blob: 12cb333257545c4cf101ec6a048c9e19d779bef3 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
* Copyright © 2018 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include "common/sid.h"
#include <algorithm>
#include <cstring>
#include <map>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace std {
template <> struct hash<aco::Temp> {
size_t operator()(aco::Temp temp) const noexcept
{
uint32_t v;
std::memcpy(&v, &temp, sizeof(temp));
return std::hash<uint32_t>{}(v);
}
};
} // namespace std
/*
* Implements the spilling algorithm on SSA-form from
* "Register Spilling and Live-Range Splitting for SSA-Form Programs"
* by Matthias Braun and Sebastian Hack.
*/
namespace aco {
namespace {
struct remat_info {
Instruction* instr;
};
struct spill_ctx {
RegisterDemand target_pressure;
Program* program;
std::vector<std::vector<RegisterDemand>> register_demand;
std::vector<std::map<Temp, Temp>> renames;
std::vector<std::unordered_map<Temp, uint32_t>> spills_entry;
std::vector<std::unordered_map<Temp, uint32_t>> spills_exit;
std::vector<bool> processed;
std::stack<Block*, std::vector<Block*>> loop_header;
std::vector<std::unordered_map<Temp, std::pair<uint32_t, uint32_t>>> next_use_distances_start;
std::vector<std::unordered_map<Temp, std::pair<uint32_t, uint32_t>>> next_use_distances_end;
std::vector<std::vector<std::pair<Temp, uint32_t>>> local_next_use_distance; /* Working buffer */
std::vector<std::pair<RegClass, std::unordered_set<uint32_t>>> interferences;
std::vector<std::vector<uint32_t>> affinities;
std::vector<bool> is_reloaded;
std::unordered_map<Temp, remat_info> remat;
std::set<Instruction*> unused_remats;
unsigned wave_size;
unsigned sgpr_spill_slots;
unsigned vgpr_spill_slots;
Temp scratch_rsrc;
spill_ctx(const RegisterDemand target_pressure_, Program* program_,
std::vector<std::vector<RegisterDemand>> register_demand_)
: target_pressure(target_pressure_), program(program_),
register_demand(std::move(register_demand_)), renames(program->blocks.size()),
spills_entry(program->blocks.size()), spills_exit(program->blocks.size()),
processed(program->blocks.size(), false), wave_size(program->wave_size),
sgpr_spill_slots(0), vgpr_spill_slots(0)
{}
void add_affinity(uint32_t first, uint32_t second)
{
unsigned found_first = affinities.size();
unsigned found_second = affinities.size();
for (unsigned i = 0; i < affinities.size(); i++) {
std::vector<uint32_t>& vec = affinities[i];
for (uint32_t entry : vec) {
if (entry == first)
found_first = i;
else if (entry == second)
found_second = i;
}
}
if (found_first == affinities.size() && found_second == affinities.size()) {
affinities.emplace_back(std::vector<uint32_t>({first, second}));
} else if (found_first < affinities.size() && found_second == affinities.size()) {
affinities[found_first].push_back(second);
} else if (found_second < affinities.size() && found_first == affinities.size()) {
affinities[found_second].push_back(first);
} else if (found_first != found_second) {
/* merge second into first */
affinities[found_first].insert(affinities[found_first].end(),
affinities[found_second].begin(),
affinities[found_second].end());
affinities.erase(std::next(affinities.begin(), found_second));
} else {
assert(found_first == found_second);
}
}
void add_interference(uint32_t first, uint32_t second)
{
if (interferences[first].first.type() != interferences[second].first.type())
return;
bool inserted = interferences[first].second.insert(second).second;
if (inserted)
interferences[second].second.insert(first);
}
uint32_t allocate_spill_id(RegClass rc)
{
interferences.emplace_back(rc, std::unordered_set<uint32_t>());
is_reloaded.push_back(false);
return next_spill_id++;
}
uint32_t next_spill_id = 0;
};
int32_t
get_dominator(int idx_a, int idx_b, Program* program, bool is_linear)
{
if (idx_a == -1)
return idx_b;
if (idx_b == -1)
return idx_a;
if (is_linear) {
while (idx_a != idx_b) {
if (idx_a > idx_b)
idx_a = program->blocks[idx_a].linear_idom;
else
idx_b = program->blocks[idx_b].linear_idom;
}
} else {
while (idx_a != idx_b) {
if (idx_a > idx_b)
idx_a = program->blocks[idx_a].logical_idom;
else
idx_b = program->blocks[idx_b].logical_idom;
}
}
assert(idx_a != -1);
return idx_a;
}
void
next_uses_per_block(spill_ctx& ctx, unsigned block_idx, uint32_t& worklist)
{
Block* block = &ctx.program->blocks[block_idx];
ctx.next_use_distances_start[block_idx] = ctx.next_use_distances_end[block_idx];
auto& next_use_distances_start = ctx.next_use_distances_start[block_idx];
/* to compute the next use distance at the beginning of the block, we have to add the block's
* size */
for (std::unordered_map<Temp, std::pair<uint32_t, uint32_t>>::iterator it =
next_use_distances_start.begin();
it != next_use_distances_start.end(); ++it)
it->second.second = it->second.second + block->instructions.size();
int idx = block->instructions.size() - 1;
while (idx >= 0) {
aco_ptr<Instruction>& instr = block->instructions[idx];
if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi)
break;
for (const Definition& def : instr->definitions) {
if (def.isTemp())
next_use_distances_start.erase(def.getTemp());
}
for (const Operand& op : instr->operands) {
/* omit exec mask */
if (op.isFixed() && op.physReg() == exec)
continue;
if (op.regClass().type() == RegType::vgpr && op.regClass().is_linear())
continue;
if (op.isTemp())
next_use_distances_start[op.getTemp()] = {block_idx, idx};
}
idx--;
}
assert(block_idx != 0 || next_use_distances_start.empty());
std::unordered_set<Temp> phi_defs;
while (idx >= 0) {
aco_ptr<Instruction>& instr = block->instructions[idx];
assert(instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi);
std::pair<uint32_t, uint32_t> distance{block_idx, 0};
auto it = instr->definitions[0].isTemp() ? next_use_distances_start.find(instr->definitions[0].getTemp())
: next_use_distances_start.end();
if (it != next_use_distances_start.end() &&
phi_defs.insert(instr->definitions[0].getTemp()).second) {
distance = it->second;
}
for (unsigned i = 0; i < instr->operands.size(); i++) {
unsigned pred_idx =
instr->opcode == aco_opcode::p_phi ? block->logical_preds[i] : block->linear_preds[i];
if (instr->operands[i].isTemp()) {
auto insert_result = ctx.next_use_distances_end[pred_idx].insert(
std::make_pair(instr->operands[i].getTemp(), distance));
const bool inserted = insert_result.second;
std::pair<uint32_t, uint32_t>& entry_distance = insert_result.first->second;
if (inserted || entry_distance != distance)
worklist = std::max(worklist, pred_idx + 1);
entry_distance = distance;
}
}
idx--;
}
/* all remaining live vars must be live-out at the predecessors */
for (std::pair<const Temp, std::pair<uint32_t, uint32_t>>& pair : next_use_distances_start) {
Temp temp = pair.first;
if (phi_defs.count(temp)) {
continue;
}
uint32_t distance = pair.second.second;
uint32_t dom = pair.second.first;
std::vector<unsigned>& preds = temp.is_linear() ? block->linear_preds : block->logical_preds;
for (unsigned pred_idx : preds) {
if (ctx.program->blocks[pred_idx].loop_nest_depth > block->loop_nest_depth)
distance += 0xFFFF;
auto insert_result = ctx.next_use_distances_end[pred_idx].insert(
std::make_pair(temp, std::pair<uint32_t, uint32_t>{}));
const bool inserted = insert_result.second;
std::pair<uint32_t, uint32_t>& entry_distance = insert_result.first->second;
if (!inserted) {
dom = get_dominator(dom, entry_distance.first, ctx.program, temp.is_linear());
distance = std::min(entry_distance.second, distance);
}
if (entry_distance != std::pair<uint32_t, uint32_t>{dom, distance}) {
worklist = std::max(worklist, pred_idx + 1);
entry_distance = {dom, distance};
}
}
}
}
void
compute_global_next_uses(spill_ctx& ctx)
{
ctx.next_use_distances_start.resize(ctx.program->blocks.size());
ctx.next_use_distances_end.resize(ctx.program->blocks.size());
uint32_t worklist = ctx.program->blocks.size();
while (worklist) {
unsigned block_idx = --worklist;
next_uses_per_block(ctx, block_idx, worklist);
}
}
bool
should_rematerialize(aco_ptr<Instruction>& instr)
{
/* TODO: rematerialization is only supported for VOP1, SOP1 and PSEUDO */
if (instr->format != Format::VOP1 && instr->format != Format::SOP1 &&
instr->format != Format::PSEUDO && instr->format != Format::SOPK)
return false;
/* TODO: pseudo-instruction rematerialization is only supported for
* p_create_vector/p_parallelcopy */
if (instr->isPseudo() && instr->opcode != aco_opcode::p_create_vector &&
instr->opcode != aco_opcode::p_parallelcopy)
return false;
if (instr->isSOPK() && instr->opcode != aco_opcode::s_movk_i32)
return false;
for (const Operand& op : instr->operands) {
/* TODO: rematerialization using temporaries isn't yet supported */
if (!op.isConstant())
return false;
}
/* TODO: rematerialization with multiple definitions isn't yet supported */
if (instr->definitions.size() > 1)
return false;
return true;
}
aco_ptr<Instruction>
do_reload(spill_ctx& ctx, Temp tmp, Temp new_name, uint32_t spill_id)
{
std::unordered_map<Temp, remat_info>::iterator remat = ctx.remat.find(tmp);
if (remat != ctx.remat.end()) {
Instruction* instr = remat->second.instr;
assert((instr->isVOP1() || instr->isSOP1() || instr->isPseudo() || instr->isSOPK()) &&
"unsupported");
assert((instr->format != Format::PSEUDO || instr->opcode == aco_opcode::p_create_vector ||
instr->opcode == aco_opcode::p_parallelcopy) &&
"unsupported");
assert(instr->definitions.size() == 1 && "unsupported");
aco_ptr<Instruction> res;
if (instr->isVOP1()) {
res.reset(create_instruction<VOP1_instruction>(
instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
} else if (instr->isSOP1()) {
res.reset(create_instruction<SOP1_instruction>(
instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
} else if (instr->isPseudo()) {
res.reset(create_instruction<Pseudo_instruction>(
instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
} else if (instr->isSOPK()) {
res.reset(create_instruction<SOPK_instruction>(
instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
res->sopk().imm = instr->sopk().imm;
}
for (unsigned i = 0; i < instr->operands.size(); i++) {
res->operands[i] = instr->operands[i];
if (instr->operands[i].isTemp()) {
assert(false && "unsupported");
if (ctx.remat.count(instr->operands[i].getTemp()))
ctx.unused_remats.erase(ctx.remat[instr->operands[i].getTemp()].instr);
}
}
res->definitions[0] = Definition(new_name);
return res;
} else {
aco_ptr<Pseudo_instruction> reload{
create_instruction<Pseudo_instruction>(aco_opcode::p_reload, Format::PSEUDO, 1, 1)};
reload->operands[0] = Operand::c32(spill_id);
reload->definitions[0] = Definition(new_name);
ctx.is_reloaded[spill_id] = true;
return reload;
}
}
void
get_rematerialize_info(spill_ctx& ctx)
{
for (Block& block : ctx.program->blocks) {
bool logical = false;
for (aco_ptr<Instruction>& instr : block.instructions) {
if (instr->opcode == aco_opcode::p_logical_start)
logical = true;
else if (instr->opcode == aco_opcode::p_logical_end)
logical = false;
if (logical && should_rematerialize(instr)) {
for (const Definition& def : instr->definitions) {
if (def.isTemp()) {
ctx.remat[def.getTemp()] = remat_info{instr.get()};
ctx.unused_remats.insert(instr.get());
}
}
}
}
}
}
void
update_local_next_uses(spill_ctx& ctx, Block* block,
std::vector<std::vector<std::pair<Temp, uint32_t>>>& local_next_uses)
{
if (local_next_uses.size() < block->instructions.size()) {
/* Allocate more next-use-maps. Note that by never reducing the vector size, we enable
* future calls to this function to re-use already allocated map memory. */
local_next_uses.resize(block->instructions.size());
}
local_next_uses[block->instructions.size() - 1].clear();
for (std::pair<const Temp, std::pair<uint32_t, uint32_t>>& pair :
ctx.next_use_distances_end[block->index]) {
local_next_uses[block->instructions.size() - 1].push_back(std::make_pair<Temp, uint32_t>(
(Temp)pair.first, pair.second.second + block->instructions.size()));
}
for (int idx = block->instructions.size() - 1; idx >= 0; idx--) {
aco_ptr<Instruction>& instr = block->instructions[idx];
if (!instr)
break;
if (instr->opcode == aco_opcode::p_phi || instr->opcode == aco_opcode::p_linear_phi)
break;
if (idx != (int)block->instructions.size() - 1) {
local_next_uses[idx] = local_next_uses[idx + 1];
}
for (const Operand& op : instr->operands) {
if (op.isFixed() && op.physReg() == exec)
continue;
if (op.regClass().type() == RegType::vgpr && op.regClass().is_linear())
continue;
if (op.isTemp()) {
auto it = std::find_if(local_next_uses[idx].begin(), local_next_uses[idx].end(),
[op](auto& pair) { return pair.first == op.getTemp(); });
if (it == local_next_uses[idx].end()) {
local_next_uses[idx].push_back(std::make_pair<Temp, uint32_t>(op.getTemp(), idx));
} else {
it->second = idx;
}
}
}
for (const Definition& def : instr->definitions) {
if (def.isTemp()) {
auto it = std::find_if(local_next_uses[idx].begin(), local_next_uses[idx].end(),
[def](auto& pair) { return pair.first == def.getTemp(); });
if (it != local_next_uses[idx].end()) {
local_next_uses[idx].erase(it);
}
}
}
}
}
RegisterDemand
get_demand_before(spill_ctx& ctx, unsigned block_idx, unsigned idx)
{
if (idx == 0) {
RegisterDemand demand = ctx.register_demand[block_idx][idx];
aco_ptr<Instruction>& instr = ctx.program->blocks[block_idx].instructions[idx];
aco_ptr<Instruction> instr_before(nullptr);
return get_demand_before(demand, instr, instr_before);
} else {
return ctx.register_demand[block_idx][idx - 1];
}
}
RegisterDemand
get_live_in_demand(spill_ctx& ctx, unsigned block_idx)
{
unsigned idx = 0;
RegisterDemand reg_pressure = RegisterDemand();
Block& block = ctx.program->blocks[block_idx];
for (aco_ptr<Instruction>& phi : block.instructions) {
if (!is_phi(phi))
break;
idx++;
/* Killed phi definitions increase pressure in the predecessor but not
* the block they're in. Since the loops below are both to control
* pressure of the start of this block and the ends of it's
* predecessors, we need to count killed unspilled phi definitions here. */
if (phi->definitions[0].isTemp() && phi->definitions[0].isKill() &&
!ctx.spills_entry[block_idx].count(phi->definitions[0].getTemp()))
reg_pressure += phi->definitions[0].getTemp();
}
reg_pressure += get_demand_before(ctx, block_idx, idx);
/* Consider register pressure from linear predecessors. This can affect
* reg_pressure if the branch instructions define sgprs. */
for (unsigned pred : block.linear_preds)
reg_pressure.sgpr =
std::max<int16_t>(reg_pressure.sgpr, ctx.register_demand[pred].back().sgpr);
return reg_pressure;
}
RegisterDemand
init_live_in_vars(spill_ctx& ctx, Block* block, unsigned block_idx)
{
RegisterDemand spilled_registers;
/* first block, nothing was spilled before */
if (block_idx == 0)
return {0, 0};
/* next use distances at the beginning of the current block */
const auto& next_use_distances = ctx.next_use_distances_start[block_idx];
/* loop header block */
if (block->loop_nest_depth > ctx.program->blocks[block_idx - 1].loop_nest_depth) {
assert(block->linear_preds[0] == block_idx - 1);
assert(block->logical_preds[0] == block_idx - 1);
/* create new loop_info */
ctx.loop_header.emplace(block);
/* check how many live-through variables should be spilled */
RegisterDemand reg_pressure = get_live_in_demand(ctx, block_idx);
RegisterDemand loop_demand = reg_pressure;
unsigned i = block_idx;
while (ctx.program->blocks[i].loop_nest_depth >= block->loop_nest_depth) {
assert(ctx.program->blocks.size() > i);
loop_demand.update(ctx.program->blocks[i++].register_demand);
}
unsigned loop_end = i;
for (auto spilled : ctx.spills_exit[block_idx - 1]) {
auto it = next_use_distances.find(spilled.first);
/* variable is not live at loop entry: probably a phi operand */
if (it == next_use_distances.end())
continue;
/* keep constants and live-through variables spilled */
if (it->second.first >= loop_end || ctx.remat.count(spilled.first)) {
ctx.spills_entry[block_idx][spilled.first] = spilled.second;
spilled_registers += spilled.first;
loop_demand -= spilled.first;
}
}
/* select live-through variables and constants */
RegType type = RegType::vgpr;
while (loop_demand.exceeds(ctx.target_pressure)) {
/* if VGPR demand is low enough, select SGPRs */
if (type == RegType::vgpr && loop_demand.vgpr <= ctx.target_pressure.vgpr)
type = RegType::sgpr;
/* if SGPR demand is low enough, break */
if (type == RegType::sgpr && loop_demand.sgpr <= ctx.target_pressure.sgpr)
break;
unsigned distance = 0;
Temp to_spill;
for (const std::pair<const Temp, std::pair<uint32_t, uint32_t>>& pair :
next_use_distances) {
if (pair.first.type() == type &&
(pair.second.first >= loop_end ||
(ctx.remat.count(pair.first) && type == RegType::sgpr)) &&
pair.second.second > distance && !ctx.spills_entry[block_idx].count(pair.first)) {
to_spill = pair.first;
distance = pair.second.second;
}
}
/* select SGPRs or break */
if (distance == 0) {
if (type == RegType::sgpr)
break;
type = RegType::sgpr;
continue;
}
uint32_t spill_id;
if (!ctx.spills_exit[block_idx - 1].count(to_spill)) {
spill_id = ctx.allocate_spill_id(to_spill.regClass());
} else {
spill_id = ctx.spills_exit[block_idx - 1][to_spill];
}
ctx.spills_entry[block_idx][to_spill] = spill_id;
spilled_registers += to_spill;
loop_demand -= to_spill;
}
/* shortcut */
if (!loop_demand.exceeds(ctx.target_pressure))
return spilled_registers;
/* if reg pressure is too high at beginning of loop, add variables with furthest use */
reg_pressure -= spilled_registers;
while (reg_pressure.exceeds(ctx.target_pressure)) {
unsigned distance = 0;
Temp to_spill;
type = reg_pressure.vgpr > ctx.target_pressure.vgpr ? RegType::vgpr : RegType::sgpr;
for (const std::pair<const Temp, std::pair<uint32_t, uint32_t>>& pair :
next_use_distances) {
if (pair.first.type() == type && pair.second.second > distance &&
!ctx.spills_entry[block_idx].count(pair.first)) {
to_spill = pair.first;
distance = pair.second.second;
}
}
assert(distance != 0);
ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
spilled_registers += to_spill;
reg_pressure -= to_spill;
}
return spilled_registers;
}
/* branch block */
if (block->linear_preds.size() == 1 && !(block->kind & block_kind_loop_exit)) {
/* keep variables spilled if they are alive and not used in the current block */
unsigned pred_idx = block->linear_preds[0];
for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
if (pair.first.type() != RegType::sgpr) {
continue;
}
auto next_use_distance_it = next_use_distances.find(pair.first);
if (next_use_distance_it != next_use_distances.end() &&
next_use_distance_it->second.first != block_idx) {
ctx.spills_entry[block_idx].insert(pair);
spilled_registers.sgpr += pair.first.size();
}
}
if (block->logical_preds.size() == 1) {
pred_idx = block->logical_preds[0];
for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
if (pair.first.type() != RegType::vgpr) {
continue;
}
auto next_use_distance_it = next_use_distances.find(pair.first);
if (next_use_distance_it != next_use_distances.end() &&
next_use_distance_it->second.first != block_idx) {
ctx.spills_entry[block_idx].insert(pair);
spilled_registers.vgpr += pair.first.size();
}
}
}
/* if register demand is still too high, we just keep all spilled live vars
* and process the block */
if (block->register_demand.sgpr - spilled_registers.sgpr > ctx.target_pressure.sgpr) {
pred_idx = block->linear_preds[0];
for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
if (pair.first.type() == RegType::sgpr && next_use_distances.count(pair.first) &&
ctx.spills_entry[block_idx].insert(pair).second) {
spilled_registers.sgpr += pair.first.size();
}
}
}
if (block->register_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr &&
block->logical_preds.size() == 1) {
pred_idx = block->logical_preds[0];
for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
if (pair.first.type() == RegType::vgpr && next_use_distances.count(pair.first) &&
ctx.spills_entry[block_idx].insert(pair).second) {
spilled_registers.vgpr += pair.first.size();
}
}
}
return spilled_registers;
}
/* else: merge block */
std::set<Temp> partial_spills;
/* keep variables spilled on all incoming paths */
for (const std::pair<const Temp, std::pair<uint32_t, uint32_t>>& pair : next_use_distances) {
std::vector<unsigned>& preds =
pair.first.is_linear() ? block->linear_preds : block->logical_preds;
/* If it can be rematerialized, keep the variable spilled if all predecessors do not reload
* it. Otherwise, if any predecessor reloads it, ensure it's reloaded on all other
* predecessors. The idea is that it's better in practice to rematerialize redundantly than to
* create lots of phis. */
/* TODO: test this idea with more than Dawn of War III shaders (the current pipeline-db
* doesn't seem to exercise this path much) */
bool remat = ctx.remat.count(pair.first);
bool spill = !remat;
uint32_t spill_id = 0;
for (unsigned pred_idx : preds) {
/* variable is not even live at the predecessor: probably from a phi */
if (!ctx.next_use_distances_end[pred_idx].count(pair.first)) {
spill = false;
break;
}
if (!ctx.spills_exit[pred_idx].count(pair.first)) {
if (!remat)
spill = false;
} else {
partial_spills.insert(pair.first);
/* it might be that on one incoming path, the variable has a different spill_id, but
* add_couple_code() will take care of that. */
spill_id = ctx.spills_exit[pred_idx][pair.first];
if (remat)
spill = true;
}
}
if (spill) {
ctx.spills_entry[block_idx][pair.first] = spill_id;
partial_spills.erase(pair.first);
spilled_registers += pair.first;
}
}
/* same for phis */
for (aco_ptr<Instruction>& phi : block->instructions) {
if (!is_phi(phi))
break;
if (!phi->definitions[0].isTemp())
continue;
std::vector<unsigned>& preds =
phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
bool is_all_spilled = true;
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (phi->operands[i].isUndefined())
continue;
is_all_spilled &= phi->operands[i].isTemp() &&
ctx.spills_exit[preds[i]].count(phi->operands[i].getTemp());
}
if (is_all_spilled) {
/* The phi is spilled at all predecessors. Keep it spilled. */
ctx.spills_entry[block_idx][phi->definitions[0].getTemp()] =
ctx.allocate_spill_id(phi->definitions[0].regClass());
spilled_registers += phi->definitions[0].getTemp();
} else {
/* Phis might increase the register pressure. */
partial_spills.insert(phi->definitions[0].getTemp());
}
}
/* if reg pressure at first instruction is still too high, add partially spilled variables */
RegisterDemand reg_pressure = get_live_in_demand(ctx, block_idx);
reg_pressure -= spilled_registers;
while (reg_pressure.exceeds(ctx.target_pressure)) {
assert(!partial_spills.empty());
std::set<Temp>::iterator it = partial_spills.begin();
Temp to_spill = Temp();
unsigned distance = 0;
RegType type = reg_pressure.vgpr > ctx.target_pressure.vgpr ? RegType::vgpr : RegType::sgpr;
while (it != partial_spills.end()) {
assert(!ctx.spills_entry[block_idx].count(*it));
if (it->type() == type && next_use_distances.at(*it).second > distance) {
distance = next_use_distances.at(*it).second;
to_spill = *it;
}
++it;
}
assert(distance != 0);
ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
partial_spills.erase(to_spill);
spilled_registers += to_spill;
reg_pressure -= to_spill;
}
return spilled_registers;
}
void
add_coupling_code(spill_ctx& ctx, Block* block, unsigned block_idx)
{
/* no coupling code necessary */
if (block->linear_preds.size() == 0)
return;
std::vector<aco_ptr<Instruction>> instructions;
/* branch block: TODO take other branch into consideration */
if (block->linear_preds.size() == 1 &&
!(block->kind & (block_kind_loop_exit | block_kind_loop_header))) {
assert(ctx.processed[block->linear_preds[0]]);
assert(ctx.register_demand[block_idx].size() == block->instructions.size());
std::vector<RegisterDemand> reg_demand;
unsigned insert_idx = 0;
RegisterDemand demand_before = get_demand_before(ctx, block_idx, 0);
for (std::pair<const Temp, std::pair<uint32_t, uint32_t>>& live :
ctx.next_use_distances_start[block_idx]) {
const unsigned pred_idx = block->linear_preds[0];
if (!live.first.is_linear())
continue;
/* still spilled */
if (ctx.spills_entry[block_idx].count(live.first))
continue;
/* in register at end of predecessor */
auto spills_exit_it = ctx.spills_exit[pred_idx].find(live.first);
if (spills_exit_it == ctx.spills_exit[pred_idx].end()) {
std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(live.first);
if (it != ctx.renames[pred_idx].end())
ctx.renames[block_idx].insert(*it);
continue;
}
/* variable is spilled at predecessor and live at current block: create reload instruction */
Temp new_name = ctx.program->allocateTmp(live.first.regClass());
aco_ptr<Instruction> reload = do_reload(ctx, live.first, new_name, spills_exit_it->second);
instructions.emplace_back(std::move(reload));
reg_demand.push_back(demand_before);
ctx.renames[block_idx][live.first] = new_name;
}
if (block->logical_preds.size() == 1) {
do {
assert(insert_idx < block->instructions.size());
instructions.emplace_back(std::move(block->instructions[insert_idx]));
reg_demand.push_back(ctx.register_demand[block_idx][insert_idx]);
insert_idx++;
} while (instructions.back()->opcode != aco_opcode::p_logical_start);
unsigned pred_idx = block->logical_preds[0];
for (std::pair<const Temp, std::pair<uint32_t, uint32_t>>& live :
ctx.next_use_distances_start[block_idx]) {
if (live.first.is_linear())
continue;
/* still spilled */
if (ctx.spills_entry[block_idx].count(live.first))
continue;
/* in register at end of predecessor */
auto spills_exit_it = ctx.spills_exit[pred_idx].find(live.first);
if (spills_exit_it == ctx.spills_exit[pred_idx].end()) {
std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(live.first);
if (it != ctx.renames[pred_idx].end())
ctx.renames[block_idx].insert(*it);
continue;
}
/* variable is spilled at predecessor and live at current block:
* create reload instruction */
Temp new_name = ctx.program->allocateTmp(live.first.regClass());
aco_ptr<Instruction> reload =
do_reload(ctx, live.first, new_name, spills_exit_it->second);
instructions.emplace_back(std::move(reload));
reg_demand.emplace_back(reg_demand.back());
ctx.renames[block_idx][live.first] = new_name;
}
}
/* combine new reload instructions with original block */
if (!instructions.empty()) {
reg_demand.insert(reg_demand.end(),
std::next(ctx.register_demand[block->index].begin(), insert_idx),
ctx.register_demand[block->index].end());
ctx.register_demand[block_idx] = std::move(reg_demand);
instructions.insert(instructions.end(),
std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(
std::next(block->instructions.begin(), insert_idx)),
std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(
block->instructions.end()));
block->instructions = std::move(instructions);
}
return;
}
/* loop header and merge blocks: check if all (linear) predecessors have been processed */
for (ASSERTED unsigned pred : block->linear_preds)
assert(ctx.processed[pred]);
/* iterate the phi nodes for which operands to spill at the predecessor */
for (aco_ptr<Instruction>& phi : block->instructions) {
if (!is_phi(phi))
break;
/* if the phi is not spilled, add to instructions */
if (!phi->definitions[0].isTemp() ||
!ctx.spills_entry[block_idx].count(phi->definitions[0].getTemp())) {
instructions.emplace_back(std::move(phi));
continue;
}
std::vector<unsigned>& preds =
phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
uint32_t def_spill_id = ctx.spills_entry[block_idx][phi->definitions[0].getTemp()];
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (phi->operands[i].isUndefined())
continue;
unsigned pred_idx = preds[i];
Operand spill_op = phi->operands[i];
if (spill_op.isTemp()) {
assert(phi->operands[i].isKill());
Temp var = phi->operands[i].getTemp();
std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var);
/* prevent the definining instruction from being DCE'd if it could be rematerialized */
if (rename_it == ctx.renames[preds[i]].end() && ctx.remat.count(var))
ctx.unused_remats.erase(ctx.remat[var].instr);
/* check if variable is already spilled at predecessor */
auto spilled = ctx.spills_exit[pred_idx].find(var);
if (spilled != ctx.spills_exit[pred_idx].end()) {
if (spilled->second != def_spill_id)
ctx.add_affinity(def_spill_id, spilled->second);
continue;
}
/* rename if necessary */
if (rename_it != ctx.renames[pred_idx].end()) {
spill_op.setTemp(rename_it->second);
ctx.renames[pred_idx].erase(rename_it);
}
}
uint32_t spill_id = ctx.allocate_spill_id(phi->definitions[0].regClass());
/* add interferences and affinity */
for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx])
ctx.add_interference(spill_id, pair.second);
ctx.add_affinity(def_spill_id, spill_id);
aco_ptr<Pseudo_instruction> spill{
create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
spill->operands[0] = spill_op;
spill->operands[1] = Operand::c32(spill_id);
Block& pred = ctx.program->blocks[pred_idx];
unsigned idx = pred.instructions.size();
do {
assert(idx != 0);
idx--;
} while (phi->opcode == aco_opcode::p_phi &&
pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
pred.instructions.insert(it, std::move(spill));
/* Add the original name to predecessor's spilled variables */
if (spill_op.isTemp())
ctx.spills_exit[pred_idx][phi->operands[i].getTemp()] = spill_id;
}
/* remove phi from instructions */
phi.reset();
}
/* iterate all (other) spilled variables for which to spill at the predecessor */
// TODO: would be better to have them sorted: first vgprs and first with longest distance
for (std::pair<Temp, uint32_t> pair : ctx.spills_entry[block_idx]) {
std::vector<unsigned> preds =
pair.first.is_linear() ? block->linear_preds : block->logical_preds;
for (unsigned pred_idx : preds) {
/* variable is already spilled at predecessor */
auto spilled = ctx.spills_exit[pred_idx].find(pair.first);
if (spilled != ctx.spills_exit[pred_idx].end()) {
if (spilled->second != pair.second)
ctx.add_affinity(pair.second, spilled->second);
continue;
}
/* variable is dead at predecessor, it must be from a phi: this works because of CSSA form */
if (!ctx.next_use_distances_end[pred_idx].count(pair.first))
continue;
/* add interferences between spilled variable and predecessors exit spills */
for (std::pair<Temp, uint32_t> exit_spill : ctx.spills_exit[pred_idx]) {
if (exit_spill.first == pair.first)
continue;
ctx.add_interference(exit_spill.second, pair.second);
}
/* variable is in register at predecessor and has to be spilled */
/* rename if necessary */
Temp var = pair.first;
std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var);
if (rename_it != ctx.renames[pred_idx].end()) {
var = rename_it->second;
ctx.renames[pred_idx].erase(rename_it);
}
aco_ptr<Pseudo_instruction> spill{
create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
spill->operands[0] = Operand(var);
spill->operands[1] = Operand::c32(pair.second);
Block& pred = ctx.program->blocks[pred_idx];
unsigned idx = pred.instructions.size();
do {
assert(idx != 0);
idx--;
} while (pair.first.type() == RegType::vgpr &&
pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
pred.instructions.insert(it, std::move(spill));
ctx.spills_exit[pred.index][pair.first] = pair.second;
}
}
/* iterate phis for which operands to reload */
for (aco_ptr<Instruction>& phi : instructions) {
assert(phi->opcode == aco_opcode::p_phi || phi->opcode == aco_opcode::p_linear_phi);
assert(!phi->definitions[0].isTemp() ||
!ctx.spills_entry[block_idx].count(phi->definitions[0].getTemp()));
std::vector<unsigned>& preds =
phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (!phi->operands[i].isTemp())
continue;
unsigned pred_idx = preds[i];
/* if the operand was reloaded, rename */
if (!ctx.spills_exit[pred_idx].count(phi->operands[i].getTemp())) {
std::map<Temp, Temp>::iterator it =
ctx.renames[pred_idx].find(phi->operands[i].getTemp());
if (it != ctx.renames[pred_idx].end()) {
phi->operands[i].setTemp(it->second);
/* prevent the definining instruction from being DCE'd if it could be rematerialized */
} else {
auto remat_it = ctx.remat.find(phi->operands[i].getTemp());
if (remat_it != ctx.remat.end()) {
ctx.unused_remats.erase(remat_it->second.instr);
}
}
continue;
}
Temp tmp = phi->operands[i].getTemp();
/* reload phi operand at end of predecessor block */
Temp new_name = ctx.program->allocateTmp(tmp.regClass());
Block& pred = ctx.program->blocks[pred_idx];
unsigned idx = pred.instructions.size();
do {
assert(idx != 0);
idx--;
} while (phi->opcode == aco_opcode::p_phi &&
pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
aco_ptr<Instruction> reload =
do_reload(ctx, tmp, new_name, ctx.spills_exit[pred_idx][tmp]);
/* reload spilled exec mask directly to exec */
if (!phi->definitions[0].isTemp()) {
assert(phi->definitions[0].isFixed() && phi->definitions[0].physReg() == exec);
reload->definitions[0] = phi->definitions[0];
phi->operands[i] = Operand(exec, ctx.program->lane_mask);
} else {
ctx.spills_exit[pred_idx].erase(tmp);
ctx.renames[pred_idx][tmp] = new_name;
phi->operands[i].setTemp(new_name);
}
pred.instructions.insert(it, std::move(reload));
}
}
/* iterate live variables for which to reload */
// TODO: reload at current block if variable is spilled on all predecessors
for (std::pair<const Temp, std::pair<uint32_t, uint32_t>>& pair :
ctx.next_use_distances_start[block_idx]) {
/* skip spilled variables */
if (ctx.spills_entry[block_idx].count(pair.first))
continue;
std::vector<unsigned> preds =
pair.first.is_linear() ? block->linear_preds : block->logical_preds;
/* variable is dead at predecessor, it must be from a phi */
bool is_dead = false;
for (unsigned pred_idx : preds) {
if (!ctx.next_use_distances_end[pred_idx].count(pair.first))
is_dead = true;
}
if (is_dead)
continue;
for (unsigned pred_idx : preds) {
/* the variable is not spilled at the predecessor */
if (!ctx.spills_exit[pred_idx].count(pair.first))
continue;
/* variable is spilled at predecessor and has to be reloaded */
Temp new_name = ctx.program->allocateTmp(pair.first.regClass());
Block& pred = ctx.program->blocks[pred_idx];
unsigned idx = pred.instructions.size();
do {
assert(idx != 0);
idx--;
} while (pair.first.type() == RegType::vgpr &&
pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
aco_ptr<Instruction> reload =
do_reload(ctx, pair.first, new_name, ctx.spills_exit[pred.index][pair.first]);
pred.instructions.insert(it, std::move(reload));
ctx.spills_exit[pred.index].erase(pair.first);
ctx.renames[pred.index][pair.first] = new_name;
}
/* check if we have to create a new phi for this variable */
Temp rename = Temp();
bool is_same = true;
for (unsigned pred_idx : preds) {
if (!ctx.renames[pred_idx].count(pair.first)) {
if (rename == Temp())
rename = pair.first;
else
is_same = rename == pair.first;
} else {
if (rename == Temp())
rename = ctx.renames[pred_idx][pair.first];
else
is_same = rename == ctx.renames[pred_idx][pair.first];
}
if (!is_same)
break;
}
if (!is_same) {
/* the variable was renamed differently in the predecessors: we have to create a phi */
aco_opcode opcode = pair.first.is_linear() ? aco_opcode::p_linear_phi : aco_opcode::p_phi;
aco_ptr<Pseudo_instruction> phi{
create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, preds.size(), 1)};
rename = ctx.program->allocateTmp(pair.first.regClass());
for (unsigned i = 0; i < phi->operands.size(); i++) {
Temp tmp;
if (ctx.renames[preds[i]].count(pair.first)) {
tmp = ctx.renames[preds[i]][pair.first];
} else if (preds[i] >= block_idx) {
tmp = rename;
} else {
tmp = pair.first;
/* prevent the definining instruction from being DCE'd if it could be rematerialized */
if (ctx.remat.count(tmp))
ctx.unused_remats.erase(ctx.remat[tmp].instr);
}
phi->operands[i] = Operand(tmp);
}
phi->definitions[0] = Definition(rename);
instructions.emplace_back(std::move(phi));
}
/* the variable was renamed: add new name to renames */
if (!(rename == Temp() || rename == pair.first))
ctx.renames[block_idx][pair.first] = rename;
}
/* combine phis with instructions */
unsigned idx = 0;
while (!block->instructions[idx]) {
idx++;
}
if (!ctx.processed[block_idx]) {
assert(!(block->kind & block_kind_loop_header));
RegisterDemand demand_before = get_demand_before(ctx, block_idx, idx);
ctx.register_demand[block->index].erase(ctx.register_demand[block->index].begin(),
ctx.register_demand[block->index].begin() + idx);
ctx.register_demand[block->index].insert(ctx.register_demand[block->index].begin(),
instructions.size(), demand_before);
}
std::vector<aco_ptr<Instruction>>::iterator start = std::next(block->instructions.begin(), idx);
instructions.insert(
instructions.end(), std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(start),
std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
block->instructions = std::move(instructions);
}
void
process_block(spill_ctx& ctx, unsigned block_idx, Block* block, RegisterDemand spilled_registers)
{
assert(!ctx.processed[block_idx]);
std::vector<aco_ptr<Instruction>> instructions;
unsigned idx = 0;
/* phis are handled separetely */
while (block->instructions[idx]->opcode == aco_opcode::p_phi ||
block->instructions[idx]->opcode == aco_opcode::p_linear_phi) {
instructions.emplace_back(std::move(block->instructions[idx++]));
}
if (block->register_demand.exceeds(ctx.target_pressure)) {
update_local_next_uses(ctx, block, ctx.local_next_use_distance);
} else {
/* We won't use local_next_use_distance, so no initialization needed */
}
auto& current_spills = ctx.spills_exit[block_idx];
while (idx < block->instructions.size()) {
aco_ptr<Instruction>& instr = block->instructions[idx];
std::map<Temp, std::pair<Temp, uint32_t>> reloads;
/* rename and reload operands */
for (Operand& op : instr->operands) {
if (!op.isTemp())
continue;
if (!current_spills.count(op.getTemp())) {
/* the Operand is in register: check if it was renamed */
auto rename_it = ctx.renames[block_idx].find(op.getTemp());
if (rename_it != ctx.renames[block_idx].end()) {
op.setTemp(rename_it->second);
} else {
/* prevent its definining instruction from being DCE'd if it could be rematerialized */
auto remat_it = ctx.remat.find(op.getTemp());
if (remat_it != ctx.remat.end()) {
ctx.unused_remats.erase(remat_it->second.instr);
}
}
continue;
}
/* the Operand is spilled: add it to reloads */
Temp new_tmp = ctx.program->allocateTmp(op.regClass());
ctx.renames[block_idx][op.getTemp()] = new_tmp;
reloads[new_tmp] = std::make_pair(op.getTemp(), current_spills[op.getTemp()]);
current_spills.erase(op.getTemp());
op.setTemp(new_tmp);
spilled_registers -= new_tmp;
}
/* check if register demand is low enough before and after the current instruction */
if (block->register_demand.exceeds(ctx.target_pressure)) {
RegisterDemand new_demand = ctx.register_demand[block_idx][idx];
new_demand.update(get_demand_before(ctx, block_idx, idx));
assert(!ctx.local_next_use_distance.empty());
/* if reg pressure is too high, spill variable with furthest next use */
while ((new_demand - spilled_registers).exceeds(ctx.target_pressure)) {
unsigned distance = 0;
Temp to_spill;
bool do_rematerialize = false;
RegType type = RegType::sgpr;
if (new_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr)
type = RegType::vgpr;
for (std::pair<Temp, uint32_t> pair : ctx.local_next_use_distance[idx]) {
if (pair.first.type() != type)
continue;
bool can_rematerialize = ctx.remat.count(pair.first);
if (((pair.second > distance && can_rematerialize == do_rematerialize) ||
(can_rematerialize && !do_rematerialize && pair.second > idx)) &&
!current_spills.count(pair.first)) {
to_spill = pair.first;
distance = pair.second;
do_rematerialize = can_rematerialize;
}
}
assert(distance != 0 && distance > idx);
uint32_t spill_id = ctx.allocate_spill_id(to_spill.regClass());
/* add interferences with currently spilled variables */
for (std::pair<Temp, uint32_t> pair : current_spills)
ctx.add_interference(spill_id, pair.second);
for (std::pair<const Temp, std::pair<Temp, uint32_t>>& pair : reloads)
ctx.add_interference(spill_id, pair.second.second);
current_spills[to_spill] = spill_id;
spilled_registers += to_spill;
/* rename if necessary */
if (ctx.renames[block_idx].count(to_spill)) {
to_spill = ctx.renames[block_idx][to_spill];
}
/* add spill to new instructions */
aco_ptr<Pseudo_instruction> spill{
create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
spill->operands[0] = Operand(to_spill);
spill->operands[1] = Operand::c32(spill_id);
instructions.emplace_back(std::move(spill));
}
}
/* add reloads and instruction to new instructions */
for (std::pair<const Temp, std::pair<Temp, uint32_t>>& pair : reloads) {
aco_ptr<Instruction> reload =
do_reload(ctx, pair.second.first, pair.first, pair.second.second);
instructions.emplace_back(std::move(reload));
}
instructions.emplace_back(std::move(instr));
idx++;
}
block->instructions = std::move(instructions);
}
void
spill_block(spill_ctx& ctx, unsigned block_idx)
{
Block* block = &ctx.program->blocks[block_idx];
/* determine set of variables which are spilled at the beginning of the block */
RegisterDemand spilled_registers = init_live_in_vars(ctx, block, block_idx);
/* add interferences for spilled variables */
for (auto it = ctx.spills_entry[block_idx].begin(); it != ctx.spills_entry[block_idx].end();
++it) {
for (auto it2 = std::next(it); it2 != ctx.spills_entry[block_idx].end(); ++it2)
ctx.add_interference(it->second, it2->second);
}
bool is_loop_header = block->loop_nest_depth && ctx.loop_header.top()->index == block_idx;
if (!is_loop_header) {
/* add spill/reload code on incoming control flow edges */
add_coupling_code(ctx, block, block_idx);
}
const auto& current_spills = ctx.spills_entry[block_idx];
/* check conditions to process this block */
bool process = (block->register_demand - spilled_registers).exceeds(ctx.target_pressure) ||
!ctx.renames[block_idx].empty() || ctx.unused_remats.size();
for (auto it = current_spills.begin(); !process && it != current_spills.end(); ++it) {
if (ctx.next_use_distances_start[block_idx].at(it->first).first == block_idx)
process = true;
}
assert(ctx.spills_exit[block_idx].empty());
ctx.spills_exit[block_idx] = current_spills;
if (process) {
process_block(ctx, block_idx, block, spilled_registers);
}
ctx.processed[block_idx] = true;
/* check if the next block leaves the current loop */
if (block->loop_nest_depth == 0 ||
ctx.program->blocks[block_idx + 1].loop_nest_depth >= block->loop_nest_depth)
return;
Block* loop_header = ctx.loop_header.top();
/* preserve original renames at end of loop header block */
std::map<Temp, Temp> renames = std::move(ctx.renames[loop_header->index]);
/* add coupling code to all loop header predecessors */
add_coupling_code(ctx, loop_header, loop_header->index);
/* propagate new renames through loop: i.e. repair the SSA */
renames.swap(ctx.renames[loop_header->index]);
for (std::pair<Temp, Temp> rename : renames) {
for (unsigned idx = loop_header->index; idx <= block_idx; idx++) {
Block& current = ctx.program->blocks[idx];
std::vector<aco_ptr<Instruction>>::iterator instr_it = current.instructions.begin();
/* first rename phis */
while (instr_it != current.instructions.end()) {
aco_ptr<Instruction>& phi = *instr_it;
if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
break;
/* no need to rename the loop header phis once again. this happened in
* add_coupling_code() */
if (idx == loop_header->index) {
instr_it++;
continue;
}
for (Operand& op : phi->operands) {
if (!op.isTemp())
continue;
if (op.getTemp() == rename.first)
op.setTemp(rename.second);
}
instr_it++;
}
/* variable is not live at beginning of this block */
if (ctx.next_use_distances_start[idx].count(rename.first) == 0)
continue;
/* if the variable is live at the block's exit, add rename */
if (ctx.next_use_distances_end[idx].count(rename.first) != 0)
ctx.renames[idx].insert(rename);
/* rename all uses in this block */
bool renamed = false;
while (!renamed && instr_it != current.instructions.end()) {
aco_ptr<Instruction>& instr = *instr_it;
for (Operand& op : instr->operands) {
if (!op.isTemp())
continue;
if (op.getTemp() == rename.first) {
op.setTemp(rename.second);
/* we can stop with this block as soon as the variable is spilled */
if (instr->opcode == aco_opcode::p_spill)
renamed = true;
}
}
instr_it++;
}
}
}
/* remove loop header info from stack */
ctx.loop_header.pop();
}
Temp
load_scratch_resource(spill_ctx& ctx, Temp& scratch_offset, Block& block,
std::vector<aco_ptr<Instruction>>& instructions, unsigned offset)
{
Builder bld(ctx.program);
if (block.kind & block_kind_top_level) {
bld.reset(&instructions);
} else {
for (int block_idx = block.index; block_idx >= 0; block_idx--) {
if (!(ctx.program->blocks[block_idx].kind & block_kind_top_level))
continue;
/* find p_logical_end */
std::vector<aco_ptr<Instruction>>& prev_instructions = ctx.program->blocks[block_idx].instructions;
unsigned idx = prev_instructions.size() - 1;
while (prev_instructions[idx]->opcode != aco_opcode::p_logical_end)
idx--;
bld.reset(&prev_instructions, std::next(prev_instructions.begin(), idx));
break;
}
}
/* GFX9+ uses scratch_* instructions, which don't use a resource. Return a SADDR instead. */
if (ctx.program->gfx_level >= GFX9)
return bld.copy(bld.def(s1), Operand::c32(offset));
Temp private_segment_buffer = ctx.program->private_segment_buffer;
if (ctx.program->stage.hw != HWStage::CS)
private_segment_buffer =
bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, Operand::zero());
if (offset)
scratch_offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc),
scratch_offset, Operand::c32(offset));
uint32_t rsrc_conf =
S_008F0C_ADD_TID_ENABLE(1) | S_008F0C_INDEX_STRIDE(ctx.program->wave_size == 64 ? 3 : 2);
if (ctx.program->gfx_level >= GFX10) {
rsrc_conf |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(ctx.program->gfx_level < GFX11);
} else if (ctx.program->gfx_level <= GFX7) {
/* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
/* older generations need element size = 4 bytes. element size removed in GFX9 */
if (ctx.program->gfx_level <= GFX8)
rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer,
Operand::c32(-1u), Operand::c32(rsrc_conf));
}
void
setup_vgpr_spill_reload(spill_ctx& ctx, Block& block,
std::vector<aco_ptr<Instruction>>& instructions, uint32_t spill_slot,
unsigned* offset)
{
Temp scratch_offset = ctx.program->scratch_offset;
*offset = spill_slot * 4;
if (ctx.program->gfx_level >= GFX9) {
*offset += ctx.program->dev.scratch_global_offset_min;
if (ctx.scratch_rsrc == Temp()) {
int32_t saddr = ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size -
ctx.program->dev.scratch_global_offset_min;
ctx.scratch_rsrc =
load_scratch_resource(ctx, scratch_offset, block, instructions, saddr);
}
} else {
bool add_offset_to_sgpr =
ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size +
ctx.vgpr_spill_slots * 4 >
4096;
if (!add_offset_to_sgpr)
*offset += ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size;
if (ctx.scratch_rsrc == Temp()) {
unsigned rsrc_offset =
add_offset_to_sgpr ? ctx.program->config->scratch_bytes_per_wave : 0;
ctx.scratch_rsrc =
load_scratch_resource(ctx, scratch_offset, block, instructions, rsrc_offset);
}
}
}
void
spill_vgpr(spill_ctx& ctx, Block& block, std::vector<aco_ptr<Instruction>>& instructions,
aco_ptr<Instruction>& spill, std::vector<uint32_t>& slots)
{
ctx.program->config->spilled_vgprs += spill->operands[0].size();
uint32_t spill_id = spill->operands[1].constantValue();
uint32_t spill_slot = slots[spill_id];
unsigned offset;
setup_vgpr_spill_reload(ctx, block, instructions, spill_slot, &offset);
assert(spill->operands[0].isTemp());
Temp temp = spill->operands[0].getTemp();
assert(temp.type() == RegType::vgpr && !temp.is_linear());
Builder bld(ctx.program, &instructions);
if (temp.size() > 1) {
Instruction* split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
Format::PSEUDO, 1, temp.size())};
split->operands[0] = Operand(temp);
for (unsigned i = 0; i < temp.size(); i++)
split->definitions[i] = bld.def(v1);
bld.insert(split);
for (unsigned i = 0; i < temp.size(); i++, offset += 4) {
Temp elem = split->definitions[i].getTemp();
if (ctx.program->gfx_level >= GFX9) {
bld.scratch(aco_opcode::scratch_store_dword, Operand(v1), ctx.scratch_rsrc, elem,
offset, memory_sync_info(storage_vgpr_spill, semantic_private));
} else {
Instruction* instr =
bld.mubuf(aco_opcode::buffer_store_dword, ctx.scratch_rsrc, Operand(v1),
ctx.program->scratch_offset, elem, offset, false, true);
instr->mubuf().sync = memory_sync_info(storage_vgpr_spill, semantic_private);
}
}
} else if (ctx.program->gfx_level >= GFX9) {
bld.scratch(aco_opcode::scratch_store_dword, Operand(v1), ctx.scratch_rsrc, temp, offset,
memory_sync_info(storage_vgpr_spill, semantic_private));
} else {
Instruction* instr = bld.mubuf(aco_opcode::buffer_store_dword, ctx.scratch_rsrc, Operand(v1),
ctx.program->scratch_offset, temp, offset, false, true);
instr->mubuf().sync = memory_sync_info(storage_vgpr_spill, semantic_private);
}
}
void
reload_vgpr(spill_ctx& ctx, Block& block, std::vector<aco_ptr<Instruction>>& instructions,
aco_ptr<Instruction>& reload, std::vector<uint32_t>& slots)
{
uint32_t spill_id = reload->operands[0].constantValue();
uint32_t spill_slot = slots[spill_id];
unsigned offset;
setup_vgpr_spill_reload(ctx, block, instructions, spill_slot, &offset);
Definition def = reload->definitions[0];
Builder bld(ctx.program, &instructions);
if (def.size() > 1) {
Instruction* vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
Format::PSEUDO, def.size(), 1)};
vec->definitions[0] = def;
for (unsigned i = 0; i < def.size(); i++, offset += 4) {
Temp tmp = bld.tmp(v1);
vec->operands[i] = Operand(tmp);
if (ctx.program->gfx_level >= GFX9) {
bld.scratch(aco_opcode::scratch_load_dword, Definition(tmp), Operand(v1),
ctx.scratch_rsrc, offset,
memory_sync_info(storage_vgpr_spill, semantic_private));
} else {
Instruction* instr =
bld.mubuf(aco_opcode::buffer_load_dword, Definition(tmp), ctx.scratch_rsrc,
Operand(v1), ctx.program->scratch_offset, offset, false, true);
instr->mubuf().sync = memory_sync_info(storage_vgpr_spill, semantic_private);
}
}
bld.insert(vec);
} else if (ctx.program->gfx_level >= GFX9) {
bld.scratch(aco_opcode::scratch_load_dword, def, Operand(v1), ctx.scratch_rsrc, offset,
memory_sync_info(storage_vgpr_spill, semantic_private));
} else {
Instruction* instr = bld.mubuf(aco_opcode::buffer_load_dword, def, ctx.scratch_rsrc,
Operand(v1), ctx.program->scratch_offset, offset, false, true);
instr->mubuf().sync = memory_sync_info(storage_vgpr_spill, semantic_private);
}
}
void
add_interferences(spill_ctx& ctx, std::vector<bool>& is_assigned, std::vector<uint32_t>& slots,
std::vector<bool>& slots_used, unsigned id)
{
for (unsigned other : ctx.interferences[id].second) {
if (!is_assigned[other])
continue;
RegClass other_rc = ctx.interferences[other].first;
unsigned slot = slots[other];
std::fill(slots_used.begin() + slot, slots_used.begin() + slot + other_rc.size(), true);
}
}
unsigned
find_available_slot(std::vector<bool>& used, unsigned wave_size, unsigned size, bool is_sgpr)
{
unsigned wave_size_minus_one = wave_size - 1;
unsigned slot = 0;
while (true) {
bool available = true;
for (unsigned i = 0; i < size; i++) {
if (slot + i < used.size() && used[slot + i]) {
available = false;
break;
}
}
if (!available) {
slot++;
continue;
}
if (is_sgpr && ((slot & wave_size_minus_one) > wave_size - size)) {
slot = align(slot, wave_size);
continue;
}
std::fill(used.begin(), used.end(), false);
if (slot + size > used.size())
used.resize(slot + size);
return slot;
}
}
void
assign_spill_slots_helper(spill_ctx& ctx, RegType type, std::vector<bool>& is_assigned,
std::vector<uint32_t>& slots, unsigned* num_slots)
{
std::vector<bool> slots_used;
/* assign slots for ids with affinities first */
for (std::vector<uint32_t>& vec : ctx.affinities) {
if (ctx.interferences[vec[0]].first.type() != type)
continue;
for (unsigned id : vec) {
if (!ctx.is_reloaded[id])
continue;
add_interferences(ctx, is_assigned, slots, slots_used, id);
}
unsigned slot = find_available_slot(
slots_used, ctx.wave_size, ctx.interferences[vec[0]].first.size(), type == RegType::sgpr);
for (unsigned id : vec) {
assert(!is_assigned[id]);
if (ctx.is_reloaded[id]) {
slots[id] = slot;
is_assigned[id] = true;
}
}
}
/* assign slots for ids without affinities */
for (unsigned id = 0; id < ctx.interferences.size(); id++) {
if (is_assigned[id] || !ctx.is_reloaded[id] || ctx.interferences[id].first.type() != type)
continue;
add_interferences(ctx, is_assigned, slots, slots_used, id);
unsigned slot = find_available_slot(
slots_used, ctx.wave_size, ctx.interferences[id].first.size(), type == RegType::sgpr);
slots[id] = slot;
is_assigned[id] = true;
}
*num_slots = slots_used.size();
}
void
end_unused_spill_vgprs(spill_ctx& ctx, Block& block, std::vector<Temp>& vgpr_spill_temps,
const std::vector<uint32_t>& slots,
const std::unordered_map<Temp, uint32_t>& spills)
{
std::vector<bool> is_used(vgpr_spill_temps.size());
for (std::pair<Temp, uint32_t> pair : spills) {
if (pair.first.type() == RegType::sgpr && ctx.is_reloaded[pair.second])
is_used[slots[pair.second] / ctx.wave_size] = true;
}
std::vector<Temp> temps;
for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
if (vgpr_spill_temps[i].id() && !is_used[i]) {
temps.push_back(vgpr_spill_temps[i]);
vgpr_spill_temps[i] = Temp();
}
}
if (temps.empty())
return;
aco_ptr<Instruction> destr{create_instruction<Pseudo_instruction>(
aco_opcode::p_end_linear_vgpr, Format::PSEUDO, temps.size(), 0)};
for (unsigned i = 0; i < temps.size(); i++)
destr->operands[i] = Operand(temps[i]);
std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin();
while (is_phi(*it))
++it;
block.instructions.insert(it, std::move(destr));
}
void
assign_spill_slots(spill_ctx& ctx, unsigned spills_to_vgpr)
{
std::vector<uint32_t> slots(ctx.interferences.size());
std::vector<bool> is_assigned(ctx.interferences.size());
/* first, handle affinities: just merge all interferences into both spill ids */
for (std::vector<uint32_t>& vec : ctx.affinities) {
for (unsigned i = 0; i < vec.size(); i++) {
for (unsigned j = i + 1; j < vec.size(); j++) {
assert(vec[i] != vec[j]);
bool reloaded = ctx.is_reloaded[vec[i]] || ctx.is_reloaded[vec[j]];
ctx.is_reloaded[vec[i]] = reloaded;
ctx.is_reloaded[vec[j]] = reloaded;
}
}
}
for (ASSERTED uint32_t i = 0; i < ctx.interferences.size(); i++)
for (ASSERTED uint32_t id : ctx.interferences[i].second)
assert(i != id);
/* for each spill slot, assign as many spill ids as possible */
assign_spill_slots_helper(ctx, RegType::sgpr, is_assigned, slots, &ctx.sgpr_spill_slots);
assign_spill_slots_helper(ctx, RegType::vgpr, is_assigned, slots, &ctx.vgpr_spill_slots);
for (unsigned id = 0; id < is_assigned.size(); id++)
assert(is_assigned[id] || !ctx.is_reloaded[id]);
for (std::vector<uint32_t>& vec : ctx.affinities) {
for (unsigned i = 0; i < vec.size(); i++) {
for (unsigned j = i + 1; j < vec.size(); j++) {
assert(is_assigned[vec[i]] == is_assigned[vec[j]]);
if (!is_assigned[vec[i]])
continue;
assert(ctx.is_reloaded[vec[i]] == ctx.is_reloaded[vec[j]]);
assert(ctx.interferences[vec[i]].first.type() ==
ctx.interferences[vec[j]].first.type());
assert(slots[vec[i]] == slots[vec[j]]);
}
}
}
/* hope, we didn't mess up */
std::vector<Temp> vgpr_spill_temps((ctx.sgpr_spill_slots + ctx.wave_size - 1) / ctx.wave_size);
assert(vgpr_spill_temps.size() <= spills_to_vgpr);
/* replace pseudo instructions with actual hardware instructions */
unsigned last_top_level_block_idx = 0;
for (Block& block : ctx.program->blocks) {
if (block.kind & block_kind_top_level && !block.linear_preds.empty()) {
last_top_level_block_idx = block.index;
end_unused_spill_vgprs(ctx, block, vgpr_spill_temps, slots, ctx.spills_entry[block.index]);
}
std::vector<aco_ptr<Instruction>>::iterator it;
std::vector<aco_ptr<Instruction>> instructions;
instructions.reserve(block.instructions.size());
Builder bld(ctx.program, &instructions);
for (it = block.instructions.begin(); it != block.instructions.end(); ++it) {
if ((*it)->opcode == aco_opcode::p_spill) {
uint32_t spill_id = (*it)->operands[1].constantValue();
if (!ctx.is_reloaded[spill_id]) {
/* never reloaded, so don't spill */
} else if (!is_assigned[spill_id]) {
unreachable("No spill slot assigned for spill id");
} else if (ctx.interferences[spill_id].first.type() == RegType::vgpr) {
spill_vgpr(ctx, block, instructions, *it, slots);
} else {
ctx.program->config->spilled_sgprs += (*it)->operands[0].size();
uint32_t spill_slot = slots[spill_id];
/* check if the linear vgpr already exists */
if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) {
Temp linear_vgpr = ctx.program->allocateTmp(v1.as_linear());
vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr;
aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(
aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
create->definitions[0] = Definition(linear_vgpr);
/* find the right place to insert this definition */
if (last_top_level_block_idx == block.index) {
/* insert right before the current instruction */
instructions.emplace_back(std::move(create));
} else {
assert(last_top_level_block_idx < block.index);
/* insert before the branch at last top level block */
std::vector<aco_ptr<Instruction>>& block_instrs =
ctx.program->blocks[last_top_level_block_idx].instructions;
block_instrs.insert(std::prev(block_instrs.end()), std::move(create));
}
}
/* spill sgpr: just add the vgpr temp to operands */
Pseudo_instruction* spill =
create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 3, 0);
spill->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]);
spill->operands[1] = Operand::c32(spill_slot % ctx.wave_size);
spill->operands[2] = (*it)->operands[0];
instructions.emplace_back(aco_ptr<Instruction>(spill));
}
} else if ((*it)->opcode == aco_opcode::p_reload) {
uint32_t spill_id = (*it)->operands[0].constantValue();
assert(ctx.is_reloaded[spill_id]);
if (!is_assigned[spill_id]) {
unreachable("No spill slot assigned for spill id");
} else if (ctx.interferences[spill_id].first.type() == RegType::vgpr) {
reload_vgpr(ctx, block, instructions, *it, slots);
} else {
uint32_t spill_slot = slots[spill_id];
/* check if the linear vgpr already exists */
if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) {
Temp linear_vgpr = ctx.program->allocateTmp(v1.as_linear());
vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr;
aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(
aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
create->definitions[0] = Definition(linear_vgpr);
/* find the right place to insert this definition */
if (last_top_level_block_idx == block.index) {
/* insert right before the current instruction */
instructions.emplace_back(std::move(create));
} else {
assert(last_top_level_block_idx < block.index);
/* insert before the branch at last top level block */
std::vector<aco_ptr<Instruction>>& block_instrs =
ctx.program->blocks[last_top_level_block_idx].instructions;
block_instrs.insert(std::prev(block_instrs.end()), std::move(create));
}
}
/* reload sgpr: just add the vgpr temp to operands */
Pseudo_instruction* reload = create_instruction<Pseudo_instruction>(
aco_opcode::p_reload, Format::PSEUDO, 2, 1);
reload->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]);
reload->operands[1] = Operand::c32(spill_slot % ctx.wave_size);
reload->definitions[0] = (*it)->definitions[0];
instructions.emplace_back(aco_ptr<Instruction>(reload));
}
} else if (!ctx.unused_remats.count(it->get())) {
instructions.emplace_back(std::move(*it));
}
}
block.instructions = std::move(instructions);
}
/* update required scratch memory */
ctx.program->config->scratch_bytes_per_wave +=
align(ctx.vgpr_spill_slots * 4 * ctx.program->wave_size, 1024);
}
} /* end namespace */
void
spill(Program* program, live& live_vars)
{
program->config->spilled_vgprs = 0;
program->config->spilled_sgprs = 0;
program->progress = CompilationProgress::after_spilling;
/* no spilling when register pressure is low enough */
if (program->num_waves > 0)
return;
/* lower to CSSA before spilling to ensure correctness w.r.t. phis */
lower_to_cssa(program, live_vars);
/* calculate target register demand */
const RegisterDemand demand = program->max_reg_demand; /* current max */
const uint16_t sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
const uint16_t vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
uint16_t extra_vgprs = 0;
uint16_t extra_sgprs = 0;
/* calculate extra VGPRs required for spilling SGPRs */
if (demand.sgpr > sgpr_limit) {
unsigned sgpr_spills = demand.sgpr - sgpr_limit;
extra_vgprs = DIV_ROUND_UP(sgpr_spills, program->wave_size) + 1;
}
/* add extra SGPRs required for spilling VGPRs */
if (demand.vgpr + extra_vgprs > vgpr_limit) {
if (program->gfx_level >= GFX9)
extra_sgprs = 1; /* SADDR */
else
extra_sgprs = 5; /* scratch_resource (s4) + scratch_offset (s1) */
if (demand.sgpr + extra_sgprs > sgpr_limit) {
/* re-calculate in case something has changed */
unsigned sgpr_spills = demand.sgpr + extra_sgprs - sgpr_limit;
extra_vgprs = DIV_ROUND_UP(sgpr_spills, program->wave_size) + 1;
}
}
/* the spiller has to target the following register demand */
const RegisterDemand target(vgpr_limit - extra_vgprs, sgpr_limit - extra_sgprs);
/* initialize ctx */
spill_ctx ctx(target, program, live_vars.register_demand);
compute_global_next_uses(ctx);
get_rematerialize_info(ctx);
/* create spills and reloads */
for (unsigned i = 0; i < program->blocks.size(); i++)
spill_block(ctx, i);
/* assign spill slots and DCE rematerialized code */
assign_spill_slots(ctx, extra_vgprs);
/* update live variable information */
live_vars = live_var_analysis(program);
assert(program->num_waves > 0);
}
} // namespace aco