| /* |
| * Copyright © 2018 Valve Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "aco_ir.h" |
| |
| #include <algorithm> |
| #include <map> |
| #include <vector> |
| |
| namespace aco { |
| namespace { |
| |
| struct phi_info_item { |
| Definition def; |
| Operand op; |
| }; |
| |
| struct ssa_elimination_ctx { |
| /* The outer vectors should be indexed by block index. The inner vectors store phi information |
| * for each block. */ |
| std::vector<std::vector<phi_info_item>> logical_phi_info; |
| std::vector<std::vector<phi_info_item>> linear_phi_info; |
| std::vector<bool> empty_blocks; |
| std::vector<bool> blocks_incoming_exec_used; |
| Program* program; |
| |
| ssa_elimination_ctx(Program* program_) |
| : logical_phi_info(program_->blocks.size()), linear_phi_info(program_->blocks.size()), |
| empty_blocks(program_->blocks.size(), true), |
| blocks_incoming_exec_used(program_->blocks.size(), true), program(program_) |
| {} |
| }; |
| |
| void |
| collect_phi_info(ssa_elimination_ctx& ctx) |
| { |
| for (Block& block : ctx.program->blocks) { |
| for (aco_ptr<Instruction>& phi : block.instructions) { |
| if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi) |
| break; |
| |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| if (phi->operands[i].isUndefined()) |
| continue; |
| if (phi->operands[i].physReg() == phi->definitions[0].physReg()) |
| continue; |
| |
| assert(phi->definitions[0].size() == phi->operands[i].size()); |
| |
| std::vector<unsigned>& preds = |
| phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds; |
| uint32_t pred_idx = preds[i]; |
| auto& info_vec = phi->opcode == aco_opcode::p_phi ? ctx.logical_phi_info[pred_idx] |
| : ctx.linear_phi_info[pred_idx]; |
| info_vec.push_back({phi->definitions[0], phi->operands[i]}); |
| ctx.empty_blocks[pred_idx] = false; |
| } |
| } |
| } |
| } |
| |
| void |
| insert_parallelcopies(ssa_elimination_ctx& ctx) |
| { |
| /* insert the parallelcopies from logical phis before p_logical_end */ |
| for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) { |
| auto& logical_phi_info = ctx.logical_phi_info[block_idx]; |
| if (logical_phi_info.empty()) |
| continue; |
| |
| Block& block = ctx.program->blocks[block_idx]; |
| unsigned idx = block.instructions.size() - 1; |
| while (block.instructions[idx]->opcode != aco_opcode::p_logical_end) { |
| assert(idx > 0); |
| idx--; |
| } |
| |
| std::vector<aco_ptr<Instruction>>::iterator it = std::next(block.instructions.begin(), idx); |
| aco_ptr<Pseudo_instruction> pc{ |
| create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, |
| logical_phi_info.size(), logical_phi_info.size())}; |
| unsigned i = 0; |
| for (auto& phi_info : logical_phi_info) { |
| pc->definitions[i] = phi_info.def; |
| pc->operands[i] = phi_info.op; |
| i++; |
| } |
| /* this shouldn't be needed since we're only copying vgprs */ |
| pc->tmp_in_scc = false; |
| block.instructions.insert(it, std::move(pc)); |
| } |
| |
| /* insert parallelcopies for the linear phis at the end of blocks just before the branch */ |
| for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) { |
| auto& linear_phi_info = ctx.linear_phi_info[block_idx]; |
| if (linear_phi_info.empty()) |
| continue; |
| |
| Block& block = ctx.program->blocks[block_idx]; |
| std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.end(); |
| --it; |
| assert((*it)->isBranch()); |
| PhysReg scratch_sgpr = (*it)->definitions[0].physReg(); |
| aco_ptr<Pseudo_instruction> pc{ |
| create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, |
| linear_phi_info.size(), linear_phi_info.size())}; |
| unsigned i = 0; |
| for (auto& phi_info : linear_phi_info) { |
| pc->definitions[i] = phi_info.def; |
| pc->operands[i] = phi_info.op; |
| i++; |
| } |
| pc->tmp_in_scc = block.scc_live_out; |
| pc->scratch_sgpr = scratch_sgpr; |
| block.instructions.insert(it, std::move(pc)); |
| } |
| } |
| |
| bool |
| is_empty_block(Block* block, bool ignore_exec_writes) |
| { |
| /* check if this block is empty and the exec mask is not needed */ |
| for (aco_ptr<Instruction>& instr : block->instructions) { |
| switch (instr->opcode) { |
| case aco_opcode::p_linear_phi: |
| case aco_opcode::p_phi: |
| case aco_opcode::p_logical_start: |
| case aco_opcode::p_logical_end: |
| case aco_opcode::p_branch: break; |
| case aco_opcode::p_parallelcopy: |
| for (unsigned i = 0; i < instr->definitions.size(); i++) { |
| if (ignore_exec_writes && instr->definitions[i].physReg() == exec) |
| continue; |
| if (instr->definitions[i].physReg() != instr->operands[i].physReg()) |
| return false; |
| } |
| break; |
| case aco_opcode::s_andn2_b64: |
| case aco_opcode::s_andn2_b32: |
| if (ignore_exec_writes && instr->definitions[0].physReg() == exec) |
| break; |
| return false; |
| default: return false; |
| } |
| } |
| return true; |
| } |
| |
| void |
| try_remove_merge_block(ssa_elimination_ctx& ctx, Block* block) |
| { |
| /* check if the successor is another merge block which restores exec */ |
| // TODO: divergent loops also restore exec |
| if (block->linear_succs.size() != 1 || |
| !(ctx.program->blocks[block->linear_succs[0]].kind & block_kind_merge)) |
| return; |
| |
| /* check if this block is empty */ |
| if (!is_empty_block(block, true)) |
| return; |
| |
| /* keep the branch instruction and remove the rest */ |
| aco_ptr<Instruction> branch = std::move(block->instructions.back()); |
| block->instructions.clear(); |
| block->instructions.emplace_back(std::move(branch)); |
| } |
| |
| void |
| try_remove_invert_block(ssa_elimination_ctx& ctx, Block* block) |
| { |
| assert(block->linear_succs.size() == 2); |
| /* only remove this block if the successor got removed as well */ |
| if (block->linear_succs[0] != block->linear_succs[1]) |
| return; |
| |
| /* check if block is otherwise empty */ |
| if (!is_empty_block(block, true)) |
| return; |
| |
| unsigned succ_idx = block->linear_succs[0]; |
| assert(block->linear_preds.size() == 2); |
| for (unsigned i = 0; i < 2; i++) { |
| Block* pred = &ctx.program->blocks[block->linear_preds[i]]; |
| pred->linear_succs[0] = succ_idx; |
| ctx.program->blocks[succ_idx].linear_preds[i] = pred->index; |
| |
| Pseudo_branch_instruction& branch = pred->instructions.back()->branch(); |
| assert(branch.isBranch()); |
| branch.target[0] = succ_idx; |
| branch.target[1] = succ_idx; |
| } |
| |
| block->instructions.clear(); |
| block->linear_preds.clear(); |
| block->linear_succs.clear(); |
| } |
| |
| void |
| try_remove_simple_block(ssa_elimination_ctx& ctx, Block* block) |
| { |
| if (!is_empty_block(block, false)) |
| return; |
| |
| Block& pred = ctx.program->blocks[block->linear_preds[0]]; |
| Block& succ = ctx.program->blocks[block->linear_succs[0]]; |
| Pseudo_branch_instruction& branch = pred.instructions.back()->branch(); |
| if (branch.opcode == aco_opcode::p_branch) { |
| branch.target[0] = succ.index; |
| branch.target[1] = succ.index; |
| } else if (branch.target[0] == block->index) { |
| branch.target[0] = succ.index; |
| } else if (branch.target[0] == succ.index) { |
| assert(branch.target[1] == block->index); |
| branch.target[1] = succ.index; |
| branch.opcode = aco_opcode::p_branch; |
| } else if (branch.target[1] == block->index) { |
| /* check if there is a fall-through path from block to succ */ |
| bool falls_through = block->index < succ.index; |
| for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) { |
| assert(ctx.program->blocks[j].index == j); |
| if (!ctx.program->blocks[j].instructions.empty()) |
| falls_through = false; |
| } |
| if (falls_through) { |
| branch.target[1] = succ.index; |
| } else { |
| /* check if there is a fall-through path for the alternative target */ |
| if (block->index >= branch.target[0]) |
| return; |
| for (unsigned j = block->index + 1; j < branch.target[0]; j++) { |
| if (!ctx.program->blocks[j].instructions.empty()) |
| return; |
| } |
| |
| /* This is a (uniform) break or continue block. The branch condition has to be inverted. */ |
| if (branch.opcode == aco_opcode::p_cbranch_z) |
| branch.opcode = aco_opcode::p_cbranch_nz; |
| else if (branch.opcode == aco_opcode::p_cbranch_nz) |
| branch.opcode = aco_opcode::p_cbranch_z; |
| else |
| assert(false); |
| /* also invert the linear successors */ |
| pred.linear_succs[0] = pred.linear_succs[1]; |
| pred.linear_succs[1] = succ.index; |
| branch.target[1] = branch.target[0]; |
| branch.target[0] = succ.index; |
| } |
| } else { |
| assert(false); |
| } |
| |
| if (branch.target[0] == branch.target[1]) |
| branch.opcode = aco_opcode::p_branch; |
| |
| for (unsigned i = 0; i < pred.linear_succs.size(); i++) |
| if (pred.linear_succs[i] == block->index) |
| pred.linear_succs[i] = succ.index; |
| |
| for (unsigned i = 0; i < succ.linear_preds.size(); i++) |
| if (succ.linear_preds[i] == block->index) |
| succ.linear_preds[i] = pred.index; |
| |
| block->instructions.clear(); |
| block->linear_preds.clear(); |
| block->linear_succs.clear(); |
| } |
| |
| bool |
| instr_writes_exec(Instruction* instr) |
| { |
| for (Definition& def : instr->definitions) |
| if (def.physReg() == exec || def.physReg() == exec_hi) |
| return true; |
| |
| return false; |
| } |
| |
| template <typename T, typename U> |
| bool |
| regs_intersect(const T& a, const U& b) |
| { |
| const unsigned a_lo = a.physReg(); |
| const unsigned a_hi = a_lo + a.size(); |
| const unsigned b_lo = b.physReg(); |
| const unsigned b_hi = b_lo + b.size(); |
| |
| return a_hi > b_lo && b_hi > a_lo; |
| } |
| |
| void |
| try_optimize_branching_sequence(ssa_elimination_ctx& ctx, Block& block, const int exec_val_idx, |
| const int exec_copy_idx) |
| { |
| /* Try to optimize the branching sequence at the end of a block. |
| * |
| * We are looking for blocks that look like this: |
| * |
| * BB: |
| * ... instructions ... |
| * s[N:M] = <exec_val instruction> |
| * ... other instructions that don't depend on exec ... |
| * p_logical_end |
| * exec = <exec_copy instruction> s[N:M] |
| * p_cbranch exec |
| * |
| * The main motivation is to eliminate exec_copy. |
| * Depending on the context, we try to do the following: |
| * |
| * 1. Reassign exec_val to write exec directly |
| * 2. If possible, eliminate exec_copy |
| * 3. When exec_copy also saves the old exec mask, insert a |
| * new copy instruction before exec_val |
| * 4. Reassign any instruction that used s[N:M] to use exec |
| * |
| * This is beneficial for the following reasons: |
| * |
| * - Fewer instructions in the block when exec_copy can be eliminated |
| * - As a result, when exec_val is VOPC this also improves the stalls |
| * due to SALU waiting for VALU. This works best when we can also |
| * remove the branching instruction, in which case the stall |
| * is entirely eliminated. |
| * - When exec_copy can't be removed, the reassignment may still be |
| * very slightly beneficial to latency. |
| */ |
| |
| aco_ptr<Instruction>& exec_val = block.instructions[exec_val_idx]; |
| aco_ptr<Instruction>& exec_copy = block.instructions[exec_copy_idx]; |
| |
| const aco_opcode and_saveexec = ctx.program->lane_mask == s2 ? aco_opcode::s_and_saveexec_b64 |
| : aco_opcode::s_and_saveexec_b32; |
| |
| if (exec_copy->opcode != and_saveexec && exec_copy->opcode != aco_opcode::p_parallelcopy) |
| return; |
| |
| if (exec_val->definitions.size() > 1) |
| return; |
| |
| /* Check if a suitable v_cmpx opcode exists. */ |
| const aco_opcode v_cmpx_op = |
| exec_val->isVOPC() ? get_vcmpx(exec_val->opcode) : aco_opcode::num_opcodes; |
| const bool vopc = v_cmpx_op != aco_opcode::num_opcodes; |
| |
| /* V_CMPX+DPP returns 0 with reads from disabled lanes, unlike V_CMP+DPP (RDNA3 ISA doc, 7.7) */ |
| if (vopc && exec_val->isDPP()) |
| return; |
| |
| /* If s_and_saveexec is used, we'll need to insert a new instruction to save the old exec. */ |
| const bool save_original_exec = exec_copy->opcode == and_saveexec; |
| /* Position where the original exec mask copy should be inserted. */ |
| const int save_original_exec_idx = exec_val_idx; |
| /* The copy can be removed when it kills its operand. |
| * v_cmpx also writes the original destination pre GFX10. |
| */ |
| const bool can_remove_copy = |
| exec_copy->operands[0].isKill() || (vopc && ctx.program->gfx_level < GFX10); |
| |
| /* Always allow reassigning when the value is written by (usable) VOPC. |
| * Note, VOPC implicitly contains "& exec" because it yields zero on inactive lanes. |
| * Additionally, when value is copied as-is, also allow SALU and parallelcopies. |
| */ |
| const bool can_reassign = |
| vopc || (exec_copy->opcode == aco_opcode::p_parallelcopy && |
| (exec_val->isSALU() || exec_val->opcode == aco_opcode::p_parallelcopy)); |
| |
| /* The reassignment is not worth it when both the original exec needs to be copied |
| * and the new exec copy can't be removed. In this case we'd end up with more instructions. |
| */ |
| if (!can_reassign || (save_original_exec && !can_remove_copy)) |
| return; |
| |
| const Definition exec_wr_def = exec_val->definitions[0]; |
| const Definition exec_copy_def = exec_copy->definitions[0]; |
| |
| /* When exec_val and exec_copy are non-adjacent, check whether there are any |
| * instructions inbetween (besides p_logical_end) which may inhibit the optimization. |
| */ |
| for (int idx = exec_val_idx + 1; idx < exec_copy_idx; ++idx) { |
| aco_ptr<Instruction>& instr = block.instructions[idx]; |
| |
| if (save_original_exec) { |
| /* Check if the instruction uses the exec_copy_def register, in which case we can't |
| * optimize. */ |
| for (const Operand& op : instr->operands) |
| if (regs_intersect(exec_copy_def, op)) |
| return; |
| for (const Definition& def : instr->definitions) |
| if (regs_intersect(exec_copy_def, def)) |
| return; |
| } |
| |
| /* Check if the instruction may implicitly read VCC, eg. v_cndmask or add with carry. |
| * Rewriting these operands may require format conversion because of encoding limitations. |
| */ |
| if (exec_wr_def.physReg() == vcc && instr->isVALU() && instr->operands.size() >= 3 && |
| !instr->isVOP3()) |
| return; |
| } |
| |
| if (save_original_exec) { |
| /* We insert the exec copy before exec_val, so exec_val can't use those registers. */ |
| for (const Operand& op : exec_val->operands) |
| if (regs_intersect(exec_copy_def, op)) |
| return; |
| /* We would write over the saved exec value in this case. */ |
| if (((vopc && ctx.program->gfx_level < GFX10) || !can_remove_copy) && |
| regs_intersect(exec_copy_def, exec_wr_def)) |
| return; |
| } |
| |
| if (vopc) { |
| /* Add one extra definition for exec and copy the VOP3-specific fields if present. */ |
| if (ctx.program->gfx_level < GFX10) { |
| if (exec_val->isSDWA()) { |
| /* This might work but it needs testing and more code to copy the instruction. */ |
| return; |
| } else if (!exec_val->isVOP3()) { |
| aco_ptr<Instruction> tmp = std::move(exec_val); |
| exec_val.reset(create_instruction<VOPC_instruction>( |
| tmp->opcode, tmp->format, tmp->operands.size(), tmp->definitions.size() + 1)); |
| std::copy(tmp->operands.cbegin(), tmp->operands.cend(), exec_val->operands.begin()); |
| std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(), |
| exec_val->definitions.begin()); |
| } else { |
| aco_ptr<Instruction> tmp = std::move(exec_val); |
| exec_val.reset(create_instruction<VOP3_instruction>( |
| tmp->opcode, tmp->format, tmp->operands.size(), tmp->definitions.size() + 1)); |
| std::copy(tmp->operands.cbegin(), tmp->operands.cend(), exec_val->operands.begin()); |
| std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(), |
| exec_val->definitions.begin()); |
| |
| VOP3_instruction& src = tmp->vop3(); |
| VOP3_instruction& dst = exec_val->vop3(); |
| dst.opsel = src.opsel; |
| dst.omod = src.omod; |
| dst.clamp = src.clamp; |
| std::copy(std::cbegin(src.abs), std::cend(src.abs), std::begin(dst.abs)); |
| std::copy(std::cbegin(src.neg), std::cend(src.neg), std::begin(dst.neg)); |
| } |
| } |
| |
| /* Set v_cmpx opcode. */ |
| exec_val->opcode = v_cmpx_op; |
| |
| *exec_val->definitions.rbegin() = Definition(exec, ctx.program->lane_mask); |
| |
| /* Change instruction from VOP3 to plain VOPC when possible. */ |
| if (ctx.program->gfx_level >= GFX10 && !exec_val->usesModifiers() && |
| (exec_val->operands.size() < 2 || exec_val->operands[1].isOfType(RegType::vgpr))) |
| exec_val->format = Format::VOPC; |
| } else { |
| /* Reassign the instruction to write exec directly. */ |
| exec_val->definitions[0] = Definition(exec, ctx.program->lane_mask); |
| } |
| |
| /* If there are other instructions (besides p_logical_end) between |
| * writing the value and copying it to exec, reassign uses |
| * of the old definition. |
| */ |
| for (int idx = exec_val_idx + 1; idx < exec_copy_idx; ++idx) { |
| aco_ptr<Instruction>& instr = block.instructions[idx]; |
| for (Operand& op : instr->operands) { |
| if (op.physReg() == exec_wr_def.physReg()) |
| op = Operand(exec, op.regClass()); |
| if (exec_wr_def.size() == 2 && op.physReg() == exec_wr_def.physReg().advance(4)) |
| op = Operand(exec_hi, op.regClass()); |
| } |
| } |
| |
| if (can_remove_copy) { |
| /* Remove the copy. */ |
| exec_copy.reset(); |
| } else { |
| /* Reassign the copy to write the register of the original value. */ |
| exec_copy.reset( |
| create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1)); |
| exec_copy->definitions[0] = exec_wr_def; |
| exec_copy->operands[0] = Operand(exec, ctx.program->lane_mask); |
| } |
| |
| if (exec_val->opcode == aco_opcode::p_parallelcopy && exec_val->operands[0].isConstant() && |
| exec_val->operands[0].constantValue()) { |
| /* Remove the branch instruction when exec is constant non-zero. */ |
| aco_ptr<Instruction>& branch = block.instructions.back(); |
| if (branch->opcode == aco_opcode::p_cbranch_z && branch->operands[0].physReg() == exec) |
| block.instructions.back().reset(); |
| } |
| |
| if (save_original_exec) { |
| /* Insert a new instruction that saves the original exec before it is overwritten. |
| * Do this last, because inserting in the instructions vector may invalidate the exec_val |
| * reference. |
| */ |
| const auto it = std::next(block.instructions.begin(), save_original_exec_idx); |
| aco_ptr<Instruction> copy( |
| create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1)); |
| copy->definitions[0] = exec_copy_def; |
| copy->operands[0] = Operand(exec, ctx.program->lane_mask); |
| block.instructions.insert(it, std::move(copy)); |
| } |
| } |
| |
| void |
| eliminate_useless_exec_writes_in_block(ssa_elimination_ctx& ctx, Block& block) |
| { |
| /* Check if any successor needs the outgoing exec mask from the current block. */ |
| |
| bool exec_write_used; |
| |
| if (!ctx.logical_phi_info[block.index].empty()) { |
| exec_write_used = true; |
| } else { |
| bool copy_to_exec = false; |
| bool copy_from_exec = false; |
| |
| for (const auto& successor_phi_info : ctx.linear_phi_info[block.index]) { |
| copy_to_exec |= successor_phi_info.def.physReg() == exec; |
| copy_from_exec |= successor_phi_info.op.physReg() == exec; |
| } |
| |
| if (copy_from_exec) |
| exec_write_used = true; |
| else if (copy_to_exec) |
| exec_write_used = false; |
| else |
| /* blocks_incoming_exec_used is initialized to true, so this is correct even for loops. */ |
| exec_write_used = |
| std::any_of(block.linear_succs.begin(), block.linear_succs.end(), |
| [&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; }); |
| } |
| |
| /* Collect information about the branching sequence. */ |
| |
| bool logical_end_found = false; |
| bool branch_reads_exec = false; |
| bool branch_exec_val_found = false; |
| int branch_exec_val_idx = -1; |
| int branch_exec_copy_idx = -1; |
| unsigned branch_exec_tempid = 0; |
| |
| /* Go through all instructions and eliminate useless exec writes. */ |
| |
| for (int i = block.instructions.size() - 1; i >= 0; --i) { |
| aco_ptr<Instruction>& instr = block.instructions[i]; |
| |
| /* We already take information from phis into account before the loop, so let's just break on |
| * phis. */ |
| if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi) |
| break; |
| |
| /* See if the current instruction needs or writes exec. */ |
| bool needs_exec = needs_exec_mask(instr.get()); |
| bool writes_exec = instr_writes_exec(instr.get()); |
| |
| logical_end_found |= instr->opcode == aco_opcode::p_logical_end; |
| branch_reads_exec |= i == (int)(block.instructions.size() - 1) && instr->isBranch() && |
| instr->operands.size() && instr->operands[0].physReg() == exec; |
| |
| /* See if we found an unused exec write. */ |
| if (writes_exec && !exec_write_used) { |
| instr.reset(); |
| continue; |
| } |
| |
| /* For a newly encountered exec write, clear the used flag. */ |
| if (writes_exec) { |
| if (!logical_end_found && branch_reads_exec && instr->operands.size() && |
| !branch_exec_val_found) { |
| /* We are in a branch that jumps according to exec. |
| * We just found the instruction that copies to exec before the branch. |
| */ |
| assert(branch_exec_copy_idx == -1); |
| branch_exec_copy_idx = i; |
| branch_exec_tempid = instr->operands[0].tempId(); |
| branch_exec_val_found = true; |
| } else if (branch_exec_val_idx == -1) { |
| /* The current instruction overwrites exec before branch_exec_val_idx was |
| * found, therefore we can't optimize the branching sequence. |
| */ |
| branch_exec_copy_idx = -1; |
| branch_exec_tempid = 0; |
| } |
| |
| exec_write_used = false; |
| } else if (branch_exec_tempid && instr->definitions.size() && |
| instr->definitions[0].tempId() == branch_exec_tempid) { |
| /* We just found the instruction that produces the exec mask that is copied. */ |
| assert(branch_exec_val_idx == -1); |
| branch_exec_val_idx = i; |
| } else if (branch_exec_tempid && branch_exec_val_idx == -1 && needs_exec) { |
| /* There is an instruction that needs the original exec mask before |
| * branch_exec_val_idx was found, so we can't optimize the branching sequence. */ |
| branch_exec_copy_idx = -1; |
| branch_exec_tempid = 0; |
| } |
| |
| /* If the current instruction needs exec, mark it as used. */ |
| exec_write_used |= needs_exec; |
| } |
| |
| /* Remember if the current block needs an incoming exec mask from its predecessors. */ |
| ctx.blocks_incoming_exec_used[block.index] = exec_write_used; |
| |
| /* See if we can optimize the instruction that produces the exec mask. */ |
| if (branch_exec_val_idx != -1) { |
| assert(logical_end_found && branch_reads_exec && branch_exec_tempid && |
| branch_exec_copy_idx != -1); |
| try_optimize_branching_sequence(ctx, block, branch_exec_val_idx, branch_exec_copy_idx); |
| } |
| |
| /* Cleanup: remove deleted instructions from the vector. */ |
| auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr); |
| block.instructions.resize(new_end - block.instructions.begin()); |
| } |
| |
| void |
| jump_threading(ssa_elimination_ctx& ctx) |
| { |
| for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) { |
| Block* block = &ctx.program->blocks[i]; |
| eliminate_useless_exec_writes_in_block(ctx, *block); |
| |
| if (!ctx.empty_blocks[i]) |
| continue; |
| |
| if (block->kind & block_kind_invert) { |
| try_remove_invert_block(ctx, block); |
| continue; |
| } |
| |
| if (block->linear_succs.size() > 1) |
| continue; |
| |
| if (block->kind & block_kind_merge || block->kind & block_kind_loop_exit) |
| try_remove_merge_block(ctx, block); |
| |
| if (block->linear_preds.size() == 1) |
| try_remove_simple_block(ctx, block); |
| } |
| } |
| |
| } /* end namespace */ |
| |
| void |
| ssa_elimination(Program* program) |
| { |
| ssa_elimination_ctx ctx(program); |
| |
| /* Collect information about every phi-instruction */ |
| collect_phi_info(ctx); |
| |
| /* eliminate empty blocks */ |
| jump_threading(ctx); |
| |
| /* insert parallelcopies from SSA elimination */ |
| insert_parallelcopies(ctx); |
| } |
| } // namespace aco |