| /* |
| * Copyright © 2018 Valve Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "aco_ir.h" |
| |
| #include "util/memstream.h" |
| |
| #include <array> |
| #include <map> |
| #include <set> |
| #include <vector> |
| |
| namespace aco { |
| |
| static void |
| aco_log(Program* program, enum aco_compiler_debug_level level, const char* prefix, |
| const char* file, unsigned line, const char* fmt, va_list args) |
| { |
| char* msg; |
| |
| if (program->debug.shorten_messages) { |
| msg = ralloc_vasprintf(NULL, fmt, args); |
| } else { |
| msg = ralloc_strdup(NULL, prefix); |
| ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line); |
| ralloc_asprintf_append(&msg, " "); |
| ralloc_vasprintf_append(&msg, fmt, args); |
| } |
| |
| if (program->debug.func) |
| program->debug.func(program->debug.private_data, level, msg); |
| |
| fprintf(program->debug.output, "%s\n", msg); |
| |
| ralloc_free(msg); |
| } |
| |
| void |
| _aco_perfwarn(Program* program, const char* file, unsigned line, const char* fmt, ...) |
| { |
| va_list args; |
| |
| va_start(args, fmt); |
| aco_log(program, ACO_COMPILER_DEBUG_LEVEL_PERFWARN, "ACO PERFWARN:\n", file, line, fmt, args); |
| va_end(args); |
| } |
| |
| void |
| _aco_err(Program* program, const char* file, unsigned line, const char* fmt, ...) |
| { |
| va_list args; |
| |
| va_start(args, fmt); |
| aco_log(program, ACO_COMPILER_DEBUG_LEVEL_ERROR, "ACO ERROR:\n", file, line, fmt, args); |
| va_end(args); |
| } |
| |
| bool |
| validate_ir(Program* program) |
| { |
| bool is_valid = true; |
| auto check = [&program, &is_valid](bool success, const char* msg, |
| aco::Instruction* instr) -> void |
| { |
| if (!success) { |
| char* out; |
| size_t outsize; |
| struct u_memstream mem; |
| u_memstream_open(&mem, &out, &outsize); |
| FILE* const memf = u_memstream_get(&mem); |
| |
| fprintf(memf, "%s: ", msg); |
| aco_print_instr(program->gfx_level, instr, memf); |
| u_memstream_close(&mem); |
| |
| aco_err(program, "%s", out); |
| free(out); |
| |
| is_valid = false; |
| } |
| }; |
| |
| auto check_block = [&program, &is_valid](bool success, const char* msg, |
| aco::Block* block) -> void |
| { |
| if (!success) { |
| aco_err(program, "%s: BB%u", msg, block->index); |
| is_valid = false; |
| } |
| }; |
| |
| for (Block& block : program->blocks) { |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| |
| /* check base format */ |
| Format base_format = instr->format; |
| base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA); |
| base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP16); |
| base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP8); |
| if ((uint32_t)base_format & (uint32_t)Format::VOP1) |
| base_format = Format::VOP1; |
| else if ((uint32_t)base_format & (uint32_t)Format::VOP2) |
| base_format = Format::VOP2; |
| else if ((uint32_t)base_format & (uint32_t)Format::VOPC) |
| base_format = Format::VOPC; |
| else if ((uint32_t)base_format & (uint32_t)Format::VINTRP) { |
| if (instr->opcode == aco_opcode::v_interp_p1ll_f16 || |
| instr->opcode == aco_opcode::v_interp_p1lv_f16 || |
| instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || |
| instr->opcode == aco_opcode::v_interp_p2_f16) { |
| /* v_interp_*_fp16 are considered VINTRP by the compiler but |
| * they are emitted as VOP3. |
| */ |
| base_format = Format::VOP3; |
| } else { |
| base_format = Format::VINTRP; |
| } |
| } |
| check(base_format == instr_info.format[(int)instr->opcode], |
| "Wrong base format for instruction", instr.get()); |
| |
| /* check VOP3 modifiers */ |
| if (instr->isVOP3() && instr->format != Format::VOP3) { |
| check(base_format == Format::VOP2 || base_format == Format::VOP1 || |
| base_format == Format::VOPC || base_format == Format::VINTRP, |
| "Format cannot have VOP3/VOP3B applied", instr.get()); |
| } |
| |
| /* check SDWA */ |
| if (instr->isSDWA()) { |
| check(base_format == Format::VOP2 || base_format == Format::VOP1 || |
| base_format == Format::VOPC, |
| "Format cannot have SDWA applied", instr.get()); |
| |
| check(program->gfx_level >= GFX8, "SDWA is GFX8 to GFX10.3 only", instr.get()); |
| check(program->gfx_level < GFX11, "SDWA is GFX8 to GFX10.3 only", instr.get()); |
| |
| SDWA_instruction& sdwa = instr->sdwa(); |
| check(sdwa.omod == 0 || program->gfx_level >= GFX9, "SDWA omod only supported on GFX9+", |
| instr.get()); |
| if (base_format == Format::VOPC) { |
| check(sdwa.clamp == false || program->gfx_level == GFX8, |
| "SDWA VOPC clamp only supported on GFX8", instr.get()); |
| check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) || |
| program->gfx_level >= GFX9, |
| "SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get()); |
| } else { |
| const Definition& def = instr->definitions[0]; |
| check(def.bytes() <= 4, "SDWA definitions must not be larger than 4 bytes", |
| instr.get()); |
| check(def.bytes() >= sdwa.dst_sel.size() + sdwa.dst_sel.offset(), |
| "SDWA definition selection size must be at most definition size", instr.get()); |
| check( |
| sdwa.dst_sel.size() == 1 || sdwa.dst_sel.size() == 2 || sdwa.dst_sel.size() == 4, |
| "SDWA definition selection size must be 1, 2 or 4 bytes", instr.get()); |
| check(sdwa.dst_sel.offset() % sdwa.dst_sel.size() == 0, "Invalid selection offset", |
| instr.get()); |
| check(def.bytes() == 4 || def.bytes() == sdwa.dst_sel.size(), |
| "SDWA dst_sel size must be definition size for subdword definitions", |
| instr.get()); |
| check(def.bytes() == 4 || sdwa.dst_sel.offset() == 0, |
| "SDWA dst_sel offset must be 0 for subdword definitions", instr.get()); |
| } |
| |
| for (unsigned i = 0; i < std::min<unsigned>(2, instr->operands.size()); i++) { |
| const Operand& op = instr->operands[i]; |
| check(op.bytes() <= 4, "SDWA operands must not be larger than 4 bytes", instr.get()); |
| check(op.bytes() >= sdwa.sel[i].size() + sdwa.sel[i].offset(), |
| "SDWA operand selection size must be at most operand size", instr.get()); |
| check(sdwa.sel[i].size() == 1 || sdwa.sel[i].size() == 2 || sdwa.sel[i].size() == 4, |
| "SDWA operand selection size must be 1, 2 or 4 bytes", instr.get()); |
| check(sdwa.sel[i].offset() % sdwa.sel[i].size() == 0, "Invalid selection offset", |
| instr.get()); |
| } |
| if (instr->operands.size() >= 3) { |
| check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc, |
| "3rd operand must be fixed to vcc with SDWA", instr.get()); |
| } |
| if (instr->definitions.size() >= 2) { |
| check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc, |
| "2nd definition must be fixed to vcc with SDWA", instr.get()); |
| } |
| |
| const bool sdwa_opcodes = |
| instr->opcode != aco_opcode::v_fmac_f32 && instr->opcode != aco_opcode::v_fmac_f16 && |
| instr->opcode != aco_opcode::v_fmamk_f32 && |
| instr->opcode != aco_opcode::v_fmaak_f32 && |
| instr->opcode != aco_opcode::v_fmamk_f16 && |
| instr->opcode != aco_opcode::v_fmaak_f16 && |
| instr->opcode != aco_opcode::v_madmk_f32 && |
| instr->opcode != aco_opcode::v_madak_f32 && |
| instr->opcode != aco_opcode::v_madmk_f16 && |
| instr->opcode != aco_opcode::v_madak_f16 && |
| instr->opcode != aco_opcode::v_readfirstlane_b32 && |
| instr->opcode != aco_opcode::v_clrexcp && instr->opcode != aco_opcode::v_swap_b32; |
| |
| const bool feature_mac = |
| program->gfx_level == GFX8 && |
| (instr->opcode == aco_opcode::v_mac_f32 && instr->opcode == aco_opcode::v_mac_f16); |
| |
| check(sdwa_opcodes || feature_mac, "SDWA can't be used with this opcode", instr.get()); |
| } |
| |
| /* check opsel */ |
| if (instr->isVOP3()) { |
| VOP3_instruction& vop3 = instr->vop3(); |
| check(vop3.opsel == 0 || program->gfx_level >= GFX9, "Opsel is only supported on GFX9+", |
| instr.get()); |
| |
| for (unsigned i = 0; i < 3; i++) { |
| if (i >= instr->operands.size() || |
| (instr->operands[i].hasRegClass() && |
| instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed())) |
| check((vop3.opsel & (1 << i)) == 0, "Unexpected opsel for operand", instr.get()); |
| } |
| if (instr->definitions[0].regClass().is_subdword() && !instr->definitions[0].isFixed()) |
| check((vop3.opsel & (1 << 3)) == 0, "Unexpected opsel for sub-dword definition", |
| instr.get()); |
| } else if (instr->opcode == aco_opcode::v_fma_mixlo_f16 || |
| instr->opcode == aco_opcode::v_fma_mixhi_f16 || |
| instr->opcode == aco_opcode::v_fma_mix_f32) { |
| check(instr->definitions[0].regClass() == |
| (instr->opcode == aco_opcode::v_fma_mix_f32 ? v1 : v2b), |
| "v_fma_mix_f32/v_fma_mix_f16 must have v1/v2b definition", instr.get()); |
| } else if (instr->isVOP3P()) { |
| VOP3P_instruction& vop3p = instr->vop3p(); |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (instr->operands[i].hasRegClass() && |
| instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed()) |
| check((vop3p.opsel_lo & (1 << i)) == 0 && (vop3p.opsel_hi & (1 << i)) == 0, |
| "Unexpected opsel for subdword operand", instr.get()); |
| } |
| check(instr->definitions[0].regClass() == v1, "VOP3P must have v1 definition", |
| instr.get()); |
| } |
| |
| /* check for undefs */ |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (instr->operands[i].isUndefined()) { |
| bool flat = instr->isFlatLike(); |
| bool can_be_undef = is_phi(instr) || instr->isEXP() || instr->isReduction() || |
| instr->opcode == aco_opcode::p_create_vector || |
| instr->opcode == aco_opcode::p_jump_to_epilog || |
| instr->opcode == aco_opcode::p_dual_src_export_gfx11 || |
| (instr->opcode == aco_opcode::p_interp_gfx11 && i == 0) || |
| (flat && i == 1) || (instr->isMIMG() && (i == 1 || i == 2)) || |
| ((instr->isMUBUF() || instr->isMTBUF()) && i == 1) || |
| (instr->isScratch() && i == 0); |
| check(can_be_undef, "Undefs can only be used in certain operands", instr.get()); |
| } else { |
| check(instr->operands[i].isFixed() || instr->operands[i].isTemp() || |
| instr->operands[i].isConstant(), |
| "Uninitialized Operand", instr.get()); |
| } |
| } |
| |
| /* check subdword definitions */ |
| for (unsigned i = 0; i < instr->definitions.size(); i++) { |
| if (instr->definitions[i].regClass().is_subdword()) |
| check(instr->definitions[i].bytes() <= 4 || instr->isPseudo() || instr->isVMEM(), |
| "Only Pseudo and VMEM instructions can write subdword registers > 4 bytes", |
| instr.get()); |
| } |
| |
| if (instr->isSALU() || instr->isVALU() || instr->isVINTERP_INREG()) { |
| /* check literals */ |
| Operand literal(s1); |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| Operand op = instr->operands[i]; |
| if (!op.isLiteral()) |
| continue; |
| |
| check(!instr->isDPP() && !instr->isSDWA() && |
| (!instr->isVOP3() || program->gfx_level >= GFX10) && |
| (!instr->isVOP3P() || program->gfx_level >= GFX10), |
| "Literal applied on wrong instruction format", instr.get()); |
| |
| check(literal.isUndefined() || (literal.size() == op.size() && |
| literal.constantValue() == op.constantValue()), |
| "Only 1 Literal allowed", instr.get()); |
| literal = op; |
| check(instr->isSALU() || instr->isVOP3() || instr->isVOP3P() || i == 0 || i == 2, |
| "Wrong source position for Literal argument", instr.get()); |
| } |
| |
| /* check num sgprs for VALU */ |
| if (instr->isVALU() || instr->isVINTERP_INREG()) { |
| bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 || |
| instr->opcode == aco_opcode::v_lshrrev_b64 || |
| instr->opcode == aco_opcode::v_ashrrev_i64; |
| unsigned const_bus_limit = 1; |
| if (program->gfx_level >= GFX10 && !is_shift64) |
| const_bus_limit = 2; |
| |
| uint32_t scalar_mask = |
| instr->isVOP3() || instr->isVOP3P() || instr->isVINTERP_INREG() ? 0x7 : 0x5; |
| if (instr->isSDWA()) |
| scalar_mask = program->gfx_level >= GFX9 ? 0x7 : 0x4; |
| else if (instr->isDPP()) |
| scalar_mask = 0x4; |
| |
| if (instr->isVOPC() || instr->opcode == aco_opcode::v_readfirstlane_b32 || |
| instr->opcode == aco_opcode::v_readlane_b32 || |
| instr->opcode == aco_opcode::v_readlane_b32_e64) { |
| check(instr->definitions[0].getTemp().type() == RegType::sgpr, |
| "Wrong Definition type for VALU instruction", instr.get()); |
| } else { |
| check(instr->definitions[0].getTemp().type() == RegType::vgpr, |
| "Wrong Definition type for VALU instruction", instr.get()); |
| } |
| |
| unsigned num_sgprs = 0; |
| unsigned sgpr[] = {0, 0}; |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| Operand op = instr->operands[i]; |
| if (instr->opcode == aco_opcode::v_readfirstlane_b32 || |
| instr->opcode == aco_opcode::v_readlane_b32 || |
| instr->opcode == aco_opcode::v_readlane_b32_e64) { |
| check(i != 1 || (op.isTemp() && op.regClass().type() == RegType::sgpr) || |
| op.isConstant(), |
| "Must be a SGPR or a constant", instr.get()); |
| check(i == 1 || (op.isTemp() && op.regClass().type() == RegType::vgpr && |
| op.bytes() <= 4), |
| "Wrong Operand type for VALU instruction", instr.get()); |
| continue; |
| } |
| if (instr->opcode == aco_opcode::v_permlane16_b32 || |
| instr->opcode == aco_opcode::v_permlanex16_b32) { |
| check(i != 0 || (op.isTemp() && op.regClass().type() == RegType::vgpr), |
| "Operand 0 of v_permlane must be VGPR", instr.get()); |
| check(i == 0 || (op.isTemp() && op.regClass().type() == RegType::sgpr) || |
| op.isConstant(), |
| "Lane select operands of v_permlane must be SGPR or constant", |
| instr.get()); |
| } |
| |
| if (instr->opcode == aco_opcode::v_writelane_b32 || |
| instr->opcode == aco_opcode::v_writelane_b32_e64) { |
| check(i != 2 || (op.isTemp() && op.regClass().type() == RegType::vgpr && |
| op.bytes() <= 4), |
| "Wrong Operand type for VALU instruction", instr.get()); |
| check(i == 2 || (op.isTemp() && op.regClass().type() == RegType::sgpr) || |
| op.isConstant(), |
| "Must be a SGPR or a constant", instr.get()); |
| continue; |
| } |
| if (op.isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) { |
| check(scalar_mask & (1 << i), "Wrong source position for SGPR argument", |
| instr.get()); |
| |
| if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) { |
| if (num_sgprs < 2) |
| sgpr[num_sgprs++] = op.tempId(); |
| } |
| } |
| |
| if (op.isConstant() && !op.isLiteral()) |
| check(scalar_mask & (1 << i), "Wrong source position for constant argument", |
| instr.get()); |
| } |
| check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit, |
| "Too many SGPRs/literals", instr.get()); |
| } |
| |
| if (instr->isSOP1() || instr->isSOP2()) { |
| if (!instr->definitions.empty()) |
| check(instr->definitions[0].getTemp().type() == RegType::sgpr, |
| "Wrong Definition type for SALU instruction", instr.get()); |
| for (const Operand& op : instr->operands) { |
| check(op.isConstant() || op.regClass().type() <= RegType::sgpr, |
| "Wrong Operand type for SALU instruction", instr.get()); |
| } |
| } |
| } |
| |
| switch (instr->format) { |
| case Format::PSEUDO: { |
| if (instr->opcode == aco_opcode::p_create_vector) { |
| unsigned size = 0; |
| for (const Operand& op : instr->operands) { |
| check(op.bytes() < 4 || size % 4 == 0, "Operand is not aligned", instr.get()); |
| size += op.bytes(); |
| } |
| check(size == instr->definitions[0].bytes(), |
| "Definition size does not match operand sizes", instr.get()); |
| if (instr->definitions[0].getTemp().type() == RegType::sgpr) { |
| for (const Operand& op : instr->operands) { |
| check(op.isConstant() || op.regClass().type() == RegType::sgpr, |
| "Wrong Operand type for scalar vector", instr.get()); |
| } |
| } |
| } else if (instr->opcode == aco_opcode::p_extract_vector) { |
| check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), |
| "Wrong Operand types", instr.get()); |
| check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <= |
| instr->operands[0].bytes(), |
| "Index out of range", instr.get()); |
| check(instr->definitions[0].getTemp().type() == RegType::vgpr || |
| instr->operands[0].regClass().type() == RegType::sgpr, |
| "Cannot extract SGPR value from VGPR vector", instr.get()); |
| check(program->gfx_level >= GFX9 || |
| !instr->definitions[0].regClass().is_subdword() || |
| instr->operands[0].regClass().type() == RegType::vgpr, |
| "Cannot extract subdword from SGPR before GFX9+", instr.get()); |
| } else if (instr->opcode == aco_opcode::p_split_vector) { |
| check(instr->operands[0].isTemp(), "Operand must be a temporary", instr.get()); |
| unsigned size = 0; |
| for (const Definition& def : instr->definitions) { |
| size += def.bytes(); |
| } |
| check(size == instr->operands[0].bytes(), |
| "Operand size does not match definition sizes", instr.get()); |
| if (instr->operands[0].getTemp().type() == RegType::vgpr) { |
| for (const Definition& def : instr->definitions) |
| check(def.regClass().type() == RegType::vgpr, |
| "Wrong Definition type for VGPR split_vector", instr.get()); |
| } else { |
| for (const Definition& def : instr->definitions) |
| check(program->gfx_level >= GFX9 || !def.regClass().is_subdword(), |
| "Cannot split SGPR into subdword VGPRs before GFX9+", instr.get()); |
| } |
| } else if (instr->opcode == aco_opcode::p_parallelcopy) { |
| check(instr->definitions.size() == instr->operands.size(), |
| "Number of Operands does not match number of Definitions", instr.get()); |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| check(instr->definitions[i].bytes() == instr->operands[i].bytes(), |
| "Operand and Definition size must match", instr.get()); |
| if (instr->operands[i].isTemp()) { |
| check((instr->definitions[i].getTemp().type() == |
| instr->operands[i].regClass().type()) || |
| (instr->definitions[i].getTemp().type() == RegType::vgpr && |
| instr->operands[i].regClass().type() == RegType::sgpr), |
| "Operand and Definition types do not match", instr.get()); |
| check(instr->definitions[i].regClass().is_linear_vgpr() == |
| instr->operands[i].regClass().is_linear_vgpr(), |
| "Operand and Definition types do not match", instr.get()); |
| } else { |
| check(!instr->definitions[i].regClass().is_linear_vgpr(), |
| "Can only copy linear VGPRs into linear VGPRs, not constant/undef", |
| instr.get()); |
| } |
| } |
| } else if (instr->opcode == aco_opcode::p_phi) { |
| check(instr->operands.size() == block.logical_preds.size(), |
| "Number of Operands does not match number of predecessors", instr.get()); |
| check(instr->definitions[0].getTemp().type() == RegType::vgpr, |
| "Logical Phi Definition must be vgpr", instr.get()); |
| for (const Operand& op : instr->operands) |
| check(instr->definitions[0].size() == op.size(), |
| "Operand sizes must match Definition size", instr.get()); |
| } else if (instr->opcode == aco_opcode::p_linear_phi) { |
| for (const Operand& op : instr->operands) { |
| check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", |
| instr.get()); |
| check(instr->definitions[0].size() == op.size(), |
| "Operand sizes must match Definition size", instr.get()); |
| } |
| check(instr->operands.size() == block.linear_preds.size(), |
| "Number of Operands does not match number of predecessors", instr.get()); |
| } else if (instr->opcode == aco_opcode::p_extract || |
| instr->opcode == aco_opcode::p_insert) { |
| check(instr->operands[0].isTemp(), "Data operand must be temporary", instr.get()); |
| check(instr->operands[1].isConstant(), "Index must be constant", instr.get()); |
| if (instr->opcode == aco_opcode::p_extract) |
| check(instr->operands[3].isConstant(), "Sign-extend flag must be constant", |
| instr.get()); |
| |
| check(instr->definitions[0].getTemp().type() != RegType::sgpr || |
| instr->operands[0].getTemp().type() == RegType::sgpr, |
| "Can't extract/insert VGPR to SGPR", instr.get()); |
| |
| if (instr->opcode == aco_opcode::p_insert) |
| check(instr->operands[0].bytes() == instr->definitions[0].bytes(), |
| "Sizes of p_insert data operand and definition must match", instr.get()); |
| |
| if (instr->definitions[0].getTemp().type() == RegType::sgpr) |
| check(instr->definitions.size() >= 2 && instr->definitions[1].isFixed() && |
| instr->definitions[1].physReg() == scc, |
| "SGPR extract/insert needs an SCC definition", instr.get()); |
| |
| unsigned data_bits = instr->operands[0].getTemp().bytes() * 8u; |
| unsigned op_bits = instr->operands[2].constantValue(); |
| |
| if (instr->opcode == aco_opcode::p_insert) { |
| check(op_bits == 8 || op_bits == 16, "Size must be 8 or 16", instr.get()); |
| check(op_bits < data_bits, "Size must be smaller than source", instr.get()); |
| } else if (instr->opcode == aco_opcode::p_extract) { |
| check(op_bits == 8 || op_bits == 16 || op_bits == 32, |
| "Size must be 8 or 16 or 32", instr.get()); |
| check(data_bits >= op_bits, "Can't extract more bits than what the data has.", |
| instr.get()); |
| } |
| |
| unsigned comp = data_bits / MAX2(op_bits, 1); |
| check(instr->operands[1].constantValue() < comp, "Index must be in-bounds", |
| instr.get()); |
| } else if (instr->opcode == aco_opcode::p_jump_to_epilog) { |
| check(instr->definitions.size() == 0, "p_jump_to_epilog must have 0 definitions", |
| instr.get()); |
| check(instr->operands.size() > 0 && |
| instr->operands[0].getTemp().type() == RegType::sgpr && |
| instr->operands[0].getTemp().size() == 2, |
| "First operand of p_jump_to_epilog must be a SGPR", instr.get()); |
| for (unsigned i = 1; i < instr->operands.size(); i++) { |
| check(instr->operands[i].getTemp().type() == RegType::vgpr || |
| instr->operands[i].isUndefined(), |
| "Other operands of p_jump_to_epilog must be VGPRs or undef", instr.get()); |
| } |
| } else if (instr->opcode == aco_opcode::p_dual_src_export_gfx11) { |
| check(instr->definitions.size() == 6, |
| "p_dual_src_export_gfx11 must have 6 definitions", instr.get()); |
| check(instr->definitions[2].getTemp().type() == RegType::vgpr && |
| instr->definitions[2].getTemp().size() == 1, |
| "Third definition of p_dual_src_export_gfx11 must be a v1", instr.get()); |
| check(instr->definitions[3].getTemp().type() == RegType::sgpr && |
| instr->definitions[3].getTemp().size() == 2, |
| "Fourth definition of p_dual_src_export_gfx11 must be a s2", instr.get()); |
| check(instr->definitions[4].physReg() == vcc, |
| "Fifth definition of p_dual_src_export_gfx11 must be vcc", instr.get()); |
| check(instr->definitions[5].physReg() == scc, |
| "Sixth definition of p_dual_src_export_gfx11 must be scc", instr.get()); |
| check(instr->operands.size() == 8, "p_dual_src_export_gfx11 must have 8 operands", |
| instr.get()); |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| check(instr->operands[i].getTemp().type() == RegType::vgpr || |
| instr->operands[i].isUndefined(), |
| "Operands of p_dual_src_export_gfx11 must be VGPRs or undef", instr.get()); |
| } |
| } |
| break; |
| } |
| case Format::PSEUDO_REDUCTION: { |
| for (const Operand& op : instr->operands) |
| check(op.regClass().type() == RegType::vgpr, |
| "All operands of PSEUDO_REDUCTION instructions must be in VGPRs.", |
| instr.get()); |
| |
| if (instr->opcode == aco_opcode::p_reduce && |
| instr->reduction().cluster_size == program->wave_size) |
| check(instr->definitions[0].regClass().type() == RegType::sgpr || |
| program->wave_size == 32, |
| "The result of unclustered reductions must go into an SGPR.", instr.get()); |
| else |
| check(instr->definitions[0].regClass().type() == RegType::vgpr, |
| "The result of scans and clustered reductions must go into a VGPR.", |
| instr.get()); |
| |
| break; |
| } |
| case Format::SMEM: { |
| if (instr->operands.size() >= 1) |
| check((instr->operands[0].isFixed() && !instr->operands[0].isConstant()) || |
| (instr->operands[0].isTemp() && |
| instr->operands[0].regClass().type() == RegType::sgpr), |
| "SMEM operands must be sgpr", instr.get()); |
| if (instr->operands.size() >= 2) |
| check(instr->operands[1].isConstant() || |
| (instr->operands[1].isTemp() && |
| instr->operands[1].regClass().type() == RegType::sgpr), |
| "SMEM offset must be constant or sgpr", instr.get()); |
| if (!instr->definitions.empty()) |
| check(instr->definitions[0].getTemp().type() == RegType::sgpr, |
| "SMEM result must be sgpr", instr.get()); |
| break; |
| } |
| case Format::MTBUF: |
| case Format::MUBUF: { |
| check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", |
| instr.get()); |
| check(instr->operands[1].hasRegClass() && |
| instr->operands[1].regClass().type() == RegType::vgpr, |
| "VADDR must be in vgpr for VMEM instructions", instr.get()); |
| check( |
| instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, |
| "VMEM resource constant must be sgpr", instr.get()); |
| check(instr->operands.size() < 4 || |
| (instr->operands[3].isTemp() && |
| instr->operands[3].regClass().type() == RegType::vgpr), |
| "VMEM write data must be vgpr", instr.get()); |
| |
| const bool d16 = instr->opcode == aco_opcode::buffer_load_dword || // FIXME: used to spill subdword variables |
| instr->opcode == aco_opcode::buffer_load_ubyte || |
| instr->opcode == aco_opcode::buffer_load_sbyte || |
| instr->opcode == aco_opcode::buffer_load_ushort || |
| instr->opcode == aco_opcode::buffer_load_sshort || |
| instr->opcode == aco_opcode::buffer_load_ubyte_d16 || |
| instr->opcode == aco_opcode::buffer_load_ubyte_d16_hi || |
| instr->opcode == aco_opcode::buffer_load_sbyte_d16 || |
| instr->opcode == aco_opcode::buffer_load_sbyte_d16_hi || |
| instr->opcode == aco_opcode::buffer_load_short_d16 || |
| instr->opcode == aco_opcode::buffer_load_short_d16_hi || |
| instr->opcode == aco_opcode::buffer_load_format_d16_x || |
| instr->opcode == aco_opcode::buffer_load_format_d16_hi_x || |
| instr->opcode == aco_opcode::buffer_load_format_d16_xy || |
| instr->opcode == aco_opcode::buffer_load_format_d16_xyz || |
| instr->opcode == aco_opcode::buffer_load_format_d16_xyzw || |
| instr->opcode == aco_opcode::tbuffer_load_format_d16_x || |
| instr->opcode == aco_opcode::tbuffer_load_format_d16_xy || |
| instr->opcode == aco_opcode::tbuffer_load_format_d16_xyz || |
| instr->opcode == aco_opcode::tbuffer_load_format_d16_xyzw; |
| if (instr->definitions.size()) { |
| check(instr->definitions[0].isTemp() && |
| instr->definitions[0].regClass().type() == RegType::vgpr, |
| "VMEM definitions[0] (VDATA) must be VGPR", instr.get()); |
| check(d16 || !instr->definitions[0].regClass().is_subdword(), |
| "Only D16 opcodes can load subdword values.", instr.get()); |
| check(instr->definitions[0].bytes() <= 8 || !d16, |
| "D16 opcodes can only load up to 8 bytes.", instr.get()); |
| } |
| break; |
| } |
| case Format::MIMG: { |
| check(instr->operands.size() >= 4, "MIMG instructions must have at least 4 operands", |
| instr.get()); |
| check(instr->operands[0].hasRegClass() && |
| (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8), |
| "MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get()); |
| if (instr->operands[1].hasRegClass()) |
| check(instr->operands[1].regClass() == s4, |
| "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get()); |
| if (!instr->operands[2].isUndefined()) { |
| bool is_cmpswap = instr->opcode == aco_opcode::image_atomic_cmpswap || |
| instr->opcode == aco_opcode::image_atomic_fcmpswap; |
| check(instr->definitions.empty() || |
| (instr->definitions[0].regClass() == instr->operands[2].regClass() || |
| is_cmpswap), |
| "MIMG operands[2] (VDATA) must be the same as definitions[0] for atomics and " |
| "TFE/LWE loads", |
| instr.get()); |
| } |
| check(instr->operands.size() == 4 || program->gfx_level >= GFX10, |
| "NSA is only supported on GFX10+", instr.get()); |
| for (unsigned i = 3; i < instr->operands.size(); i++) { |
| if (instr->operands.size() == 4) { |
| check(instr->operands[i].hasRegClass() && |
| instr->operands[i].regClass().type() == RegType::vgpr, |
| "MIMG operands[3] (VADDR) must be VGPR", instr.get()); |
| } else { |
| check(instr->operands[i].regClass() == v1, "MIMG VADDR must be v1 if NSA is used", |
| instr.get()); |
| } |
| } |
| |
| if (instr->definitions.size()) { |
| check(instr->definitions[0].isTemp() && |
| instr->definitions[0].regClass().type() == RegType::vgpr, |
| "MIMG definitions[0] (VDATA) must be VGPR", instr.get()); |
| check(instr->mimg().d16 || !instr->definitions[0].regClass().is_subdword(), |
| "Only D16 MIMG instructions can load subdword values.", instr.get()); |
| check(instr->definitions[0].bytes() <= 8 || !instr->mimg().d16, |
| "D16 MIMG instructions can only load up to 8 bytes.", instr.get()); |
| } |
| break; |
| } |
| case Format::DS: { |
| for (const Operand& op : instr->operands) { |
| check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0, |
| "Only VGPRs are valid DS instruction operands", instr.get()); |
| } |
| if (!instr->definitions.empty()) |
| check(instr->definitions[0].getTemp().type() == RegType::vgpr, |
| "DS instruction must return VGPR", instr.get()); |
| break; |
| } |
| case Format::EXP: { |
| for (unsigned i = 0; i < 4; i++) |
| check(instr->operands[i].hasRegClass() && |
| instr->operands[i].regClass().type() == RegType::vgpr, |
| "Only VGPRs are valid Export arguments", instr.get()); |
| break; |
| } |
| case Format::FLAT: |
| check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", |
| instr.get()); |
| FALLTHROUGH; |
| case Format::GLOBAL: |
| check( |
| instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, |
| "FLAT/GLOBAL address must be vgpr", instr.get()); |
| FALLTHROUGH; |
| case Format::SCRATCH: { |
| check(instr->operands[0].hasRegClass() && |
| instr->operands[0].regClass().type() == RegType::vgpr, |
| "FLAT/GLOBAL/SCRATCH address must be undefined or vgpr", instr.get()); |
| check(instr->operands[1].hasRegClass() && |
| instr->operands[1].regClass().type() == RegType::sgpr, |
| "FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get()); |
| if (instr->format == Format::SCRATCH && program->gfx_level < GFX10_3) |
| check(instr->operands[0].isTemp() || instr->operands[1].isTemp(), |
| "SCRATCH must have either SADDR or ADDR operand", instr.get()); |
| if (!instr->definitions.empty()) |
| check(instr->definitions[0].getTemp().type() == RegType::vgpr, |
| "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get()); |
| else |
| check(instr->operands[2].regClass().type() == RegType::vgpr, |
| "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get()); |
| break; |
| } |
| case Format::LDSDIR: { |
| check(instr->definitions.size() == 1 && instr->definitions[0].regClass() == v1, "LDSDIR must have an v1 definition", instr.get()); |
| check(instr->operands.size() == 1, "LDSDIR must have an operand", instr.get()); |
| if (!instr->operands.empty()) { |
| check(instr->operands[0].regClass() == s1, "LDSDIR must have an s1 operand", instr.get()); |
| check(instr->operands[0].isFixed() && instr->operands[0].physReg() == m0, "LDSDIR must have an operand fixed to m0", instr.get()); |
| } |
| break; |
| } |
| default: break; |
| } |
| } |
| } |
| |
| /* validate CFG */ |
| for (unsigned i = 0; i < program->blocks.size(); i++) { |
| Block& block = program->blocks[i]; |
| check_block(block.index == i, "block.index must match actual index", &block); |
| |
| /* predecessors/successors should be sorted */ |
| for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++) |
| check_block(block.linear_preds[j] < block.linear_preds[j + 1], |
| "linear predecessors must be sorted", &block); |
| for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++) |
| check_block(block.logical_preds[j] < block.logical_preds[j + 1], |
| "logical predecessors must be sorted", &block); |
| for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++) |
| check_block(block.linear_succs[j] < block.linear_succs[j + 1], |
| "linear successors must be sorted", &block); |
| for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++) |
| check_block(block.logical_succs[j] < block.logical_succs[j + 1], |
| "logical successors must be sorted", &block); |
| |
| /* critical edges are not allowed */ |
| if (block.linear_preds.size() > 1) { |
| for (unsigned pred : block.linear_preds) |
| check_block(program->blocks[pred].linear_succs.size() == 1, |
| "linear critical edges are not allowed", &program->blocks[pred]); |
| for (unsigned pred : block.logical_preds) |
| check_block(program->blocks[pred].logical_succs.size() == 1, |
| "logical critical edges are not allowed", &program->blocks[pred]); |
| } |
| } |
| |
| return is_valid; |
| } |
| |
| /* RA validation */ |
| namespace { |
| |
| struct Location { |
| Location() : block(NULL), instr(NULL) {} |
| |
| Block* block; |
| Instruction* instr; // NULL if it's the block's live-in |
| }; |
| |
| struct Assignment { |
| Location defloc; |
| Location firstloc; |
| PhysReg reg; |
| bool valid; |
| }; |
| |
| bool |
| ra_fail(Program* program, Location loc, Location loc2, const char* fmt, ...) |
| { |
| va_list args; |
| va_start(args, fmt); |
| char msg[1024]; |
| vsprintf(msg, fmt, args); |
| va_end(args); |
| |
| char* out; |
| size_t outsize; |
| struct u_memstream mem; |
| u_memstream_open(&mem, &out, &outsize); |
| FILE* const memf = u_memstream_get(&mem); |
| |
| fprintf(memf, "RA error found at instruction in BB%d:\n", loc.block->index); |
| if (loc.instr) { |
| aco_print_instr(program->gfx_level, loc.instr, memf); |
| fprintf(memf, "\n%s", msg); |
| } else { |
| fprintf(memf, "%s", msg); |
| } |
| if (loc2.block) { |
| fprintf(memf, " in BB%d:\n", loc2.block->index); |
| aco_print_instr(program->gfx_level, loc2.instr, memf); |
| } |
| fprintf(memf, "\n\n"); |
| u_memstream_close(&mem); |
| |
| aco_err(program, "%s", out); |
| free(out); |
| |
| return true; |
| } |
| |
| bool |
| validate_subdword_operand(amd_gfx_level gfx_level, const aco_ptr<Instruction>& instr, |
| unsigned index) |
| { |
| Operand op = instr->operands[index]; |
| unsigned byte = op.physReg().byte(); |
| |
| if (instr->opcode == aco_opcode::p_as_uniform) |
| return byte == 0; |
| if (instr->isPseudo() && gfx_level >= GFX8) |
| return true; |
| if (instr->isSDWA()) |
| return byte + instr->sdwa().sel[index].offset() + instr->sdwa().sel[index].size() <= 4 && |
| byte % instr->sdwa().sel[index].size() == 0; |
| if (instr->isVOP3P()) { |
| bool fma_mix = instr->opcode == aco_opcode::v_fma_mixlo_f16 || |
| instr->opcode == aco_opcode::v_fma_mixhi_f16 || |
| instr->opcode == aco_opcode::v_fma_mix_f32; |
| return ((instr->vop3p().opsel_lo >> index) & 1) == (byte >> 1) && |
| ((instr->vop3p().opsel_hi >> index) & 1) == (fma_mix || (byte >> 1)); |
| } |
| if (byte == 2 && can_use_opsel(gfx_level, instr->opcode, index)) |
| return true; |
| |
| switch (instr->opcode) { |
| case aco_opcode::v_cvt_f32_ubyte1: |
| if (byte == 1) |
| return true; |
| break; |
| case aco_opcode::v_cvt_f32_ubyte2: |
| if (byte == 2) |
| return true; |
| break; |
| case aco_opcode::v_cvt_f32_ubyte3: |
| if (byte == 3) |
| return true; |
| break; |
| case aco_opcode::ds_write_b8_d16_hi: |
| case aco_opcode::ds_write_b16_d16_hi: |
| if (byte == 2 && index == 1) |
| return true; |
| break; |
| case aco_opcode::buffer_store_byte_d16_hi: |
| case aco_opcode::buffer_store_short_d16_hi: |
| case aco_opcode::buffer_store_format_d16_hi_x: |
| if (byte == 2 && index == 3) |
| return true; |
| break; |
| case aco_opcode::flat_store_byte_d16_hi: |
| case aco_opcode::flat_store_short_d16_hi: |
| case aco_opcode::scratch_store_byte_d16_hi: |
| case aco_opcode::scratch_store_short_d16_hi: |
| case aco_opcode::global_store_byte_d16_hi: |
| case aco_opcode::global_store_short_d16_hi: |
| if (byte == 2 && index == 2) |
| return true; |
| break; |
| default: break; |
| } |
| |
| return byte == 0; |
| } |
| |
| bool |
| validate_subdword_definition(amd_gfx_level gfx_level, const aco_ptr<Instruction>& instr) |
| { |
| Definition def = instr->definitions[0]; |
| unsigned byte = def.physReg().byte(); |
| |
| if (instr->isPseudo() && gfx_level >= GFX8) |
| return true; |
| if (instr->isSDWA()) |
| return byte + instr->sdwa().dst_sel.offset() + instr->sdwa().dst_sel.size() <= 4 && |
| byte % instr->sdwa().dst_sel.size() == 0; |
| if (byte == 2 && can_use_opsel(gfx_level, instr->opcode, -1)) |
| return true; |
| |
| switch (instr->opcode) { |
| case aco_opcode::v_fma_mixhi_f16: |
| case aco_opcode::buffer_load_ubyte_d16_hi: |
| case aco_opcode::buffer_load_sbyte_d16_hi: |
| case aco_opcode::buffer_load_short_d16_hi: |
| case aco_opcode::buffer_load_format_d16_hi_x: |
| case aco_opcode::flat_load_ubyte_d16_hi: |
| case aco_opcode::flat_load_short_d16_hi: |
| case aco_opcode::scratch_load_ubyte_d16_hi: |
| case aco_opcode::scratch_load_short_d16_hi: |
| case aco_opcode::global_load_ubyte_d16_hi: |
| case aco_opcode::global_load_short_d16_hi: |
| case aco_opcode::ds_read_u8_d16_hi: |
| case aco_opcode::ds_read_u16_d16_hi: return byte == 2; |
| default: break; |
| } |
| |
| return byte == 0; |
| } |
| |
| unsigned |
| get_subdword_bytes_written(Program* program, const aco_ptr<Instruction>& instr, unsigned index) |
| { |
| amd_gfx_level gfx_level = program->gfx_level; |
| Definition def = instr->definitions[index]; |
| |
| if (instr->isPseudo()) |
| return gfx_level >= GFX8 ? def.bytes() : def.size() * 4u; |
| if (instr->isVALU() || instr->isVINTERP_INREG()) { |
| assert(def.bytes() <= 2); |
| if (instr->isSDWA()) |
| return instr->sdwa().dst_sel.size(); |
| |
| if (instr_is_16bit(gfx_level, instr->opcode)) |
| return 2; |
| |
| return 4; |
| } |
| |
| if (instr->isMIMG()) { |
| assert(instr->mimg().d16); |
| return program->dev.sram_ecc_enabled ? def.size() * 4u : def.bytes(); |
| } |
| |
| switch (instr->opcode) { |
| case aco_opcode::buffer_load_ubyte_d16: |
| case aco_opcode::buffer_load_sbyte_d16: |
| case aco_opcode::buffer_load_short_d16: |
| case aco_opcode::buffer_load_format_d16_x: |
| case aco_opcode::tbuffer_load_format_d16_x: |
| case aco_opcode::flat_load_ubyte_d16: |
| case aco_opcode::flat_load_short_d16: |
| case aco_opcode::scratch_load_ubyte_d16: |
| case aco_opcode::scratch_load_short_d16: |
| case aco_opcode::global_load_ubyte_d16: |
| case aco_opcode::global_load_short_d16: |
| case aco_opcode::ds_read_u8_d16: |
| case aco_opcode::ds_read_u16_d16: |
| case aco_opcode::buffer_load_ubyte_d16_hi: |
| case aco_opcode::buffer_load_sbyte_d16_hi: |
| case aco_opcode::buffer_load_short_d16_hi: |
| case aco_opcode::buffer_load_format_d16_hi_x: |
| case aco_opcode::flat_load_ubyte_d16_hi: |
| case aco_opcode::flat_load_short_d16_hi: |
| case aco_opcode::scratch_load_ubyte_d16_hi: |
| case aco_opcode::scratch_load_short_d16_hi: |
| case aco_opcode::global_load_ubyte_d16_hi: |
| case aco_opcode::global_load_short_d16_hi: |
| case aco_opcode::ds_read_u8_d16_hi: |
| case aco_opcode::ds_read_u16_d16_hi: return program->dev.sram_ecc_enabled ? 4 : 2; |
| case aco_opcode::buffer_load_format_d16_xyz: |
| case aco_opcode::tbuffer_load_format_d16_xyz: return program->dev.sram_ecc_enabled ? 8 : 6; |
| default: return def.size() * 4; |
| } |
| } |
| |
| bool |
| validate_instr_defs(Program* program, std::array<unsigned, 2048>& regs, |
| const std::vector<Assignment>& assignments, const Location& loc, |
| aco_ptr<Instruction>& instr) |
| { |
| bool err = false; |
| |
| for (unsigned i = 0; i < instr->definitions.size(); i++) { |
| Definition& def = instr->definitions[i]; |
| if (!def.isTemp()) |
| continue; |
| Temp tmp = def.getTemp(); |
| PhysReg reg = assignments[tmp.id()].reg; |
| for (unsigned j = 0; j < tmp.bytes(); j++) { |
| if (regs[reg.reg_b + j]) |
| err |= |
| ra_fail(program, loc, assignments[regs[reg.reg_b + j]].defloc, |
| "Assignment of element %d of %%%d already taken by %%%d from instruction", i, |
| tmp.id(), regs[reg.reg_b + j]); |
| regs[reg.reg_b + j] = tmp.id(); |
| } |
| if (def.regClass().is_subdword() && def.bytes() < 4) { |
| unsigned written = get_subdword_bytes_written(program, instr, i); |
| /* If written=4, the instruction still might write the upper half. In that case, it's |
| * the lower half that isn't preserved */ |
| for (unsigned j = reg.byte() & ~(written - 1); j < written; j++) { |
| unsigned written_reg = reg.reg() * 4u + j; |
| if (regs[written_reg] && regs[written_reg] != def.tempId()) |
| err |= ra_fail(program, loc, assignments[regs[written_reg]].defloc, |
| "Assignment of element %d of %%%d overwrites the full register " |
| "taken by %%%d from instruction", |
| i, tmp.id(), regs[written_reg]); |
| } |
| } |
| } |
| |
| for (const Definition& def : instr->definitions) { |
| if (!def.isTemp()) |
| continue; |
| if (def.isKill()) { |
| for (unsigned j = 0; j < def.getTemp().bytes(); j++) |
| regs[def.physReg().reg_b + j] = 0; |
| } |
| } |
| |
| return err; |
| } |
| |
| } /* end namespace */ |
| |
| bool |
| validate_ra(Program* program) |
| { |
| if (!(debug_flags & DEBUG_VALIDATE_RA)) |
| return false; |
| |
| bool err = false; |
| aco::live live_vars = aco::live_var_analysis(program); |
| std::vector<std::vector<Temp>> phi_sgpr_ops(program->blocks.size()); |
| uint16_t sgpr_limit = get_addr_sgpr_from_waves(program, program->num_waves); |
| |
| std::vector<Assignment> assignments(program->peekAllocationId()); |
| for (Block& block : program->blocks) { |
| Location loc; |
| loc.block = █ |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| if (instr->opcode == aco_opcode::p_phi) { |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (instr->operands[i].isTemp() && |
| instr->operands[i].getTemp().type() == RegType::sgpr && |
| instr->operands[i].isFirstKill()) |
| phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp()); |
| } |
| } |
| |
| loc.instr = instr.get(); |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| Operand& op = instr->operands[i]; |
| if (!op.isTemp()) |
| continue; |
| if (!op.isFixed()) |
| err |= ra_fail(program, loc, Location(), "Operand %d is not assigned a register", i); |
| if (assignments[op.tempId()].valid && assignments[op.tempId()].reg != op.physReg()) |
| err |= |
| ra_fail(program, loc, assignments[op.tempId()].firstloc, |
| "Operand %d has an inconsistent register assignment with instruction", i); |
| if ((op.getTemp().type() == RegType::vgpr && |
| op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) || |
| (op.getTemp().type() == RegType::sgpr && |
| op.physReg() + op.size() > program->config->num_sgprs && |
| op.physReg() < sgpr_limit)) |
| err |= ra_fail(program, loc, assignments[op.tempId()].firstloc, |
| "Operand %d has an out-of-bounds register assignment", i); |
| if (op.physReg() == vcc && !program->needs_vcc) |
| err |= ra_fail(program, loc, Location(), |
| "Operand %d fixed to vcc but needs_vcc=false", i); |
| if (op.regClass().is_subdword() && |
| !validate_subdword_operand(program->gfx_level, instr, i)) |
| err |= ra_fail(program, loc, Location(), "Operand %d not aligned correctly", i); |
| if (!assignments[op.tempId()].firstloc.block) |
| assignments[op.tempId()].firstloc = loc; |
| if (!assignments[op.tempId()].defloc.block) { |
| assignments[op.tempId()].reg = op.physReg(); |
| assignments[op.tempId()].valid = true; |
| } |
| } |
| |
| for (unsigned i = 0; i < instr->definitions.size(); i++) { |
| Definition& def = instr->definitions[i]; |
| if (!def.isTemp()) |
| continue; |
| if (!def.isFixed()) |
| err |= |
| ra_fail(program, loc, Location(), "Definition %d is not assigned a register", i); |
| if (assignments[def.tempId()].defloc.block) |
| err |= ra_fail(program, loc, assignments[def.tempId()].defloc, |
| "Temporary %%%d also defined by instruction", def.tempId()); |
| if ((def.getTemp().type() == RegType::vgpr && |
| def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) || |
| (def.getTemp().type() == RegType::sgpr && |
| def.physReg() + def.size() > program->config->num_sgprs && |
| def.physReg() < sgpr_limit)) |
| err |= ra_fail(program, loc, assignments[def.tempId()].firstloc, |
| "Definition %d has an out-of-bounds register assignment", i); |
| if (def.physReg() == vcc && !program->needs_vcc) |
| err |= ra_fail(program, loc, Location(), |
| "Definition %d fixed to vcc but needs_vcc=false", i); |
| if (def.regClass().is_subdword() && |
| !validate_subdword_definition(program->gfx_level, instr)) |
| err |= ra_fail(program, loc, Location(), "Definition %d not aligned correctly", i); |
| if (!assignments[def.tempId()].firstloc.block) |
| assignments[def.tempId()].firstloc = loc; |
| assignments[def.tempId()].defloc = loc; |
| assignments[def.tempId()].reg = def.physReg(); |
| assignments[def.tempId()].valid = true; |
| } |
| } |
| } |
| |
| for (Block& block : program->blocks) { |
| Location loc; |
| loc.block = █ |
| |
| std::array<unsigned, 2048> regs; /* register file in bytes */ |
| regs.fill(0); |
| |
| IDSet live = live_vars.live_out[block.index]; |
| /* remove killed p_phi sgpr operands */ |
| for (Temp tmp : phi_sgpr_ops[block.index]) |
| live.erase(tmp.id()); |
| |
| /* check live out */ |
| for (unsigned id : live) { |
| Temp tmp(id, program->temp_rc[id]); |
| PhysReg reg = assignments[id].reg; |
| for (unsigned i = 0; i < tmp.bytes(); i++) { |
| if (regs[reg.reg_b + i]) { |
| err |= ra_fail(program, loc, Location(), |
| "Assignment of element %d of %%%d already taken by %%%d in live-out", |
| i, id, regs[reg.reg_b + i]); |
| } |
| regs[reg.reg_b + i] = id; |
| } |
| } |
| regs.fill(0); |
| |
| for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) { |
| aco_ptr<Instruction>& instr = *it; |
| |
| /* check killed p_phi sgpr operands */ |
| if (instr->opcode == aco_opcode::p_logical_end) { |
| for (Temp tmp : phi_sgpr_ops[block.index]) { |
| PhysReg reg = assignments[tmp.id()].reg; |
| for (unsigned i = 0; i < tmp.bytes(); i++) { |
| if (regs[reg.reg_b + i]) |
| err |= ra_fail( |
| program, loc, Location(), |
| "Assignment of element %d of %%%d already taken by %%%d in live-out", i, |
| tmp.id(), regs[reg.reg_b + i]); |
| } |
| live.insert(tmp.id()); |
| } |
| } |
| |
| for (const Definition& def : instr->definitions) { |
| if (!def.isTemp()) |
| continue; |
| live.erase(def.tempId()); |
| } |
| |
| /* don't count phi operands as live-in, since they are actually |
| * killed when they are copied at the predecessor */ |
| if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) { |
| for (const Operand& op : instr->operands) { |
| if (!op.isTemp()) |
| continue; |
| live.insert(op.tempId()); |
| } |
| } |
| } |
| |
| for (unsigned id : live) { |
| Temp tmp(id, program->temp_rc[id]); |
| PhysReg reg = assignments[id].reg; |
| for (unsigned i = 0; i < tmp.bytes(); i++) |
| regs[reg.reg_b + i] = id; |
| } |
| |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| loc.instr = instr.get(); |
| |
| /* remove killed p_phi operands from regs */ |
| if (instr->opcode == aco_opcode::p_logical_end) { |
| for (Temp tmp : phi_sgpr_ops[block.index]) { |
| PhysReg reg = assignments[tmp.id()].reg; |
| for (unsigned i = 0; i < tmp.bytes(); i++) |
| regs[reg.reg_b + i] = 0; |
| } |
| } |
| |
| if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) { |
| for (const Operand& op : instr->operands) { |
| if (!op.isTemp()) |
| continue; |
| if (op.isFirstKillBeforeDef()) { |
| for (unsigned j = 0; j < op.getTemp().bytes(); j++) |
| regs[op.physReg().reg_b + j] = 0; |
| } |
| } |
| } |
| |
| if (!instr->isBranch() || block.linear_succs.size() != 1) |
| err |= validate_instr_defs(program, regs, assignments, loc, instr); |
| |
| if (!is_phi(instr)) { |
| for (const Operand& op : instr->operands) { |
| if (!op.isTemp()) |
| continue; |
| if (op.isLateKill() && op.isFirstKill()) { |
| for (unsigned j = 0; j < op.getTemp().bytes(); j++) |
| regs[op.physReg().reg_b + j] = 0; |
| } |
| } |
| } else if (block.linear_preds.size() != 1 || |
| program->blocks[block.linear_preds[0]].linear_succs.size() == 1) { |
| for (unsigned pred : block.linear_preds) { |
| aco_ptr<Instruction>& br = program->blocks[pred].instructions.back(); |
| assert(br->isBranch()); |
| err |= validate_instr_defs(program, regs, assignments, loc, br); |
| } |
| } |
| } |
| } |
| |
| return err; |
| } |
| } // namespace aco |