blob: 4dbcb07b20666dc4340e7c15eb2cd26f377901c4 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <fcntl.h>
#include <stdbool.h>
#include <string.h>
#ifdef __FreeBSD__
#include <sys/types.h>
#endif
#ifdef MAJOR_IN_MKDEV
#include <sys/mkdev.h>
#endif
#ifdef MAJOR_IN_SYSMACROS
#include <sys/sysmacros.h>
#endif
#ifdef __linux__
#include <sys/inotify.h>
#endif
#include "util/u_debug.h"
#include "util/disk_cache.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "vk_util.h"
#ifdef _WIN32
typedef void *drmDevicePtr;
#include <io.h>
#else
#include <amdgpu.h>
#include <xf86drm.h>
#include "drm-uapi/amdgpu_drm.h"
#include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
#endif
#include "util/build_id.h"
#include "util/driconf.h"
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "util/timespec.h"
#include "util/u_atomic.h"
#include "winsys/null/radv_null_winsys_public.h"
#include "git_sha1.h"
#include "sid.h"
#include "vk_format.h"
#include "vk_sync.h"
#include "vk_sync_dummy.h"
#include "vulkan/vk_icd.h"
#ifdef LLVM_AVAILABLE
#include "ac_llvm_util.h"
#endif
/* The number of IBs per submit isn't infinite, it depends on the IP type
* (ie. some initial setup needed for a submit) and the number of IBs (4 DW).
* This limit is arbitrary but should be safe for now. Ideally, we should get
* this limit from the KMD.
*/
#define RADV_MAX_IBS_PER_SUBMIT 192
/* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
#if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
#endif
static VkResult radv_queue_submit(struct vk_queue *vqueue, struct vk_queue_submit *submission);
static void
parse_hex(char *out, const char *in, unsigned length)
{
for (unsigned i = 0; i < length; ++i)
out[i] = 0;
for (unsigned i = 0; i < 2 * length; ++i) {
unsigned v =
in[i] <= '9' ? in[i] - '0' : (in[i] >= 'a' ? (in[i] - 'a' + 10) : (in[i] - 'A' + 10));
out[i / 2] |= v << (4 * (1 - i % 2));
}
}
static int
radv_device_get_cache_uuid(struct radv_physical_device *pdevice, void *uuid)
{
enum radeon_family family = pdevice->rad_info.family;
struct mesa_sha1 ctx;
unsigned char sha1[20];
unsigned ptr_size = sizeof(void *);
memset(uuid, 0, VK_UUID_SIZE);
_mesa_sha1_init(&ctx);
#ifdef RADV_BUILD_ID_OVERRIDE
{
unsigned size = strlen(RADV_BUILD_ID_OVERRIDE) / 2;
char *data = alloca(size);
parse_hex(data, RADV_BUILD_ID_OVERRIDE, size);
_mesa_sha1_update(&ctx, data, size);
}
#else
if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx))
return -1;
#endif
#ifdef LLVM_AVAILABLE
if (pdevice->use_llvm &&
!disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
return -1;
#endif
_mesa_sha1_update(&ctx, &family, sizeof(family));
_mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
_mesa_sha1_final(&ctx, sha1);
memcpy(uuid, sha1, VK_UUID_SIZE);
return 0;
}
static void
radv_get_driver_uuid(void *uuid)
{
ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
}
static void
radv_get_device_uuid(struct radeon_info *info, void *uuid)
{
ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
}
static uint64_t
radv_get_adjusted_vram_size(struct radv_physical_device *device)
{
int ov = driQueryOptioni(&device->instance->dri_options, "override_vram_size");
if (ov >= 0)
return MIN2((uint64_t)device->rad_info.vram_size_kb * 1024, (uint64_t)ov << 20);
return (uint64_t)device->rad_info.vram_size_kb * 1024;
}
static uint64_t
radv_get_visible_vram_size(struct radv_physical_device *device)
{
return MIN2(radv_get_adjusted_vram_size(device), (uint64_t)device->rad_info.vram_vis_size_kb * 1024);
}
static uint64_t
radv_get_vram_size(struct radv_physical_device *device)
{
uint64_t total_size = radv_get_adjusted_vram_size(device);
return total_size - MIN2(total_size, (uint64_t)device->rad_info.vram_vis_size_kb * 1024);
}
enum radv_heap {
RADV_HEAP_VRAM = 1 << 0,
RADV_HEAP_GTT = 1 << 1,
RADV_HEAP_VRAM_VIS = 1 << 2,
RADV_HEAP_MAX = 1 << 3,
};
static void
radv_physical_device_init_mem_types(struct radv_physical_device *device)
{
uint64_t visible_vram_size = radv_get_visible_vram_size(device);
uint64_t vram_size = radv_get_vram_size(device);
uint64_t gtt_size = (uint64_t)device->rad_info.gart_size_kb * 1024;
int vram_index = -1, visible_vram_index = -1, gart_index = -1;
device->memory_properties.memoryHeapCount = 0;
device->heaps = 0;
if (!device->rad_info.has_dedicated_vram) {
const uint64_t total_size = gtt_size + visible_vram_size;
if (device->instance->enable_unified_heap_on_apu) {
/* Some applications seem better when the driver exposes only one heap of VRAM on APUs. */
visible_vram_size = total_size;
gtt_size = 0;
} else {
/* On APUs, the carveout is usually too small for games that request a minimum VRAM size
* greater than it. To workaround this, we compute the total available memory size (GTT +
* visible VRAM size) and report 2/3 as VRAM and 1/3 as GTT.
*/
visible_vram_size = align64((total_size * 2) / 3, device->rad_info.gart_page_size);
gtt_size = total_size - visible_vram_size;
}
vram_size = 0;
}
/* Only get a VRAM heap if it is significant, not if it is a 16 MiB
* remainder above visible VRAM. */
if (vram_size > 0 && vram_size * 9 >= visible_vram_size) {
vram_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_VRAM;
device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap){
.size = vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
if (gtt_size > 0) {
gart_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_GTT;
device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap){
.size = gtt_size,
.flags = 0,
};
}
if (visible_vram_size) {
visible_vram_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_VRAM_VIS;
device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap){
.size = visible_vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
unsigned type_count = 0;
if (vram_index >= 0 || visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
};
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_32BIT;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_GTT_WC | RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = gart_index,
};
}
if (visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = gart_index,
};
}
device->memory_properties.memoryTypeCount = type_count;
if (device->rad_info.has_l2_uncached) {
for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
VkMemoryType mem_type = device->memory_properties.memoryTypes[i];
if (((mem_type.propertyFlags &
(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ||
mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) &&
!(device->memory_flags[i] & RADEON_FLAG_32BIT)) {
VkMemoryPropertyFlags property_flags = mem_type.propertyFlags |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD;
device->memory_domains[type_count] = device->memory_domains[i];
device->memory_flags[type_count] = device->memory_flags[i] | RADEON_FLAG_VA_UNCACHED;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = property_flags,
.heapIndex = mem_type.heapIndex,
};
}
}
device->memory_properties.memoryTypeCount = type_count;
}
for (unsigned i = 0; i < type_count; ++i) {
if (device->memory_flags[i] & RADEON_FLAG_32BIT)
device->memory_types_32bit |= BITFIELD_BIT(i);
}
}
static const char *
radv_get_compiler_string(struct radv_physical_device *pdevice)
{
if (!pdevice->use_llvm) {
/* Some games like SotTR apply shader workarounds if the LLVM
* version is too old or if the LLVM version string is
* missing. This gives 2-5% performance with SotTR and ACO.
*/
if (driQueryOptionb(&pdevice->instance->dri_options, "radv_report_llvm9_version_string")) {
return " (LLVM 9.0.1)";
}
return "";
}
#ifdef LLVM_AVAILABLE
return " (LLVM " MESA_LLVM_VERSION_STRING ")";
#else
unreachable("LLVM is not available");
#endif
}
int
radv_get_int_debug_option(const char *name, int default_value)
{
const char *str;
int result;
str = getenv(name);
if (!str) {
result = default_value;
} else {
char *endptr;
result = strtol(str, &endptr, 0);
if (str == endptr) {
/* No digits founs. */
result = default_value;
}
}
return result;
}
static bool
radv_thread_trace_enabled()
{
return radv_get_int_debug_option("RADV_THREAD_TRACE", -1) >= 0 ||
getenv("RADV_THREAD_TRACE_TRIGGER");
}
static bool
radv_spm_trace_enabled()
{
return radv_thread_trace_enabled() &&
debug_get_bool_option("RADV_THREAD_TRACE_CACHE_COUNTERS", false);
}
static bool
radv_perf_query_supported(const struct radv_physical_device *pdev)
{
/* SQTT / SPM interfere with the register states for perf counters, and
* the code has only been tested on GFX10.3 */
return pdev->rad_info.gfx_level == GFX10_3 && !radv_thread_trace_enabled();
}
static bool
radv_vrs_attachment_enabled(const struct radv_physical_device *pdevice)
{
return !(pdevice->instance->debug_flags & RADV_DEBUG_NO_HIZ) &&
pdevice->rad_info.gfx_level < GFX11; /* TODO: VRS no longer uses HTILE. */
}
static bool
radv_taskmesh_enabled(const struct radv_physical_device *pdevice)
{
return pdevice->use_ngg && !pdevice->use_llvm && pdevice->rad_info.gfx_level == GFX10_3 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE) &&
pdevice->rad_info.has_scheduled_fence_dependency;
}
static bool
radv_NV_device_generated_commands_enabled(const struct radv_physical_device *device)
{
return device->rad_info.gfx_level >= GFX7 &&
!(device->instance->debug_flags & RADV_DEBUG_NO_IBS) &&
driQueryOptionb(&device->instance->dri_options, "radv_dgc");
}
#ifdef ANDROID
#define RADV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION)
#else
#define RADV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION)
#endif
VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumerateInstanceVersion(uint32_t *pApiVersion)
{
*pApiVersion = RADV_API_VERSION;
return VK_SUCCESS;
}
static const struct vk_instance_extension_table radv_instance_extensions_supported = {
.KHR_device_group_creation = true,
.KHR_external_fence_capabilities = true,
.KHR_external_memory_capabilities = true,
.KHR_external_semaphore_capabilities = true,
.KHR_get_physical_device_properties2 = true,
.EXT_debug_report = true,
.EXT_debug_utils = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_get_surface_capabilities2 = true,
.KHR_surface = true,
.KHR_surface_protected_capabilities = true,
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
.KHR_wayland_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
.KHR_xcb_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
.KHR_xlib_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
.EXT_acquire_xlib_display = true,
#endif
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.KHR_display = true,
.KHR_get_display_properties2 = true,
.EXT_direct_mode_display = true,
.EXT_display_surface_counter = true,
.EXT_acquire_drm_display = true,
#endif
};
static void
radv_physical_device_get_supported_extensions(const struct radv_physical_device *device,
struct vk_device_extension_table *ext)
{
*ext = (struct vk_device_extension_table){
.KHR_8bit_storage = true,
.KHR_16bit_storage = true,
.KHR_acceleration_structure = radv_enable_rt(device, false),
.KHR_bind_memory2 = true,
.KHR_buffer_device_address = true,
.KHR_copy_commands2 = true,
.KHR_create_renderpass2 = true,
.KHR_dedicated_allocation = true,
.KHR_deferred_host_operations = true,
.KHR_depth_stencil_resolve = true,
.KHR_descriptor_update_template = true,
.KHR_device_group = true,
.KHR_draw_indirect_count = true,
.KHR_driver_properties = true,
.KHR_dynamic_rendering = true,
.KHR_external_fence = true,
.KHR_external_fence_fd = true,
.KHR_external_memory = true,
.KHR_external_memory_fd = true,
.KHR_external_semaphore = true,
.KHR_external_semaphore_fd = true,
.KHR_format_feature_flags2 = true,
.KHR_fragment_shading_rate = device->rad_info.gfx_level == GFX10_3,
.KHR_get_memory_requirements2 = true,
.KHR_global_priority = true,
.KHR_image_format_list = true,
.KHR_imageless_framebuffer = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_incremental_present = true,
#endif
.KHR_maintenance1 = true,
.KHR_maintenance2 = true,
.KHR_maintenance3 = true,
.KHR_maintenance4 = true,
.KHR_multiview = true,
.KHR_performance_query = radv_perf_query_supported(device),
.KHR_pipeline_executable_properties = true,
.KHR_pipeline_library = !device->use_llvm,
.KHR_push_descriptor = true,
.KHR_ray_query = radv_enable_rt(device, false),
.KHR_ray_tracing_maintenance1 = radv_enable_rt(device, false),
.KHR_ray_tracing_pipeline = radv_enable_rt(device, true),
.KHR_relaxed_block_layout = true,
.KHR_sampler_mirror_clamp_to_edge = true,
.KHR_sampler_ycbcr_conversion = true,
.KHR_separate_depth_stencil_layouts = true,
.KHR_shader_atomic_int64 = true,
.KHR_shader_clock = true,
.KHR_shader_draw_parameters = true,
.KHR_shader_float16_int8 = true,
.KHR_shader_float_controls = true,
.KHR_shader_integer_dot_product = true,
.KHR_shader_non_semantic_info = true,
.KHR_shader_subgroup_extended_types = true,
.KHR_shader_subgroup_uniform_control_flow = true,
.KHR_shader_terminate_invocation = true,
.KHR_spirv_1_4 = true,
.KHR_storage_buffer_storage_class = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_swapchain = true,
.KHR_swapchain_mutable_format = true,
#endif
.KHR_synchronization2 = true,
.KHR_timeline_semaphore = true,
.KHR_uniform_buffer_standard_layout = true,
.KHR_variable_pointers = true,
.KHR_vulkan_memory_model = true,
.KHR_workgroup_memory_explicit_layout = true,
.KHR_zero_initialize_workgroup_memory = true,
.EXT_4444_formats = true,
.EXT_attachment_feedback_loop_layout = true,
.EXT_border_color_swizzle = device->rad_info.gfx_level >= GFX10,
.EXT_buffer_device_address = true,
.EXT_calibrated_timestamps = RADV_SUPPORT_CALIBRATED_TIMESTAMPS,
.EXT_color_write_enable = true,
.EXT_conditional_rendering = true,
.EXT_conservative_rasterization = device->rad_info.gfx_level >= GFX9,
.EXT_custom_border_color = true,
.EXT_debug_marker = radv_thread_trace_enabled(),
.EXT_depth_clip_control = true,
.EXT_depth_clip_enable = true,
.EXT_depth_range_unrestricted = true,
.EXT_descriptor_indexing = true,
.EXT_discard_rectangles = true,
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.EXT_display_control = true,
#endif
.EXT_extended_dynamic_state = true,
.EXT_extended_dynamic_state2 = true,
.EXT_extended_dynamic_state3 = true,
.EXT_external_memory_dma_buf = true,
.EXT_external_memory_host = device->rad_info.has_userptr,
.EXT_global_priority = true,
.EXT_global_priority_query = true,
.EXT_graphics_pipeline_library = !device->use_llvm &&
!!(device->instance->perftest_flags & RADV_PERFTEST_GPL),
.EXT_host_query_reset = true,
.EXT_image_2d_view_of_3d = true,
.EXT_image_drm_format_modifier = device->rad_info.gfx_level >= GFX9,
.EXT_image_robustness = true,
.EXT_image_view_min_lod = true,
.EXT_index_type_uint8 = device->rad_info.gfx_level >= GFX8,
.EXT_inline_uniform_block = true,
.EXT_line_rasterization = true,
.EXT_load_store_op_none = true,
.EXT_memory_budget = true,
.EXT_memory_priority = true,
.EXT_mesh_shader =
radv_taskmesh_enabled(device) && device->instance->perftest_flags & RADV_PERFTEST_EXT_MS,
.EXT_multi_draw = true,
.EXT_mutable_descriptor_type = true, /* Trivial promotion from VALVE. */
.EXT_non_seamless_cube_map = true,
.EXT_pci_bus_info = true,
#ifndef _WIN32
.EXT_physical_device_drm = true,
#endif
.EXT_pipeline_creation_cache_control = true,
.EXT_pipeline_creation_feedback = true,
.EXT_post_depth_coverage = device->rad_info.gfx_level >= GFX10,
.EXT_primitive_topology_list_restart = true,
.EXT_primitives_generated_query = true,
.EXT_private_data = true,
.EXT_provoking_vertex = true,
.EXT_queue_family_foreign = true,
.EXT_robustness2 = true,
.EXT_sample_locations = device->rad_info.gfx_level < GFX10,
.EXT_sampler_filter_minmax = true,
.EXT_scalar_block_layout = device->rad_info.gfx_level >= GFX7,
.EXT_separate_stencil_usage = true,
.EXT_shader_atomic_float = true,
#ifdef LLVM_AVAILABLE
.EXT_shader_atomic_float2 = !device->use_llvm || LLVM_VERSION_MAJOR >= 14,
#else
.EXT_shader_atomic_float2 = true,
#endif
.EXT_shader_demote_to_helper_invocation = true,
.EXT_shader_image_atomic_int64 = true,
.EXT_shader_module_identifier = true,
.EXT_shader_stencil_export = true,
.EXT_shader_subgroup_ballot = true,
.EXT_shader_subgroup_vote = true,
.EXT_shader_viewport_index_layer = true,
.EXT_subgroup_size_control = true,
.EXT_texel_buffer_alignment = true,
.EXT_transform_feedback = true,
.EXT_vertex_attribute_divisor = true,
.EXT_vertex_input_dynamic_state = !device->use_llvm &&
!radv_NV_device_generated_commands_enabled(device),
.EXT_ycbcr_image_arrays = true,
.AMD_buffer_marker = true,
.AMD_device_coherent_memory = true,
.AMD_draw_indirect_count = true,
.AMD_gcn_shader = true,
.AMD_gpu_shader_half_float = device->rad_info.has_packed_math_16bit,
.AMD_gpu_shader_int16 = device->rad_info.has_packed_math_16bit,
.AMD_memory_overallocation_behavior = true,
.AMD_mixed_attachment_samples = true,
.AMD_rasterization_order = device->rad_info.has_out_of_order_rast,
.AMD_shader_ballot = true,
.AMD_shader_core_properties = true,
.AMD_shader_core_properties2 = true,
/* TODO: Figure out if it's possible to implement it on gfx11. */
.AMD_shader_explicit_vertex_parameter = device->rad_info.gfx_level < GFX11,
.AMD_shader_fragment_mask = device->use_fmask,
.AMD_shader_image_load_store_lod = true,
.AMD_shader_trinary_minmax = true,
.AMD_texture_gather_bias_lod = device->rad_info.gfx_level < GFX11,
#ifdef ANDROID
.ANDROID_external_memory_android_hardware_buffer = RADV_SUPPORT_ANDROID_HARDWARE_BUFFER,
.ANDROID_native_buffer = true,
#endif
.GOOGLE_decorate_string = true,
.GOOGLE_hlsl_functionality1 = true,
.GOOGLE_user_type = true,
.INTEL_shader_integer_functions2 = true,
.NV_compute_shader_derivatives = true,
.NV_device_generated_commands = radv_NV_device_generated_commands_enabled(device),
.NV_mesh_shader =
radv_taskmesh_enabled(device) && device->instance->perftest_flags & RADV_PERFTEST_NV_MS,
/* Undocumented extension purely for vkd3d-proton. This check is to prevent anyone else from
* using it.
*/
.VALVE_descriptor_set_host_mapping =
device->vk.instance->app_info.engine_name &&
strcmp(device->vk.instance->app_info.engine_name, "vkd3d") == 0,
.VALVE_mutable_descriptor_type = true,
};
}
static bool
radv_is_conformant(const struct radv_physical_device *pdevice)
{
return pdevice->rad_info.gfx_level >= GFX8;
}
static void
radv_physical_device_init_queue_table(struct radv_physical_device *pdevice)
{
int idx = 0;
pdevice->vk_queue_to_radv[idx] = RADV_QUEUE_GENERAL;
idx++;
for (unsigned i = 1; i < RADV_MAX_QUEUE_FAMILIES; i++)
pdevice->vk_queue_to_radv[i] = RADV_MAX_QUEUE_FAMILIES + 1;
if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
pdevice->vk_queue_to_radv[idx] = RADV_QUEUE_COMPUTE;
idx++;
}
pdevice->num_queues = idx;
}
static void
radv_get_binning_settings(const struct radv_physical_device *pdevice,
struct radv_binning_settings *settings)
{
if (pdevice->rad_info.has_dedicated_vram) {
if (pdevice->rad_info.max_render_backends > 4) {
settings->context_states_per_bin = 1;
settings->persistent_states_per_bin = 1;
} else {
settings->context_states_per_bin = 3;
settings->persistent_states_per_bin = 8;
}
settings->fpovs_per_batch = 63;
} else {
/* The context states are affected by the scissor bug. */
settings->context_states_per_bin = 6;
/* 32 causes hangs for RAVEN. */
settings->persistent_states_per_bin = 16;
settings->fpovs_per_batch = 63;
}
if (pdevice->rad_info.has_gfx9_scissor_bug)
settings->context_states_per_bin = 1;
}
static VkResult
radv_physical_device_try_create(struct radv_instance *instance, drmDevicePtr drm_device,
struct radv_physical_device **device_out)
{
VkResult result;
int fd = -1;
int master_fd = -1;
#ifdef _WIN32
assert(drm_device == NULL);
#else
if (drm_device) {
const char *path = drm_device->nodes[DRM_NODE_RENDER];
drmVersionPtr version;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0) {
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Could not open device %s: %m", path);
}
version = drmGetVersion(fd);
if (!version) {
close(fd);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Could not get the kernel driver version for device %s: %m", path);
}
if (strcmp(version->name, "amdgpu")) {
drmFreeVersion(version);
close(fd);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Device '%s' is not using the AMDGPU kernel driver: %m", path);
}
drmFreeVersion(version);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
fprintf(stderr, "radv: info: Found compatible device '%s'.\n", path);
}
#endif
struct radv_physical_device *device = vk_zalloc2(&instance->vk.alloc, NULL, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!device) {
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_fd;
}
struct vk_physical_device_dispatch_table dispatch_table;
vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
&radv_physical_device_entrypoints, true);
vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
&wsi_physical_device_entrypoints, false);
result = vk_physical_device_init(&device->vk, &instance->vk, NULL, &dispatch_table);
if (result != VK_SUCCESS) {
goto fail_alloc;
}
device->instance = instance;
#ifdef _WIN32
device->ws = radv_null_winsys_create();
#else
if (drm_device) {
bool reserve_vmid = radv_thread_trace_enabled();
device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags, instance->perftest_flags,
reserve_vmid);
} else {
device->ws = radv_null_winsys_create();
}
#endif
if (!device->ws) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "failed to initialize winsys");
goto fail_base;
}
device->vk.supported_sync_types = device->ws->get_sync_types(device->ws);
#ifndef _WIN32
if (drm_device && instance->vk.enabled_extensions.KHR_display) {
master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
if (master_fd >= 0) {
uint32_t accel_working = 0;
struct drm_amdgpu_info request = {.return_pointer = (uintptr_t)&accel_working,
.return_size = sizeof(accel_working),
.query = AMDGPU_INFO_ACCEL_WORKING};
if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof(struct drm_amdgpu_info)) <
0 ||
!accel_working) {
close(master_fd);
master_fd = -1;
}
}
}
#endif
device->master_fd = master_fd;
device->local_fd = fd;
device->ws->query_info(device->ws, &device->rad_info);
device->use_llvm = instance->debug_flags & RADV_DEBUG_LLVM;
#ifndef LLVM_AVAILABLE
if (device->use_llvm) {
fprintf(stderr, "ERROR: LLVM compiler backend selected for radv, but LLVM support was not "
"enabled at build time.\n");
abort();
}
#endif
#ifdef ANDROID
device->emulate_etc2 = !radv_device_supports_etc(device);
#else
device->emulate_etc2 = !radv_device_supports_etc(device) &&
driQueryOptionb(&device->instance->dri_options, "radv_require_etc2");
#endif
snprintf(device->name, sizeof(device->name), "AMD RADV %s%s", device->rad_info.name,
radv_get_compiler_string(device));
const char *marketing_name = device->ws->get_chip_name(device->ws);
snprintf(device->marketing_name, sizeof(device->name), "%s (RADV %s%s)",
marketing_name ? marketing_name : "AMD Unknown", device->rad_info.name,
radv_get_compiler_string(device));
#ifdef ENABLE_SHADER_CACHE
if (radv_device_get_cache_uuid(device, device->cache_uuid)) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID");
goto fail_wsi;
}
/* The gpu id is already embedded in the uuid so we just pass "radv"
* when creating the cache.
*/
char buf[VK_UUID_SIZE * 2 + 1];
disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
device->vk.disk_cache = disk_cache_create(device->name, buf, 0);
#endif
if (!radv_is_conformant(device))
vk_warn_non_conformant_implementation("radv");
radv_get_driver_uuid(&device->driver_uuid);
radv_get_device_uuid(&device->rad_info, &device->device_uuid);
device->out_of_order_rast_allowed =
device->rad_info.has_out_of_order_rast &&
!(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER);
device->dcc_msaa_allowed = (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
device->use_fmask = device->rad_info.gfx_level < GFX11 &&
!(device->instance->debug_flags & RADV_DEBUG_NO_FMASK);
device->use_ngg = (device->rad_info.gfx_level >= GFX10 &&
device->rad_info.family != CHIP_NAVI14 &&
!(device->instance->debug_flags & RADV_DEBUG_NO_NGG)) ||
device->rad_info.gfx_level >= GFX11;
/* TODO: Investigate if NGG culling helps on GFX11. */
device->use_ngg_culling = device->use_ngg && device->rad_info.max_render_backends > 1 &&
(device->rad_info.gfx_level == GFX10_3 ||
(device->instance->perftest_flags & RADV_PERFTEST_NGGC)) &&
!(device->instance->debug_flags & RADV_DEBUG_NO_NGGC);
device->use_ngg_streamout = device->use_ngg &&
(device->rad_info.gfx_level >= GFX11 ||
(device->instance->perftest_flags & RADV_PERFTEST_NGG_STREAMOUT));
/* Determine the number of threads per wave for all stages. */
device->cs_wave_size = 64;
device->ps_wave_size = 64;
device->ge_wave_size = 64;
device->rt_wave_size = 64;
if (device->rad_info.gfx_level >= GFX10) {
if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32)
device->cs_wave_size = 32;
/* For pixel shaders, wave64 is recommanded. */
if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32)
device->ps_wave_size = 32;
if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32)
device->ge_wave_size = 32;
/* Default to 32 on RDNA1-2 as that gives better perf due to less issues with divergence.
* However, on GFX11 default to wave64 as ACO does not support VOPD yet, and with the VALU
* dependence wave32 would likely be a net-loss (as well as the SALU count becoming more
* problematic)
*/
if (!(device->instance->perftest_flags & RADV_PERFTEST_RT_WAVE_64) &&
device->rad_info.gfx_level < GFX11)
device->rt_wave_size = 32;
}
radv_physical_device_init_mem_types(device);
radv_physical_device_get_supported_extensions(device, &device->vk.supported_extensions);
radv_get_nir_options(device);
#ifndef _WIN32
if (drm_device) {
struct stat primary_stat = {0}, render_stat = {0};
device->available_nodes = drm_device->available_nodes;
device->bus_info = *drm_device->businfo.pci;
if ((drm_device->available_nodes & (1 << DRM_NODE_PRIMARY)) &&
stat(drm_device->nodes[DRM_NODE_PRIMARY], &primary_stat) != 0) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
"failed to stat DRM primary node %s",
drm_device->nodes[DRM_NODE_PRIMARY]);
goto fail_perfcounters;
}
device->primary_devid = primary_stat.st_rdev;
if ((drm_device->available_nodes & (1 << DRM_NODE_RENDER)) &&
stat(drm_device->nodes[DRM_NODE_RENDER], &render_stat) != 0) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
"failed to stat DRM render node %s",
drm_device->nodes[DRM_NODE_RENDER]);
goto fail_perfcounters;
}
device->render_devid = render_stat.st_rdev;
}
#endif
if ((device->instance->debug_flags & RADV_DEBUG_INFO))
ac_print_gpu_info(&device->rad_info, stdout);
radv_physical_device_init_queue_table(device);
/* We don't check the error code, but later check if it is initialized. */
ac_init_perfcounters(&device->rad_info, false, false, &device->ac_perfcounters);
/* The WSI is structured as a layer on top of the driver, so this has
* to be the last part of initialization (at least until we get other
* semi-layers).
*/
result = radv_init_wsi(device);
if (result != VK_SUCCESS) {
vk_error(instance, result);
goto fail_perfcounters;
}
device->gs_table_depth =
ac_get_gs_table_depth(device->rad_info.gfx_level, device->rad_info.family);
ac_get_hs_info(&device->rad_info, &device->hs);
ac_get_task_info(&device->rad_info, &device->task_info);
radv_get_binning_settings(device, &device->binning_settings);
*device_out = device;
return VK_SUCCESS;
fail_perfcounters:
ac_destroy_perfcounters(&device->ac_perfcounters);
disk_cache_destroy(device->vk.disk_cache);
#ifdef ENABLE_SHADER_CACHE
fail_wsi:
#endif
device->ws->destroy(device->ws);
fail_base:
vk_physical_device_finish(&device->vk);
fail_alloc:
vk_free(&instance->vk.alloc, device);
fail_fd:
if (fd != -1)
close(fd);
if (master_fd != -1)
close(master_fd);
return result;
}
static void
radv_physical_device_destroy(struct vk_physical_device *vk_device)
{
struct radv_physical_device *device = container_of(vk_device, struct radv_physical_device, vk);
radv_finish_wsi(device);
ac_destroy_perfcounters(&device->ac_perfcounters);
device->ws->destroy(device->ws);
disk_cache_destroy(device->vk.disk_cache);
if (device->local_fd != -1)
close(device->local_fd);
if (device->master_fd != -1)
close(device->master_fd);
vk_physical_device_finish(&device->vk);
vk_free(&device->instance->vk.alloc, device);
}
static const struct debug_control radv_debug_options[] = {
{"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
{"nodcc", RADV_DEBUG_NO_DCC},
{"shaders", RADV_DEBUG_DUMP_SHADERS},
{"nocache", RADV_DEBUG_NO_CACHE},
{"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
{"nohiz", RADV_DEBUG_NO_HIZ},
{"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
{"allbos", RADV_DEBUG_ALL_BOS},
{"noibs", RADV_DEBUG_NO_IBS},
{"spirv", RADV_DEBUG_DUMP_SPIRV},
{"vmfaults", RADV_DEBUG_VM_FAULTS},
{"zerovram", RADV_DEBUG_ZERO_VRAM},
{"syncshaders", RADV_DEBUG_SYNC_SHADERS},
{"preoptir", RADV_DEBUG_PREOPTIR},
{"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS},
{"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER},
{"info", RADV_DEBUG_INFO},
{"startup", RADV_DEBUG_STARTUP},
{"checkir", RADV_DEBUG_CHECKIR},
{"nobinning", RADV_DEBUG_NOBINNING},
{"nongg", RADV_DEBUG_NO_NGG},
{"metashaders", RADV_DEBUG_DUMP_META_SHADERS},
{"nomemorycache", RADV_DEBUG_NO_MEMORY_CACHE},
{"discardtodemote", RADV_DEBUG_DISCARD_TO_DEMOTE},
{"llvm", RADV_DEBUG_LLVM},
{"forcecompress", RADV_DEBUG_FORCE_COMPRESS},
{"hang", RADV_DEBUG_HANG},
{"img", RADV_DEBUG_IMG},
{"noumr", RADV_DEBUG_NO_UMR},
{"invariantgeom", RADV_DEBUG_INVARIANT_GEOM},
{"splitfma", RADV_DEBUG_SPLIT_FMA},
{"nodisplaydcc", RADV_DEBUG_NO_DISPLAY_DCC},
{"notccompatcmask", RADV_DEBUG_NO_TC_COMPAT_CMASK},
{"novrsflatshading", RADV_DEBUG_NO_VRS_FLAT_SHADING},
{"noatocdithering", RADV_DEBUG_NO_ATOC_DITHERING},
{"nonggc", RADV_DEBUG_NO_NGGC},
{"prologs", RADV_DEBUG_DUMP_PROLOGS},
{"nodma", RADV_DEBUG_NO_DMA_BLIT},
{"epilogs", RADV_DEBUG_DUMP_EPILOGS},
{"nofmask", RADV_DEBUG_NO_FMASK},
{NULL, 0}};
const char *
radv_get_debug_option_name(int id)
{
assert(id < ARRAY_SIZE(radv_debug_options) - 1);
return radv_debug_options[id].string;
}
static const struct debug_control radv_perftest_options[] = {{"localbos", RADV_PERFTEST_LOCAL_BOS},
{"dccmsaa", RADV_PERFTEST_DCC_MSAA},
{"bolist", RADV_PERFTEST_BO_LIST},
{"cswave32", RADV_PERFTEST_CS_WAVE_32},
{"pswave32", RADV_PERFTEST_PS_WAVE_32},
{"gewave32", RADV_PERFTEST_GE_WAVE_32},
{"nosam", RADV_PERFTEST_NO_SAM},
{"sam", RADV_PERFTEST_SAM},
{"rt", RADV_PERFTEST_RT},
{"nggc", RADV_PERFTEST_NGGC},
{"emulate_rt", RADV_PERFTEST_EMULATE_RT},
{"nv_ms", RADV_PERFTEST_NV_MS},
{"rtwave64", RADV_PERFTEST_RT_WAVE_64},
{"gpl", RADV_PERFTEST_GPL},
{"ext_ms", RADV_PERFTEST_EXT_MS},
{"ngg_streamout", RADV_PERFTEST_NGG_STREAMOUT},
{NULL, 0}};
const char *
radv_get_perftest_option_name(int id)
{
assert(id < ARRAY_SIZE(radv_perftest_options) - 1);
return radv_perftest_options[id].string;
}
// clang-format off
static const driOptionDescription radv_dri_options[] = {
DRI_CONF_SECTION_PERFORMANCE
DRI_CONF_ADAPTIVE_SYNC(true)
DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
DRI_CONF_VK_X11_ENSURE_MIN_IMAGE_COUNT(false)
DRI_CONF_VK_XWAYLAND_WAIT_READY(true)
DRI_CONF_RADV_REPORT_LLVM9_VERSION_STRING(false)
DRI_CONF_RADV_ENABLE_MRT_OUTPUT_NAN_FIXUP(false)
DRI_CONF_RADV_DISABLE_SHRINK_IMAGE_STORE(false)
DRI_CONF_RADV_NO_DYNAMIC_BOUNDS(false)
DRI_CONF_RADV_ABSOLUTE_DEPTH_BIAS(false)
DRI_CONF_RADV_OVERRIDE_UNIFORM_OFFSET_ALIGNMENT(0)
DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG
DRI_CONF_OVERRIDE_VRAM_SIZE()
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
DRI_CONF_RADV_ZERO_VRAM(false)
DRI_CONF_RADV_LOWER_DISCARD_TO_DEMOTE(false)
DRI_CONF_RADV_INVARIANT_GEOM(false)
DRI_CONF_RADV_SPLIT_FMA(false)
DRI_CONF_RADV_DISABLE_TC_COMPAT_HTILE_GENERAL(false)
DRI_CONF_RADV_DISABLE_DCC(false)
DRI_CONF_RADV_REQUIRE_ETC2(false)
DRI_CONF_RADV_DISABLE_ANISO_SINGLE_LEVEL(false)
DRI_CONF_RADV_DISABLE_SINKING_LOAD_INPUT_FS(false)
DRI_CONF_RADV_DGC(false)
DRI_CONF_RADV_FLUSH_BEFORE_QUERY_COPY(false)
DRI_CONF_RADV_ENABLE_UNIFIED_HEAP_ON_APU(false)
DRI_CONF_SECTION_END
};
// clang-format on
static void
radv_init_dri_options(struct radv_instance *instance)
{
driParseOptionInfo(&instance->available_dri_options, radv_dri_options,
ARRAY_SIZE(radv_dri_options));
driParseConfigFiles(&instance->dri_options, &instance->available_dri_options, 0, "radv", NULL, NULL,
instance->vk.app_info.app_name, instance->vk.app_info.app_version,
instance->vk.app_info.engine_name, instance->vk.app_info.engine_version);
instance->enable_mrt_output_nan_fixup =
driQueryOptionb(&instance->dri_options, "radv_enable_mrt_output_nan_fixup");
instance->disable_shrink_image_store =
driQueryOptionb(&instance->dri_options, "radv_disable_shrink_image_store");
instance->absolute_depth_bias =
driQueryOptionb(&instance->dri_options, "radv_absolute_depth_bias");
instance->disable_tc_compat_htile_in_general =
driQueryOptionb(&instance->dri_options, "radv_disable_tc_compat_htile_general");
if (driQueryOptionb(&instance->dri_options, "radv_no_dynamic_bounds"))
instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
if (driQueryOptionb(&instance->dri_options, "radv_lower_discard_to_demote"))
instance->debug_flags |= RADV_DEBUG_DISCARD_TO_DEMOTE;
if (driQueryOptionb(&instance->dri_options, "radv_invariant_geom"))
instance->debug_flags |= RADV_DEBUG_INVARIANT_GEOM;
if (driQueryOptionb(&instance->dri_options, "radv_split_fma"))
instance->debug_flags |= RADV_DEBUG_SPLIT_FMA;
if (driQueryOptionb(&instance->dri_options, "radv_disable_dcc"))
instance->debug_flags |= RADV_DEBUG_NO_DCC;
instance->zero_vram =
driQueryOptionb(&instance->dri_options, "radv_zero_vram");
instance->disable_aniso_single_level =
driQueryOptionb(&instance->dri_options, "radv_disable_aniso_single_level");
instance->disable_sinking_load_input_fs =
driQueryOptionb(&instance->dri_options, "radv_disable_sinking_load_input_fs");
instance->flush_before_query_copy =
driQueryOptionb(&instance->dri_options, "radv_flush_before_query_copy");
instance->enable_unified_heap_on_apu =
driQueryOptionb(&instance->dri_options, "radv_enable_unified_heap_on_apu");
}
static VkResult create_null_physical_device(struct vk_instance *vk_instance);
static VkResult create_drm_physical_device(struct vk_instance *vk_instance,
struct _drmDevice *device,
struct vk_physical_device **out);
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkInstance *pInstance)
{
struct radv_instance *instance;
VkResult result;
if (!pAllocator)
pAllocator = vk_default_allocator();
instance = vk_zalloc(pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_instance_dispatch_table dispatch_table;
vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &radv_instance_entrypoints, true);
vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &wsi_instance_entrypoints, false);
struct vk_instance_extension_table extensions_supported = radv_instance_extensions_supported;
result = vk_instance_init(&instance->vk, &extensions_supported, &dispatch_table,
pCreateInfo, pAllocator);
if (result != VK_SUCCESS) {
vk_free(pAllocator, instance);
return vk_error(instance, result);
}
instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"), radv_debug_options);
instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"), radv_perftest_options);
/* When RADV_FORCE_FAMILY is set, the driver creates a null
* device that allows to test the compiler without having an
* AMDGPU instance.
*/
if (getenv("RADV_FORCE_FAMILY"))
instance->vk.physical_devices.enumerate = create_null_physical_device;
else
instance->vk.physical_devices.try_create_for_drm = create_drm_physical_device;
instance->vk.physical_devices.destroy = radv_physical_device_destroy;
if (instance->debug_flags & RADV_DEBUG_STARTUP)
fprintf(stderr, "radv: info: Created an instance.\n");
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
radv_init_dri_options(instance);
*pInstance = radv_instance_to_handle(instance);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroyInstance(VkInstance _instance, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
if (!instance)
return;
VG(VALGRIND_DESTROY_MEMPOOL(instance));
driDestroyOptionCache(&instance->dri_options);
driDestroyOptionInfo(&instance->available_dri_options);
vk_instance_finish(&instance->vk);
vk_free(&instance->vk.alloc, instance);
}
static VkResult
create_null_physical_device(struct vk_instance *vk_instance)
{
struct radv_instance *instance = container_of(vk_instance, struct radv_instance, vk);
struct radv_physical_device *pdevice;
VkResult result = radv_physical_device_try_create(instance, NULL, &pdevice);
if (result != VK_SUCCESS)
return result;
list_addtail(&pdevice->vk.link, &instance->vk.physical_devices.list);
return VK_SUCCESS;
}
static VkResult
create_drm_physical_device(struct vk_instance *vk_instance, struct _drmDevice *device,
struct vk_physical_device **out)
{
#ifndef _WIN32
if (!(device->available_nodes & (1 << DRM_NODE_RENDER)) ||
device->bustype != DRM_BUS_PCI ||
device->deviceinfo.pci->vendor_id != ATI_VENDOR_ID)
return VK_ERROR_INCOMPATIBLE_DRIVER;
return radv_physical_device_try_create((struct radv_instance *)vk_instance, device,
(struct radv_physical_device **)out);
#else
return VK_SUCCESS;
#endif
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures *pFeatures)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
memset(pFeatures, 0, sizeof(*pFeatures));
*pFeatures = (VkPhysicalDeviceFeatures){
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = true,
.independentBlend = true,
.geometryShader = true,
.tessellationShader = true,
.sampleRateShading = true,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = true,
.drawIndirectFirstInstance = true,
.depthClamp = true,
.depthBiasClamp = true,
.fillModeNonSolid = true,
.depthBounds = true,
.wideLines = true,
.largePoints = true,
.alphaToOne = false,
.multiViewport = true,
.samplerAnisotropy = true,
.textureCompressionETC2 = radv_device_supports_etc(pdevice) || pdevice->emulate_etc2,
.textureCompressionASTC_LDR = false,
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = true,
.vertexPipelineStoresAndAtomics = true,
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = true,
.shaderStorageImageExtendedFormats = true,
.shaderStorageImageMultisample = true,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderStorageImageReadWithoutFormat = true,
.shaderStorageImageWriteWithoutFormat = true,
.shaderClipDistance = true,
.shaderCullDistance = true,
.shaderFloat64 = true,
.shaderInt64 = true,
.shaderInt16 = true,
.sparseBinding = true,
.sparseResidencyBuffer = pdevice->rad_info.family >= CHIP_POLARIS10,
.sparseResidencyImage2D = pdevice->rad_info.family >= CHIP_POLARIS10,
.sparseResidencyImage3D = pdevice->rad_info.gfx_level >= GFX9,
.sparseResidencyAliased = pdevice->rad_info.family >= CHIP_POLARIS10,
.variableMultisampleRate = true,
.shaderResourceMinLod = true,
.shaderResourceResidency = true,
.inheritedQueries = true,
};
}
static void
radv_get_physical_device_features_1_1(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
f->storageBuffer16BitAccess = true;
f->uniformAndStorageBuffer16BitAccess = true;
f->storagePushConstant16 = true;
f->storageInputOutput16 = pdevice->rad_info.has_packed_math_16bit;
f->multiview = true;
f->multiviewGeometryShader = true;
f->multiviewTessellationShader = true;
f->variablePointersStorageBuffer = true;
f->variablePointers = true;
f->protectedMemory = false;
f->samplerYcbcrConversion = true;
f->shaderDrawParameters = true;
}
static void
radv_get_physical_device_features_1_2(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
f->samplerMirrorClampToEdge = true;
f->drawIndirectCount = true;
f->storageBuffer8BitAccess = true;
f->uniformAndStorageBuffer8BitAccess = true;
f->storagePushConstant8 = true;
f->shaderBufferInt64Atomics = true;
f->shaderSharedInt64Atomics = true;
f->shaderFloat16 = pdevice->rad_info.has_packed_math_16bit;
f->shaderInt8 = true;
f->descriptorIndexing = true;
f->shaderInputAttachmentArrayDynamicIndexing = true;
f->shaderUniformTexelBufferArrayDynamicIndexing = true;
f->shaderStorageTexelBufferArrayDynamicIndexing = true;
f->shaderUniformBufferArrayNonUniformIndexing = true;
f->shaderSampledImageArrayNonUniformIndexing = true;
f->shaderStorageBufferArrayNonUniformIndexing = true;
f->shaderStorageImageArrayNonUniformIndexing = true;
f->shaderInputAttachmentArrayNonUniformIndexing = true;
f->shaderUniformTexelBufferArrayNonUniformIndexing = true;
f->shaderStorageTexelBufferArrayNonUniformIndexing = true;
f->descriptorBindingUniformBufferUpdateAfterBind = true;
f->descriptorBindingSampledImageUpdateAfterBind = true;
f->descriptorBindingStorageImageUpdateAfterBind = true;
f->descriptorBindingStorageBufferUpdateAfterBind = true;
f->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
f->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
f->descriptorBindingUpdateUnusedWhilePending = true;
f->descriptorBindingPartiallyBound = true;
f->descriptorBindingVariableDescriptorCount = true;
f->runtimeDescriptorArray = true;
f->samplerFilterMinmax = true;
f->scalarBlockLayout = pdevice->rad_info.gfx_level >= GFX7;
f->imagelessFramebuffer = true;
f->uniformBufferStandardLayout = true;
f->shaderSubgroupExtendedTypes = true;
f->separateDepthStencilLayouts = true;
f->hostQueryReset = true;
f->timelineSemaphore = true, f->bufferDeviceAddress = true;
f->bufferDeviceAddressCaptureReplay = true;
f->bufferDeviceAddressMultiDevice = false;
f->vulkanMemoryModel = true;
f->vulkanMemoryModelDeviceScope = true;
f->vulkanMemoryModelAvailabilityVisibilityChains = false;
f->shaderOutputViewportIndex = true;
f->shaderOutputLayer = true;
f->subgroupBroadcastDynamicId = true;
}
static void
radv_get_physical_device_features_1_3(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan13Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES);
f->robustImageAccess = true;
f->inlineUniformBlock = true;
f->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
f->pipelineCreationCacheControl = true;
f->privateData = true;
f->shaderDemoteToHelperInvocation = true;
f->shaderTerminateInvocation = true;
f->subgroupSizeControl = true;
f->computeFullSubgroups = true;
f->synchronization2 = true;
f->textureCompressionASTC_HDR = false;
f->shaderZeroInitializeWorkgroupMemory = true;
f->dynamicRendering = true;
f->shaderIntegerDotProduct = true;
f->maintenance4 = true;
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2 *pFeatures)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
VkPhysicalDeviceVulkan11Features core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
};
radv_get_physical_device_features_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Features core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
};
radv_get_physical_device_features_1_2(pdevice, &core_1_2);
VkPhysicalDeviceVulkan13Features core_1_3 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
};
radv_get_physical_device_features_1_3(pdevice, &core_1_3);
#define CORE_FEATURE(major, minor, feature) features->feature = core_##major##_##minor.feature
vk_foreach_struct(ext, pFeatures->pNext)
{
if (vk_get_physical_device_core_1_1_feature_ext(ext, &core_1_1))
continue;
if (vk_get_physical_device_core_1_2_feature_ext(ext, &core_1_2))
continue;
if (vk_get_physical_device_core_1_3_feature_ext(ext, &core_1_3))
continue;
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
(VkPhysicalDeviceConditionalRenderingFeaturesEXT *)ext;
features->conditionalRendering = true;
features->inheritedConditionalRendering = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
(VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
features->vertexAttributeInstanceRateDivisor = true;
features->vertexAttributeInstanceRateZeroDivisor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
(VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
features->transformFeedback = true;
features->geometryStreams = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES: {
VkPhysicalDeviceScalarBlockLayoutFeatures *features =
(VkPhysicalDeviceScalarBlockLayoutFeatures *)ext;
CORE_FEATURE(1, 2, scalarBlockLayout);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: {
VkPhysicalDeviceMemoryPriorityFeaturesEXT *features =
(VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext;
features->memoryPriority = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features =
(VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext;
CORE_FEATURE(1, 2, bufferDeviceAddress);
CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
(VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
features->depthClipEnable = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
(VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
features->computeDerivativeGroupQuads = false;
features->computeDerivativeGroupLinear = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
(VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
features->ycbcrImageArrays = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
(VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
features->indexTypeUint8 = pdevice->rad_info.gfx_level >= GFX8;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
(VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
features->pipelineExecutableInfo = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
VkPhysicalDeviceShaderClockFeaturesKHR *features =
(VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
features->shaderSubgroupClock = true;
features->shaderDeviceClock = pdevice->rad_info.gfx_level >= GFX8;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
(VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
features->texelBufferAlignment = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD: {
VkPhysicalDeviceCoherentMemoryFeaturesAMD *features =
(VkPhysicalDeviceCoherentMemoryFeaturesAMD *)ext;
features->deviceCoherentMemory = pdevice->rad_info.has_l2_uncached;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
(VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
features->rectangularLines = false;
features->bresenhamLines = true;
features->smoothLines = false;
features->stippledRectangularLines = false;
/* FIXME: Some stippled Bresenham CTS fails on Vega10
* but work on Raven.
*/
features->stippledBresenhamLines = pdevice->rad_info.gfx_level != GFX9;
features->stippledSmoothLines = false;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
VkDeviceMemoryOverallocationCreateInfoAMD *features =
(VkDeviceMemoryOverallocationCreateInfoAMD *)ext;
features->overallocationBehavior = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
VkPhysicalDeviceRobustness2FeaturesEXT *features =
(VkPhysicalDeviceRobustness2FeaturesEXT *)ext;
features->robustBufferAccess2 = true;
features->robustImageAccess2 = true;
features->nullDescriptor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
(VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
features->customBorderColors = true;
features->customBorderColorWithoutFormat = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
(VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext;
features->extendedDynamicState = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features =
(VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *)ext;
features->shaderBufferFloat32Atomics = true;
features->shaderBufferFloat32AtomicAdd = false;
features->shaderBufferFloat64Atomics = true;
features->shaderBufferFloat64AtomicAdd = false;
features->shaderSharedFloat32Atomics = true;
features->shaderSharedFloat32AtomicAdd = pdevice->rad_info.gfx_level >= GFX8;
features->shaderSharedFloat64Atomics = true;
features->shaderSharedFloat64AtomicAdd = false;
features->shaderImageFloat32Atomics = true;
features->shaderImageFloat32AtomicAdd = false;
features->sparseImageFloat32Atomics = true;
features->sparseImageFloat32AtomicAdd = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
VkPhysicalDevice4444FormatsFeaturesEXT *features =
(VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
features->formatA4R4G4B4 = true;
features->formatA4B4G4R4 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_ATOMIC_INT64_FEATURES_EXT: {
VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *features =
(VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *)ext;
features->shaderImageInt64Atomics = true;
features->sparseImageInt64Atomics = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_EXT: {
VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT *features =
(VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT *)ext;
features->mutableDescriptorType = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
VkPhysicalDeviceFragmentShadingRateFeaturesKHR *features =
(VkPhysicalDeviceFragmentShadingRateFeaturesKHR *)ext;
features->pipelineFragmentShadingRate = true;
features->primitiveFragmentShadingRate = true;
features->attachmentFragmentShadingRate = radv_vrs_attachment_enabled(pdevice);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR: {
VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *features =
(VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *)ext;
features->workgroupMemoryExplicitLayout = true;
features->workgroupMemoryExplicitLayoutScalarBlockLayout = true;
features->workgroupMemoryExplicitLayout8BitAccess = true;
features->workgroupMemoryExplicitLayout16BitAccess = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT: {
VkPhysicalDeviceProvokingVertexFeaturesEXT *features =
(VkPhysicalDeviceProvokingVertexFeaturesEXT *)ext;
features->provokingVertexLast = true;
features->transformFeedbackPreservesProvokingVertex = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT: {
VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *features =
(VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *)ext;
features->extendedDynamicState2 = true;
features->extendedDynamicState2LogicOp = true;
features->extendedDynamicState2PatchControlPoints = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR: {
VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *features =
(VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *)ext;
features->globalPriorityQuery = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR: {
VkPhysicalDeviceAccelerationStructureFeaturesKHR *features =
(VkPhysicalDeviceAccelerationStructureFeaturesKHR *)ext;
features->accelerationStructure = true;
features->accelerationStructureCaptureReplay = false;
features->accelerationStructureIndirectBuild = false;
features->accelerationStructureHostCommands = false;
features->descriptorBindingAccelerationStructureUpdateAfterBind = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR: {
VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *features =
(VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *)ext;
features->shaderSubgroupUniformControlFlow = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT: {
VkPhysicalDeviceMultiDrawFeaturesEXT *features = (VkPhysicalDeviceMultiDrawFeaturesEXT *)ext;
features->multiDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT: {
VkPhysicalDeviceColorWriteEnableFeaturesEXT *features =
(VkPhysicalDeviceColorWriteEnableFeaturesEXT *)ext;
features->colorWriteEnable = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: {
VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features =
(VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *)ext;
bool has_shader_image_float_minmax =
pdevice->rad_info.gfx_level != GFX8 && pdevice->rad_info.gfx_level != GFX9 &&
pdevice->rad_info.gfx_level != GFX11;
features->shaderBufferFloat16Atomics = false;
features->shaderBufferFloat16AtomicAdd = false;
features->shaderBufferFloat16AtomicMinMax = false;
features->shaderBufferFloat32AtomicMinMax =
radv_has_shader_buffer_float_minmax(pdevice, 32);
features->shaderBufferFloat64AtomicMinMax =
radv_has_shader_buffer_float_minmax(pdevice, 64);
features->shaderSharedFloat16Atomics = false;
features->shaderSharedFloat16AtomicAdd = false;
features->shaderSharedFloat16AtomicMinMax = false;
features->shaderSharedFloat32AtomicMinMax = true;
features->shaderSharedFloat64AtomicMinMax = true;
features->shaderImageFloat32AtomicMinMax = has_shader_image_float_minmax;
features->sparseImageFloat32AtomicMinMax = has_shader_image_float_minmax;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT: {
VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *features =
(VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *)ext;
features->primitiveTopologyListRestart = true;
features->primitiveTopologyPatchListRestart = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR: {
VkPhysicalDeviceRayQueryFeaturesKHR *features =
(VkPhysicalDeviceRayQueryFeaturesKHR *)ext;
features->rayQuery = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR: {
VkPhysicalDeviceRayTracingPipelineFeaturesKHR *features =
(VkPhysicalDeviceRayTracingPipelineFeaturesKHR *)ext;
features->rayTracingPipeline = true;
features->rayTracingPipelineShaderGroupHandleCaptureReplay = false;
features->rayTracingPipelineShaderGroupHandleCaptureReplayMixed = false;
features->rayTracingPipelineTraceRaysIndirect = true;
features->rayTraversalPrimitiveCulling = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_MAINTENANCE_1_FEATURES_KHR: {
VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR *features =
(VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR *)ext;
features->rayTracingMaintenance1 = true;
features->rayTracingPipelineTraceRaysIndirect2 = radv_enable_rt(pdevice, true);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES: {
VkPhysicalDeviceMaintenance4Features *features =
(VkPhysicalDeviceMaintenance4Features *)ext;
features->maintenance4 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT: {
VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *features =
(VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *)ext;
features->vertexInputDynamicState = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_MIN_LOD_FEATURES_EXT: {
VkPhysicalDeviceImageViewMinLodFeaturesEXT *features =
(VkPhysicalDeviceImageViewMinLodFeaturesEXT *)ext;
features->minLod = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES: {
VkPhysicalDeviceSynchronization2Features *features =
(VkPhysicalDeviceSynchronization2Features *)ext;
features->synchronization2 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES: {
VkPhysicalDeviceDynamicRenderingFeatures *features =
(VkPhysicalDeviceDynamicRenderingFeatures *)ext;
features->dynamicRendering = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_NV: {
VkPhysicalDeviceMeshShaderFeaturesNV *features =
(VkPhysicalDeviceMeshShaderFeaturesNV *)ext;
features->taskShader = features->meshShader = radv_taskmesh_enabled(pdevice);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_EXT: {
VkPhysicalDeviceMeshShaderFeaturesEXT *features =
(VkPhysicalDeviceMeshShaderFeaturesEXT *)ext;
bool taskmesh_en = radv_taskmesh_enabled(pdevice);
features->meshShader = taskmesh_en;
features->taskShader = taskmesh_en;
features->multiviewMeshShader = taskmesh_en;
features->primitiveFragmentShadingRateMeshShader = taskmesh_en;
features->meshShaderQueries = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES: {
VkPhysicalDeviceTextureCompressionASTCHDRFeatures *features =
(VkPhysicalDeviceTextureCompressionASTCHDRFeatures *)ext;
features->textureCompressionASTC_HDR = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_SET_HOST_MAPPING_FEATURES_VALVE: {
VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE *features =
(VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE *)ext;
features->descriptorSetHostMapping = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_CONTROL_FEATURES_EXT: {
VkPhysicalDeviceDepthClipControlFeaturesEXT *features =
(VkPhysicalDeviceDepthClipControlFeaturesEXT *)ext;
features->depthClipControl = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT: {
VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *features =
(VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *)ext;
features->image2DViewOf3D = true;
features->sampler2DViewOf3D = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL: {
VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *features =
(VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *)ext;
features->shaderIntegerFunctions2 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT: {
VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *features =
(VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *)ext;
features->primitivesGeneratedQuery = true;
features->primitivesGeneratedQueryWithRasterizerDiscard = true;
features->primitivesGeneratedQueryWithNonZeroStreams = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NON_SEAMLESS_CUBE_MAP_FEATURES_EXT : {
VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *features =
(VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *)ext;
features->nonSeamlessCubeMap = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BORDER_COLOR_SWIZZLE_FEATURES_EXT: {
VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *features =
(VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *)ext;
features->borderColorSwizzle = true;
features->borderColorSwizzleFromImage = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_FEATURES_EXT: {
VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *features =
(VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *)ext;
features->shaderModuleIdentifier = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
VkPhysicalDevicePerformanceQueryFeaturesKHR *features =
(VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
features->performanceCounterQueryPools = radv_perf_query_supported(pdevice);
features->performanceCounterMultipleQueryPools = features->performanceCounterQueryPools;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_FEATURES_NV: {
VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV *features =
(VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV *)ext;
features->deviceGeneratedCommands = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_FEATURES_EXT: {
VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT *features =
(VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT *)ext;
features->attachmentFeedbackLoopLayout = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_FEATURES_EXT: {
VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT *features =
(VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT *)ext;
features->graphicsPipelineLibrary = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_FEATURES_EXT: {
VkPhysicalDeviceExtendedDynamicState3FeaturesEXT *features =
(VkPhysicalDeviceExtendedDynamicState3FeaturesEXT *)ext;
features->extendedDynamicState3TessellationDomainOrigin = true;
features->extendedDynamicState3PolygonMode = true;
features->extendedDynamicState3SampleMask = true;
features->extendedDynamicState3AlphaToCoverageEnable = pdevice->rad_info.gfx_level < GFX11;
features->extendedDynamicState3LogicOpEnable = true;
features->extendedDynamicState3LineStippleEnable = true;
features->extendedDynamicState3ColorBlendEnable = false; /* TODO: Zink */
features->extendedDynamicState3DepthClipEnable = true;
features->extendedDynamicState3ConservativeRasterizationMode = true;
features->extendedDynamicState3DepthClipNegativeOneToOne = true;
features->extendedDynamicState3ProvokingVertexMode = !pdevice->use_ngg; /* TODO: NGG */
features->extendedDynamicState3DepthClampEnable = true;
features->extendedDynamicState3ColorWriteMask = false; /* TODO: Zink */
features->extendedDynamicState3RasterizationSamples = false; /* TODO: Zink */
features->extendedDynamicState3ColorBlendEquation = false; /* TODO: Zink */
features->extendedDynamicState3SampleLocationsEnable = false; /* TODO: Zink */
features->extendedDynamicState3LineRasterizationMode = false; /* TODO: Zink */
features->extendedDynamicState3ExtraPrimitiveOverestimationSize = false;
features->extendedDynamicState3AlphaToOneEnable = false;
features->extendedDynamicState3RasterizationStream = false;
features->extendedDynamicState3ColorBlendAdvanced = false;
features->extendedDynamicState3ViewportWScalingEnable = false;
features->extendedDynamicState3ViewportSwizzle = false;
features->extendedDynamicState3CoverageToColorEnable = false;
features->extendedDynamicState3CoverageToColorLocation = false;
features->extendedDynamicState3CoverageModulationMode = false;
features->extendedDynamicState3CoverageModulationTableEnable = false;
features->extendedDynamicState3CoverageModulationTable = false;
features->extendedDynamicState3CoverageReductionMode = false;
features->extendedDynamicState3RepresentativeFragmentTestEnable = false;
features->extendedDynamicState3ShadingRateImageEnable = false;
break;
}
default:
break;
}
}
}
static size_t
radv_max_descriptor_set_size()
{
/* make sure that the entire descriptor set is addressable with a signed
* 32-bit int. So the sum of all limits scaled by descriptor size has to
* be at most 2 GiB. the combined image & samples object count as one of
* both. This limit is for the pipeline layout, not for the set layout, but
* there is no set limit, so we just set a pipeline limit. I don't think
* any app is going to hit this soon. */
return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
64 /* storage image */);
}
static uint32_t
radv_uniform_buffer_offset_alignment(const struct radv_physical_device *pdevice)
{
uint32_t uniform_offset_alignment =
driQueryOptioni(&pdevice->instance->dri_options, "radv_override_uniform_offset_alignment");
if (!util_is_power_of_two_or_zero(uniform_offset_alignment)) {
fprintf(stderr,
"ERROR: invalid radv_override_uniform_offset_alignment setting %d:"
"not a power of two\n",
uniform_offset_alignment);
uniform_offset_alignment = 0;
}
/* Take at least the hardware limit. */
return MAX2(uniform_offset_alignment, 4);
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
VkSampleCountFlags sample_counts = 0xf;
size_t max_descriptor_set_size = radv_max_descriptor_set_size();
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = UINT32_MAX,
.maxUniformBufferRange = UINT32_MAX,
.maxStorageBufferRange = UINT32_MAX,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 1,
.sparseAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE, /* buffer max size */
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_descriptor_set_size,
.maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
.maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
.maxPerStageDescriptorSampledImages = max_descriptor_set_size,
.maxPerStageDescriptorStorageImages = max_descriptor_set_size,
.maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
.maxPerStageResources = max_descriptor_set_size,
.maxDescriptorSetSamplers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
.maxDescriptorSetStorageBuffers = max_descriptor_set_size,
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
.maxDescriptorSetSampledImages = max_descriptor_set_size,
.maxDescriptorSetStorageImages = max_descriptor_set_size,
.maxDescriptorSetInputAttachments = max_descriptor_set_size,
.maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
.maxVertexInputBindings = MAX_VBS,
.maxVertexInputAttributeOffset = UINT32_MAX,
.maxVertexInputBindingStride = 2048,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 120,
.maxTessellationControlTotalOutputComponents = 4096,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 127,
.maxGeometryInputComponents = 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 128,
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = max_descriptor_set_size,
.maxComputeSharedMemorySize = pdevice->rad_info.gfx_level >= GFX7 ? 65536 : 32768,
.maxComputeWorkGroupCount = {65535, 65535, 65535},
.maxComputeWorkGroupInvocations = 1024,
.maxComputeWorkGroupSize = {1024, 1024, 1024},
.subPixelPrecisionBits = 8,
.subTexelPrecisionBits = 8,
.mipmapPrecisionBits = 8,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = {(1 << 14), (1 << 14)},
.viewportBoundsRange = {INT16_MIN, INT16_MAX},
.viewportSubPixelBits = 8,
.minMemoryMapAlignment = 4096, /* A page */
.minTexelBufferOffsetAlignment = 4,
.minUniformBufferOffsetAlignment = radv_uniform_buffer_offset_alignment(pdevice),
.minStorageBufferOffsetAlignment = 4,
.minTexelOffset = -32,
.maxTexelOffset = 31,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -2,
.maxInterpolationOffset = 2,
.subPixelInterpolationOffsetBits = 8,
.maxFramebufferWidth = MAX_FRAMEBUFFER_WIDTH,
.maxFramebufferHeight = MAX_FRAMEBUFFER_HEIGHT,
.maxFramebufferLayers = (1 << 10),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = sample_counts,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = sample_counts,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 2,
.pointSizeRange = {0.0, 8191.875},
.lineWidthRange = {0.0, 8191.875},
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 8.0),
.strictLines = false, /* FINISHME */
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 1,
.optimalBufferCopyRowPitchAlignment = 1,
.nonCoherentAtomSize = 64,
};
VkPhysicalDeviceType device_type;
if (pdevice->rad_info.has_dedicated_vram) {
device_type = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU;
} else {
device_type = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
}
*pProperties = (VkPhysicalDeviceProperties){
.apiVersion = RADV_API_VERSION,
.driverVersion = vk_get_driver_version(),
.vendorID = ATI_VENDOR_ID,
.deviceID = pdevice->rad_info.pci_id,
.deviceType = device_type,
.limits = limits,
.sparseProperties =
{
.residencyNonResidentStrict = pdevice->rad_info.family >= CHIP_POLARIS10,
.residencyStandard2DBlockShape = pdevice->rad_info.family >= CHIP_POLARIS10,
.residencyStandard3DBlockShape = pdevice->rad_info.gfx_level >= GFX9,
},
};
strcpy(pProperties->deviceName, pdevice->marketing_name);
memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
}
static void
radv_get_physical_device_properties_1_1(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memset(p->deviceLUID, 0, VK_LUID_SIZE);
/* The LUID is for Windows. */
p->deviceLUIDValid = false;
p->deviceNodeMask = 0;
p->subgroupSize = RADV_SUBGROUP_SIZE;
p->subgroupSupportedStages = VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT;
if (radv_taskmesh_enabled(pdevice))
p->subgroupSupportedStages |= VK_SHADER_STAGE_MESH_BIT_EXT | VK_SHADER_STAGE_TASK_BIT_EXT;
if (radv_enable_rt(pdevice, true))
p->subgroupSupportedStages |= RADV_RT_STAGE_BITS;
p->subgroupSupportedOperations =
VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT |
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT |
VK_SUBGROUP_FEATURE_CLUSTERED_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
p->subgroupQuadOperationsInAllStages = true;
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
p->maxMultiviewViewCount = MAX_VIEWS;
p->maxMultiviewInstanceIndex = INT_MAX;
p->protectedNoFault = false;
p->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS;
p->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
}
static void
radv_get_physical_device_properties_1_2(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
p->driverID = VK_DRIVER_ID_MESA_RADV;
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "radv");
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1 "%s",
radv_get_compiler_string(pdevice));
if (radv_is_conformant(pdevice)) {
if (pdevice->rad_info.gfx_level >= GFX10_3) {
p->conformanceVersion = (VkConformanceVersion){
.major = 1,
.minor = 3,
.subminor = 0,
.patch = 0,
};
} else {
p->conformanceVersion = (VkConformanceVersion){
.major = 1,
.minor = 2,
.subminor = 7,
.patch = 1,
};
}
} else {
p->conformanceVersion = (VkConformanceVersion){
.major = 0,
.minor = 0,
.subminor = 0,
.patch = 0,
};
}
/* On AMD hardware, denormals and rounding modes for fp16/fp64 are
* controlled by the same config register.
*/
if (pdevice->rad_info.has_packed_math_16bit) {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY;
} else {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
}
/* With LLVM, do not allow both preserving and flushing denorms because
* different shaders in the same pipeline can have different settings and
* this won't work for merged shaders. To make it work, this requires LLVM
* support for changing the register. The same logic applies for the
* rounding modes because they are configured with the same config
* register.
*/
p->shaderDenormFlushToZeroFloat32 = true;
p->shaderDenormPreserveFloat32 = !pdevice->use_llvm;
p->shaderRoundingModeRTEFloat32 = true;
p->shaderRoundingModeRTZFloat32 = !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat32 = true;
p->shaderDenormFlushToZeroFloat16 =
pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderDenormPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTEFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTZFloat16 = pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderDenormFlushToZeroFloat64 = pdevice->rad_info.gfx_level >= GFX8 && !pdevice->use_llvm;
p->shaderDenormPreserveFloat64 = pdevice->rad_info.gfx_level >= GFX8;
p->shaderRoundingModeRTEFloat64 = pdevice->rad_info.gfx_level >= GFX8;
p->shaderRoundingModeRTZFloat64 = pdevice->rad_info.gfx_level >= GFX8 && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.gfx_level >= GFX8;
p->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
p->shaderSampledImageArrayNonUniformIndexingNative = false;
p->shaderStorageBufferArrayNonUniformIndexingNative = false;
p->shaderStorageImageArrayNonUniformIndexingNative = false;
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
p->robustBufferAccessUpdateAfterBind = true;
p->quadDivergentImplicitLod = false;
size_t max_descriptor_set_size =
((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
64 /* storage image */);
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
p->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
p->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
p->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
/* We support all of the depth resolve modes */
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
VK_RESOLVE_MODE_AVERAGE_BIT | VK_RESOLVE_MODE_MIN_BIT |
VK_RESOLVE_MODE_MAX_BIT;
/* Average doesn't make sense for stencil so we don't support that */
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
VK_RESOLVE_MODE_MIN_BIT | VK_RESOLVE_MODE_MAX_BIT;
p->independentResolveNone = true;
p->independentResolve = true;
/* GFX6-8 only support single channel min/max filter. */
p->filterMinmaxImageComponentMapping = pdevice->rad_info.gfx_level >= GFX9;
p->filterMinmaxSingleComponentFormats = true;
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
p->framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT;
}
static void
radv_get_physical_device_properties_1_3(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan13Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES);
p->minSubgroupSize = 64;
p->maxSubgroupSize = 64;
p->maxComputeWorkgroupSubgroups = UINT32_MAX;
p->requiredSubgroupSizeStages = 0;
if (pdevice->rad_info.gfx_level >= GFX10) {
/* Only GFX10+ supports wave32. */
p->minSubgroupSize = 32;
p->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
}
p->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
p->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
p->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
p->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
p->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
p->maxInlineUniformTotalSize = UINT16_MAX;
bool accel = pdevice->rad_info.has_accelerated_dot_product;
bool gfx11plus = pdevice->rad_info.gfx_level >= GFX11;
p->integerDotProduct8BitUnsignedAccelerated = accel;
p->integerDotProduct8BitSignedAccelerated = accel;
p->integerDotProduct8BitMixedSignednessAccelerated = accel && gfx11plus;
p->integerDotProduct4x8BitPackedUnsignedAccelerated = accel;
p->integerDotProduct4x8BitPackedSignedAccelerated = accel;
p->integerDotProduct4x8BitPackedMixedSignednessAccelerated = accel && gfx11plus;
p->integerDotProduct16BitUnsignedAccelerated = accel && !gfx11plus;
p->integerDotProduct16BitSignedAccelerated = accel && !gfx11plus;
p->integerDotProduct16BitMixedSignednessAccelerated = false;
p->integerDotProduct32BitUnsignedAccelerated = false;
p->integerDotProduct32BitSignedAccelerated = false;
p->integerDotProduct32BitMixedSignednessAccelerated = false;
p->integerDotProduct64BitUnsignedAccelerated = false;
p->integerDotProduct64BitSignedAccelerated = false;
p->integerDotProduct64BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating8BitSignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = accel && gfx11plus;
p->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated = accel && gfx11plus;
p->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = accel && !gfx11plus;
p->integerDotProductAccumulatingSaturating16BitSignedAccelerated = accel && !gfx11plus;
p->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false;
p->storageTexelBufferOffsetAlignmentBytes = 4;
p->storageTexelBufferOffsetSingleTexelAlignment = true;
p->uniformTexelBufferOffsetAlignmentBytes = 4;
p->uniformTexelBufferOffsetSingleTexelAlignment = true;
p->maxBufferSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2 *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
VkPhysicalDeviceVulkan11Properties core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
};
radv_get_physical_device_properties_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Properties core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
};
radv_get_physical_device_properties_1_2(pdevice, &core_1_2);
VkPhysicalDeviceVulkan13Properties core_1_3 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES,
};
radv_get_physical_device_properties_1_3(pdevice, &core_1_3);
vk_foreach_struct(ext, pProperties->pNext)
{
if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1))
continue;
if (vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2))
continue;
if (vk_get_physical_device_core_1_3_property_ext(ext, &core_1_3))
continue;
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *)ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
(VkPhysicalDeviceDiscardRectanglePropertiesEXT *)ext;
properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *)ext;
properties->minImportedHostPointerAlignment = 4096;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
VkPhysicalDeviceShaderCorePropertiesAMD *properties =
(VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
/* Shader engines. */
properties->shaderEngineCount = pdevice->rad_info.max_se;
properties->shaderArraysPerEngineCount = pdevice->rad_info.max_sa_per_se;
properties->computeUnitsPerShaderArray = pdevice->rad_info.min_good_cu_per_sa;
properties->simdPerComputeUnit = pdevice->rad_info.num_simd_per_compute_unit;
properties->wavefrontsPerSimd = pdevice->rad_info.max_wave64_per_simd;
properties->wavefrontSize = 64;
/* SGPR. */
properties->sgprsPerSimd = pdevice->rad_info.num_physical_sgprs_per_simd;
properties->minSgprAllocation = pdevice->rad_info.min_sgpr_alloc;
properties->maxSgprAllocation = pdevice->rad_info.max_sgpr_alloc;
properties->sgprAllocationGranularity = pdevice->rad_info.sgpr_alloc_granularity;
/* VGPR. */
properties->vgprsPerSimd = pdevice->rad_info.num_physical_wave64_vgprs_per_simd;
properties->minVgprAllocation = pdevice->rad_info.min_wave64_vgpr_alloc;
properties->maxVgprAllocation = pdevice->rad_info.max_vgpr_alloc;
properties->vgprAllocationGranularity = pdevice->rad_info.wave64_vgpr_alloc_granularity;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: {
VkPhysicalDeviceShaderCoreProperties2AMD *properties =
(VkPhysicalDeviceShaderCoreProperties2AMD *)ext;
properties->shaderCoreFeatures = 0;
properties->activeComputeUnitCount = pdevice->rad_info.num_cu;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
properties->maxVertexAttribDivisor = UINT32_MAX;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
(VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
properties->primitiveOverestimationSize = 0;
properties->maxExtraPrimitiveOverestimationSize = 0;
properties->extraPrimitiveOverestimationSizeGranularity = 0;
properties->primitiveUnderestimation = false;
properties->conservativePointAndLineRasterization = false;
properties->degenerateTrianglesRasterized = true;
properties->degenerateLinesRasterized = false;
properties->fullyCoveredFragmentShaderInputVariable = false;
properties->conservativeRasterizationPostDepthCoverage = false;
break;
}
#ifndef _WIN32
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
properties->pciDomain = pdevice->bus_info.domain;
properties->pciBus = pdevice->bus_info.bus;
properties->pciDevice = pdevice->bus_info.dev;
properties->pciFunction = pdevice->bus_info.func;
break;
}
#endif
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
properties->maxTransformFeedbackBufferSize = UINT32_MAX;
properties->maxTransformFeedbackStreamDataSize = 512;
properties->maxTransformFeedbackBufferDataSize = 512;
properties->maxTransformFeedbackBufferDataStride = 512;
properties->transformFeedbackQueries = true;
properties->transformFeedbackStreamsLinesTriangles = true;
properties->transformFeedbackRasterizationStreamSelect = false;
properties->transformFeedbackDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
(VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
properties->sampleLocationSampleCounts = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT |
VK_SAMPLE_COUNT_8_BIT;
properties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
properties->sampleLocationCoordinateRange[0] = 0.0f;
properties->sampleLocationCoordinateRange[1] = 0.9375f;
properties->sampleLocationSubPixelBits = 4;
properties->variableSampleLocations = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
props->lineSubPixelPrecisionBits = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
VkPhysicalDeviceRobustness2PropertiesEXT *properties =
(VkPhysicalDeviceRobustness2PropertiesEXT *)ext;
properties->robustStorageBufferAccessSizeAlignment = 4;
properties->robustUniformBufferAccessSizeAlignment = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
VkPhysicalDeviceCustomBorderColorPropertiesEXT *props =
(VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
props->maxCustomBorderColorSamplers = RADV_BORDER_COLOR_COUNT;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: {
VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props =
(VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext;
if (radv_vrs_attachment_enabled(pdevice)) {
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
} else {
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D){0, 0};
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D){0, 0};
}
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
props->primitiveFragmentShadingRateWithMultipleViewports = true;
props->layeredShadingRateAttachments = false; /* TODO */
props->fragmentShadingRateNonTrivialCombinerOps = true;
props->maxFragmentSize = (VkExtent2D){2, 2};
props->maxFragmentSizeAspectRatio = 2;
props->maxFragmentShadingRateCoverageSamples = 32;
props->maxFragmentShadingRateRasterizationSamples = VK_SAMPLE_COUNT_8_BIT;
props->fragmentShadingRateWithShaderDepthStencilWrites = !pdevice->rad_info.has_vrs_ds_export_bug;
props->fragmentShadingRateWithSampleMask = true;
props->fragmentShadingRateWithShaderSampleMask = false;
props->fragmentShadingRateWithConservativeRasterization = true;
props->fragmentShadingRateWithFragmentShaderInterlock = false;
props->fragmentShadingRateWithCustomSampleLocations = false;
props->fragmentShadingRateStrictMultiplyCombiner = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: {
VkPhysicalDeviceProvokingVertexPropertiesEXT *props =
(VkPhysicalDeviceProvokingVertexPropertiesEXT *)ext;
props->provokingVertexModePerPipeline = true;
props->transformFeedbackPreservesTriangleFanProvokingVertex = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR: {
VkPhysicalDeviceAccelerationStructurePropertiesKHR *props =
(VkPhysicalDeviceAccelerationStructurePropertiesKHR *)ext;
props->maxGeometryCount = (1 << 24) - 1;
props->maxInstanceCount = (1 << 24) - 1;
props->maxPrimitiveCount = (1 << 29) - 1;
props->maxPerStageDescriptorAccelerationStructures =
pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures =
pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
props->maxDescriptorSetAccelerationStructures =
pProperties->properties.limits.maxDescriptorSetStorageBuffers;
props->maxDescriptorSetUpdateAfterBindAccelerationStructures =
pProperties->properties.limits.maxDescriptorSetStorageBuffers;
props->minAccelerationStructureScratchOffsetAlignment = 128;
break;
}
#ifndef _WIN32
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT: {
VkPhysicalDeviceDrmPropertiesEXT *props = (VkPhysicalDeviceDrmPropertiesEXT *)ext;
if (pdevice->available_nodes & (1 << DRM_NODE_PRIMARY)) {
props->hasPrimary = true;
props->primaryMajor = (int64_t)major(pdevice->primary_devid);
props->primaryMinor = (int64_t)minor(pdevice->primary_devid);
} else {
props->hasPrimary = false;
}
if (pdevice->available_nodes & (1 << DRM_NODE_RENDER)) {
props->hasRender = true;
props->renderMajor = (int64_t)major(pdevice->render_devid);
props->renderMinor = (int64_t)minor(pdevice->render_devid);
} else {
props->hasRender = false;
}
break;
}
#endif
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT: {
VkPhysicalDeviceMultiDrawPropertiesEXT *props = (VkPhysicalDeviceMultiDrawPropertiesEXT *)ext;
props->maxMultiDrawCount = 2048;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR: {
VkPhysicalDeviceRayTracingPipelinePropertiesKHR *props =
(VkPhysicalDeviceRayTracingPipelinePropertiesKHR *)ext;
props->shaderGroupHandleSize = RADV_RT_HANDLE_SIZE;
props->maxRayRecursionDepth = 31; /* Minimum allowed for DXR. */
props->maxShaderGroupStride = 16384; /* dummy */
props->shaderGroupBaseAlignment = 16;
props->shaderGroupHandleCaptureReplaySize = 16;
props->maxRayDispatchInvocationCount = 1024 * 1024 * 64;
props->shaderGroupHandleAlignment = 16;
props->maxRayHitAttributeSize = RADV_MAX_HIT_ATTRIB_SIZE;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES: {
VkPhysicalDeviceMaintenance4Properties *properties =
(VkPhysicalDeviceMaintenance4Properties *)ext;
properties->maxBufferSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_NV: {
VkPhysicalDeviceMeshShaderPropertiesNV *properties =
(VkPhysicalDeviceMeshShaderPropertiesNV *)ext;
/* Task shader limitations:
* Same as compute, because TS are compiled to CS.
*/
properties->maxDrawMeshTasksCount = 65535;
properties->maxTaskTotalMemorySize = 65536;
properties->maxTaskWorkGroupInvocations = 1024;
properties->maxTaskWorkGroupSize[0] = 1024;
properties->maxTaskWorkGroupSize[1] = 1024;
properties->maxTaskWorkGroupSize[2] = 1024;
properties->maxTaskOutputCount = 65535;
/* Mesh shader limitations:
* Same as NGG, because MS are compiled to NGG.
*/
properties->maxMeshMultiviewViewCount = MAX_VIEWS;
properties->maxMeshOutputPrimitives = 256;
properties->maxMeshOutputVertices = 256;
properties->maxMeshTotalMemorySize = 31 * 1024; /* Reserve 1K for prim indices, etc. */
properties->maxMeshWorkGroupInvocations = 256;
properties->maxMeshWorkGroupSize[0] = 256;
properties->maxMeshWorkGroupSize[1] = 256;
properties->maxMeshWorkGroupSize[2] = 256;
properties->meshOutputPerPrimitiveGranularity = 1;
properties->meshOutputPerVertexGranularity = 1;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT: {
VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *properties =
(VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *)ext;
STATIC_ASSERT(sizeof(vk_shaderModuleIdentifierAlgorithmUUID) ==
sizeof(properties->shaderModuleIdentifierAlgorithmUUID));
memcpy(properties->shaderModuleIdentifierAlgorithmUUID,
vk_shaderModuleIdentifierAlgorithmUUID,
sizeof(properties->shaderModuleIdentifierAlgorithmUUID));
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
(VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
properties->allowCommandBufferQueryCopies = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_PROPERTIES_NV: {
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV *properties =
(VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV *)ext;
properties->maxIndirectCommandsStreamCount = 1;
properties->maxIndirectCommandsStreamStride = UINT32_MAX;
properties->maxIndirectCommandsTokenCount = UINT32_MAX;
properties->maxIndirectCommandsTokenOffset = UINT16_MAX;
properties->minIndirectCommandsBufferOffsetAlignment = 4;
properties->minSequencesCountBufferOffsetAlignment = 4;
properties->minSequencesIndexBufferOffsetAlignment = 4;
/* Don't support even a shader group count = 1 until we support shader
* overrides during pipeline creation. */
properties->maxGraphicsShaderGroupCount = 0;
properties->maxIndirectSequenceCount = UINT32_MAX;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_PROPERTIES_EXT: {
VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT *props =
(VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT *)ext;
props->graphicsPipelineLibraryFastLinking = false;
props->graphicsPipelineLibraryIndependentInterpolationDecoration = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_EXT: {
VkPhysicalDeviceMeshShaderPropertiesEXT *properties =
(VkPhysicalDeviceMeshShaderPropertiesEXT *)ext;
properties->maxTaskWorkGroupTotalCount = 4194304; /* 2^22 min required */
properties->maxTaskWorkGroupCount[0] = 65535;
properties->maxTaskWorkGroupCount[1] = 65535;
properties->maxTaskWorkGroupCount[2] = 65535;
properties->maxTaskWorkGroupInvocations = 1024;
properties->maxTaskWorkGroupSize[0] = 1024;
properties->maxTaskWorkGroupSize[1] = 1024;
properties->maxTaskWorkGroupSize[2] = 1024;
properties->maxTaskPayloadSize = 16384; /* 16K min required */
properties->maxTaskSharedMemorySize = 65536;
properties->maxTaskPayloadAndSharedMemorySize = 65536;
properties->maxMeshWorkGroupTotalCount = 4194304; /* 2^22 min required */
properties->maxMeshWorkGroupCount[0] = 65535;
properties->maxMeshWorkGroupCount[1] = 65535;
properties->maxMeshWorkGroupCount[2] = 65535;
properties->maxMeshWorkGroupInvocations = 256; /* Max NGG HW limit */
properties->maxMeshWorkGroupSize[0] = 256;
properties->maxMeshWorkGroupSize[1] = 256;
properties->maxMeshWorkGroupSize[2] = 256;
properties->maxMeshOutputMemorySize = 32 * 1024; /* 32K min required */
properties->maxMeshSharedMemorySize = 28672; /* 28K min required */
properties->maxMeshPayloadAndSharedMemorySize =
properties->maxTaskPayloadSize +
properties->maxMeshSharedMemorySize; /* 28K min required */
properties->maxMeshPayloadAndOutputMemorySize =
properties->maxTaskPayloadSize +
properties->maxMeshOutputMemorySize; /* 47K min required */
properties->maxMeshOutputComponents = 128; /* 32x vec4 min required */
properties->maxMeshOutputVertices = 256;
properties->maxMeshOutputPrimitives = 256;
properties->maxMeshOutputLayers = 8;
properties->maxMeshMultiviewViewCount = MAX_VIEWS;
properties->meshOutputPerVertexGranularity = 1;
properties->meshOutputPerPrimitiveGranularity = 1;
properties->maxPreferredTaskWorkGroupInvocations = 64;
properties->maxPreferredMeshWorkGroupInvocations = 128;
properties->prefersLocalInvocationVertexOutput = true;
properties->prefersLocalInvocationPrimitiveOutput = true;
properties->prefersCompactVertexOutput = true;
properties->prefersCompactPrimitiveOutput = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_PROPERTIES_EXT: {
VkPhysicalDeviceExtendedDynamicState3PropertiesEXT *properties =
(VkPhysicalDeviceExtendedDynamicState3PropertiesEXT *)ext;
properties->dynamicPrimitiveTopologyUnrestricted = false;
break;
}
default:
break;
}
}
}
static void
radv_get_physical_device_queue_family_properties(struct radv_physical_device *pdevice,
uint32_t *pCount,
VkQueueFamilyProperties **pQueueFamilyProperties)
{
int num_queue_families = 1;
int idx;
if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
num_queue_families++;
if (pQueueFamilyProperties == NULL) {
*pCount = num_queue_families;
return;
}
if (!*pCount)
return;
idx = 0;
if (*pCount >= 1) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
.queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT |
VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = 1,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D){1, 1, 1},
};
idx++;
}
if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
if (*pCount > idx) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
.queueFlags =
VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D){1, 1, 1},
};
idx++;
}
}
*pCount = idx;
}
static const VkQueueGlobalPriorityKHR radv_global_queue_priorities[] = {
VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
};
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t *pCount,
VkQueueFamilyProperties2 *pQueueFamilyProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (!pQueueFamilyProperties) {
radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
return;
}
VkQueueFamilyProperties *properties[] = {
&pQueueFamilyProperties[0].queueFamilyProperties,
&pQueueFamilyProperties[