst_buffer, NULL);
}
static void
itoi_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src,
struct radv_image_view *dst)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.itoi.img_p_layout, 0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}},
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dst),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}}});
}
void
radv_meta_image_to_image_cs(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *src,
struct radv_meta_blit2d_surf *dst, unsigned num_rects,
struct radv_meta_blit2d_rect *rects)
{
struct radv_device *device = cmd_buffer->device;
struct radv_image_view src_view, dst_view;
uint32_t samples = src->image->info.samples;
uint32_t samples_log2 = ffs(samples) - 1;
if (src->format == VK_FORMAT_R32G32B32_UINT || src->format == VK_FORMAT_R32G32B32_SINT ||
src->format == VK_FORMAT_R32G32B32_SFLOAT) {
radv_meta_image_to_image_cs_r32g32b32(cmd_buffer, src, dst, num_rects, rects);
return;
}
u_foreach_bit(i, dst->aspect_mask) {
unsigned aspect_mask = 1u << i;
VkFormat depth_format = 0;
if (aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT)
depth_format = vk_format_stencil_only(dst->image->vk.format);
else if (aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT)
depth_format = vk_format_depth_only(dst->image->vk.format);
create_iview(cmd_buffer, src, &src_view, depth_format, aspect_mask);
create_iview(cmd_buffer, dst, &dst_view, depth_format, aspect_mask);
itoi_bind_descriptors(cmd_buffer, &src_view, &dst_view);
VkPipeline pipeline = cmd_buffer->device->meta_state.itoi.pipeline[samples_log2];
if (src->image->vk.image_type == VK_IMAGE_TYPE_3D ||
dst->image->vk.image_type == VK_IMAGE_TYPE_3D)
pipeline = cmd_buffer->device->meta_state.itoi.pipeline_3d;
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline);
for (unsigned r = 0; r < num_rects; ++r) {
unsigned push_constants[6] = {
rects[r].src_x, rects[r].src_y, src->layer, rects[r].dst_x, rects[r].dst_y, dst->layer,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.itoi.img_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0,
24, push_constants);
radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1);
}
radv_image_view_finish(&src_view);
radv_image_view_finish(&dst_view);
}
}
static void
cleari_r32g32b32_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_buffer_view *view)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.cleari_r32g32b32.img_p_layout,
0, /* set */
1, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]){radv_buffer_view_to_handle(view)},
}});
}
static void
radv_meta_clear_image_cs_r32g32b32(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *dst,
const VkClearColorValue *clear_color)
{
VkPipeline pipeline = cmd_buffer->device->meta_state.cleari_r32g32b32.pipeline;
struct radv_device *device = cmd_buffer->device;
struct radv_buffer_view dst_view;
unsigned stride;
VkBuffer buffer;
/* This special clear path for R32G32B32 formats will write the linear
* image as a buffer with the same underlying memory. The compute
* shader will clear all components separately using a R32 format.
*/
create_buffer_from_image(cmd_buffer, dst, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, &buffer);
create_bview_for_r32g32b32(cmd_buffer, radv_buffer_from_handle(buffer), 0, dst->format,
&dst_view);
cleari_r32g32b32_bind_descriptors(cmd_buffer, &dst_view);
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline);
stride = get_image_stride_for_r32g32b32(cmd_buffer, dst);
unsigned push_constants[4] = {
clear_color->uint32[0],
clear_color->uint32[1],
clear_color->uint32[2],
stride,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.cleari_r32g32b32.img_p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, push_constants);
radv_unaligned_dispatch(cmd_buffer, dst->image->info.width, dst->image->info.height, 1);
radv_buffer_view_finish(&dst_view);
radv_DestroyBuffer(radv_device_to_handle(device), buffer, NULL);
}
static void
cleari_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *dst_iview)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.cleari.img_p_layout, 0, /* set */
1, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dst_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}},
});
}
void
radv_meta_clear_image_cs(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *dst,
const VkClearColorValue *clear_color)
{
struct radv_device *device = cmd_buffer->device;
struct radv_image_view dst_iview;
uint32_t samples = dst->image->info.samples;
uint32_t samples_log2 = ffs(samples) - 1;
if (dst->format == VK_FORMAT_R32G32B32_UINT || dst->format == VK_FORMAT_R32G32B32_SINT ||
dst->format == VK_FORMAT_R32G32B32_SFLOAT) {
radv_meta_clear_image_cs_r32g32b32(cmd_buffer, dst, clear_color);
return;
}
create_iview(cmd_buffer, dst, &dst_iview, VK_FORMAT_UNDEFINED, dst->aspect_mask);
cleari_bind_descriptors(cmd_buffer, &dst_iview);
VkPipeline pipeline = cmd_buffer->device->meta_state.cleari.pipeline[samples_log2];
if (dst->image->vk.image_type == VK_IMAGE_TYPE_3D)
pipeline = cmd_buffer->device->meta_state.cleari.pipeline_3d;
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline);
unsigned push_constants[5] = {
clear_color->uint32[0],
clear_color->uint32[1],
clear_color->uint32[2],
clear_color->uint32[3],
dst->layer,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.cleari.img_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 20,
push_constants);
radv_unaligned_dispatch(cmd_buffer, dst->image->info.width, dst->image->info.height, 1);
radv_image_view_finish(&dst_iview);
}