| /* |
| * Copyright © 2018 Valve Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "aco_ir.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <bitset> |
| #include <map> |
| #include <set> |
| #include <unordered_map> |
| #include <vector> |
| |
| namespace aco { |
| namespace { |
| |
| struct ra_ctx; |
| |
| unsigned get_subdword_operand_stride(amd_gfx_level gfx_level, const aco_ptr<Instruction>& instr, |
| unsigned idx, RegClass rc); |
| void add_subdword_operand(ra_ctx& ctx, aco_ptr<Instruction>& instr, unsigned idx, unsigned byte, |
| RegClass rc); |
| std::pair<unsigned, unsigned> |
| get_subdword_definition_info(Program* program, const aco_ptr<Instruction>& instr, RegClass rc); |
| void add_subdword_definition(Program* program, aco_ptr<Instruction>& instr, PhysReg reg); |
| |
| struct assignment { |
| PhysReg reg; |
| RegClass rc; |
| union { |
| struct { |
| bool assigned : 1; |
| bool vcc : 1; |
| }; |
| uint8_t _ = 0; |
| }; |
| uint32_t affinity = 0; |
| assignment() = default; |
| assignment(PhysReg reg_, RegClass rc_) : reg(reg_), rc(rc_), assigned(-1) {} |
| void set(const Definition& def) |
| { |
| assigned = true; |
| reg = def.physReg(); |
| rc = def.regClass(); |
| } |
| }; |
| |
| struct ra_ctx { |
| |
| Program* program; |
| Block* block = NULL; |
| std::vector<assignment> assignments; |
| std::vector<std::unordered_map<unsigned, Temp>> renames; |
| std::vector<uint32_t> loop_header; |
| std::unordered_map<unsigned, Temp> orig_names; |
| std::unordered_map<unsigned, Instruction*> vectors; |
| std::unordered_map<unsigned, Instruction*> split_vectors; |
| aco_ptr<Instruction> pseudo_dummy; |
| aco_ptr<Instruction> phi_dummy; |
| uint16_t max_used_sgpr = 0; |
| uint16_t max_used_vgpr = 0; |
| uint16_t sgpr_limit; |
| uint16_t vgpr_limit; |
| std::bitset<512> war_hint; |
| |
| ra_test_policy policy; |
| |
| ra_ctx(Program* program_, ra_test_policy policy_) |
| : program(program_), assignments(program->peekAllocationId()), |
| renames(program->blocks.size()), policy(policy_) |
| { |
| pseudo_dummy.reset( |
| create_instruction<Instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, 0, 0)); |
| phi_dummy.reset( |
| create_instruction<Instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, 0, 0)); |
| sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves); |
| vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves); |
| } |
| }; |
| |
| /* Iterator type for making PhysRegInterval compatible with range-based for */ |
| struct PhysRegIterator { |
| using difference_type = int; |
| using value_type = unsigned; |
| using reference = const unsigned&; |
| using pointer = const unsigned*; |
| using iterator_category = std::bidirectional_iterator_tag; |
| |
| PhysReg reg; |
| |
| PhysReg operator*() const { return reg; } |
| |
| PhysRegIterator& operator++() |
| { |
| reg.reg_b += 4; |
| return *this; |
| } |
| |
| PhysRegIterator& operator--() |
| { |
| reg.reg_b -= 4; |
| return *this; |
| } |
| |
| bool operator==(PhysRegIterator oth) const { return reg == oth.reg; } |
| |
| bool operator!=(PhysRegIterator oth) const { return reg != oth.reg; } |
| |
| bool operator<(PhysRegIterator oth) const { return reg < oth.reg; } |
| }; |
| |
| /* Half-open register interval used in "sliding window"-style for-loops */ |
| struct PhysRegInterval { |
| PhysReg lo_; |
| unsigned size; |
| |
| /* Inclusive lower bound */ |
| PhysReg lo() const { return lo_; } |
| |
| /* Exclusive upper bound */ |
| PhysReg hi() const { return PhysReg{lo() + size}; } |
| |
| PhysRegInterval& operator+=(uint32_t stride) |
| { |
| lo_ = PhysReg{lo_.reg() + stride}; |
| return *this; |
| } |
| |
| bool operator!=(const PhysRegInterval& oth) const { return lo_ != oth.lo_ || size != oth.size; } |
| |
| /* Construct a half-open interval, excluding the end register */ |
| static PhysRegInterval from_until(PhysReg first, PhysReg end) { return {first, end - first}; } |
| |
| bool contains(PhysReg reg) const { return lo() <= reg && reg < hi(); } |
| |
| bool contains(const PhysRegInterval& needle) const |
| { |
| return needle.lo() >= lo() && needle.hi() <= hi(); |
| } |
| |
| PhysRegIterator begin() const { return {lo_}; } |
| |
| PhysRegIterator end() const { return {PhysReg{lo_ + size}}; } |
| }; |
| |
| bool |
| intersects(const PhysRegInterval& a, const PhysRegInterval& b) |
| { |
| return a.hi() > b.lo() && b.hi() > a.lo(); |
| } |
| |
| /* Gets the stride for full (non-subdword) registers */ |
| uint32_t |
| get_stride(RegClass rc) |
| { |
| if (rc.type() == RegType::vgpr) { |
| return 1; |
| } else { |
| uint32_t size = rc.size(); |
| if (size == 2) { |
| return 2; |
| } else if (size >= 4) { |
| return 4; |
| } else { |
| return 1; |
| } |
| } |
| } |
| |
| PhysRegInterval |
| get_reg_bounds(Program* program, RegType type) |
| { |
| if (type == RegType::vgpr) { |
| return {PhysReg{256}, (unsigned)program->max_reg_demand.vgpr}; |
| } else { |
| return {PhysReg{0}, (unsigned)program->max_reg_demand.sgpr}; |
| } |
| } |
| |
| struct DefInfo { |
| PhysRegInterval bounds; |
| uint8_t size; |
| uint8_t stride; |
| RegClass rc; |
| |
| DefInfo(ra_ctx& ctx, aco_ptr<Instruction>& instr, RegClass rc_, int operand) : rc(rc_) |
| { |
| size = rc.size(); |
| stride = get_stride(rc); |
| |
| bounds = get_reg_bounds(ctx.program, rc.type()); |
| |
| if (rc.is_subdword() && operand >= 0) { |
| /* stride in bytes */ |
| stride = get_subdword_operand_stride(ctx.program->gfx_level, instr, operand, rc); |
| } else if (rc.is_subdword()) { |
| std::pair<unsigned, unsigned> info = get_subdword_definition_info(ctx.program, instr, rc); |
| stride = info.first; |
| if (info.second > rc.bytes()) { |
| rc = RegClass::get(rc.type(), info.second); |
| size = rc.size(); |
| /* we might still be able to put the definition in the high half, |
| * but that's only useful for affinities and this information isn't |
| * used for them */ |
| stride = align(stride, info.second); |
| if (!rc.is_subdword()) |
| stride = DIV_ROUND_UP(stride, 4); |
| } |
| assert(stride > 0); |
| } else if (instr->isMIMG() && instr->mimg().d16 && ctx.program->gfx_level <= GFX9) { |
| /* Workaround GFX9 hardware bug for D16 image instructions: FeatureImageGather4D16Bug |
| * |
| * The register use is not calculated correctly, and the hardware assumes a |
| * full dword per component. Don't use the last registers of the register file. |
| * Otherwise, the instruction will be skipped. |
| * |
| * https://reviews.llvm.org/D81172 |
| */ |
| bool imageGather4D16Bug = operand == -1 && rc == v2 && instr->mimg().dmask != 0xF; |
| assert(ctx.program->gfx_level == GFX9 && "Image D16 on GFX8 not supported."); |
| |
| if (imageGather4D16Bug) |
| bounds.size -= rc.bytes() / 4; |
| } |
| } |
| }; |
| |
| class RegisterFile { |
| public: |
| RegisterFile() { regs.fill(0); } |
| |
| std::array<uint32_t, 512> regs; |
| std::map<uint32_t, std::array<uint32_t, 4>> subdword_regs; |
| |
| const uint32_t& operator[](PhysReg index) const { return regs[index]; } |
| |
| uint32_t& operator[](PhysReg index) { return regs[index]; } |
| |
| unsigned count_zero(PhysRegInterval reg_interval) |
| { |
| unsigned res = 0; |
| for (PhysReg reg : reg_interval) |
| res += !regs[reg]; |
| return res; |
| } |
| |
| /* Returns true if any of the bytes in the given range are allocated or blocked */ |
| bool test(PhysReg start, unsigned num_bytes) |
| { |
| for (PhysReg i = start; i.reg_b < start.reg_b + num_bytes; i = PhysReg(i + 1)) { |
| assert(i <= 511); |
| if (regs[i] & 0x0FFFFFFF) |
| return true; |
| if (regs[i] == 0xF0000000) { |
| assert(subdword_regs.find(i) != subdword_regs.end()); |
| for (unsigned j = i.byte(); i * 4 + j < start.reg_b + num_bytes && j < 4; j++) { |
| if (subdword_regs[i][j]) |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| void block(PhysReg start, RegClass rc) |
| { |
| if (rc.is_subdword()) |
| fill_subdword(start, rc.bytes(), 0xFFFFFFFF); |
| else |
| fill(start, rc.size(), 0xFFFFFFFF); |
| } |
| |
| bool is_blocked(PhysReg start) |
| { |
| if (regs[start] == 0xFFFFFFFF) |
| return true; |
| if (regs[start] == 0xF0000000) { |
| for (unsigned i = start.byte(); i < 4; i++) |
| if (subdword_regs[start][i] == 0xFFFFFFFF) |
| return true; |
| } |
| return false; |
| } |
| |
| bool is_empty_or_blocked(PhysReg start) |
| { |
| /* Empty is 0, blocked is 0xFFFFFFFF, so to check both we compare the |
| * incremented value to 1 */ |
| if (regs[start] == 0xF0000000) { |
| return subdword_regs[start][start.byte()] + 1 <= 1; |
| } |
| return regs[start] + 1 <= 1; |
| } |
| |
| void clear(PhysReg start, RegClass rc) |
| { |
| if (rc.is_subdword()) |
| fill_subdword(start, rc.bytes(), 0); |
| else |
| fill(start, rc.size(), 0); |
| } |
| |
| void fill(Operand op) |
| { |
| if (op.regClass().is_subdword()) |
| fill_subdword(op.physReg(), op.bytes(), op.tempId()); |
| else |
| fill(op.physReg(), op.size(), op.tempId()); |
| } |
| |
| void clear(Operand op) { clear(op.physReg(), op.regClass()); } |
| |
| void fill(Definition def) |
| { |
| if (def.regClass().is_subdword()) |
| fill_subdword(def.physReg(), def.bytes(), def.tempId()); |
| else |
| fill(def.physReg(), def.size(), def.tempId()); |
| } |
| |
| void clear(Definition def) { clear(def.physReg(), def.regClass()); } |
| |
| unsigned get_id(PhysReg reg) |
| { |
| return regs[reg] == 0xF0000000 ? subdword_regs[reg][reg.byte()] : regs[reg]; |
| } |
| |
| private: |
| void fill(PhysReg start, unsigned size, uint32_t val) |
| { |
| for (unsigned i = 0; i < size; i++) |
| regs[start + i] = val; |
| } |
| |
| void fill_subdword(PhysReg start, unsigned num_bytes, uint32_t val) |
| { |
| fill(start, DIV_ROUND_UP(num_bytes, 4), 0xF0000000); |
| for (PhysReg i = start; i.reg_b < start.reg_b + num_bytes; i = PhysReg(i + 1)) { |
| /* emplace or get */ |
| std::array<uint32_t, 4>& sub = |
| subdword_regs.emplace(i, std::array<uint32_t, 4>{0, 0, 0, 0}).first->second; |
| for (unsigned j = i.byte(); i * 4 + j < start.reg_b + num_bytes && j < 4; j++) |
| sub[j] = val; |
| |
| if (sub == std::array<uint32_t, 4>{0, 0, 0, 0}) { |
| subdword_regs.erase(i); |
| regs[i] = 0; |
| } |
| } |
| } |
| }; |
| |
| std::vector<unsigned> find_vars(ra_ctx& ctx, RegisterFile& reg_file, |
| const PhysRegInterval reg_interval); |
| |
| /* helper function for debugging */ |
| UNUSED void |
| print_reg(const RegisterFile& reg_file, PhysReg reg, bool has_adjacent_variable) |
| { |
| if (reg_file[reg] == 0xFFFFFFFF) { |
| printf((const char*)u8"☐"); |
| } else if (reg_file[reg]) { |
| const bool show_subdword_alloc = (reg_file[reg] == 0xF0000000); |
| if (show_subdword_alloc) { |
| auto block_chars = { |
| // clang-format off |
| u8"?", u8"▘", u8"▝", u8"▀", |
| u8"▖", u8"▌", u8"▞", u8"▛", |
| u8"▗", u8"▚", u8"▐", u8"▜", |
| u8"▄", u8"▙", u8"▟", u8"▉" |
| // clang-format on |
| }; |
| unsigned index = 0; |
| for (int i = 0; i < 4; ++i) { |
| if (reg_file.subdword_regs.at(reg)[i]) { |
| index |= 1 << i; |
| } |
| } |
| printf("%s", (const char*)(block_chars.begin()[index])); |
| } else { |
| /* Indicate filled register slot */ |
| if (!has_adjacent_variable) { |
| printf((const char*)u8"█"); |
| } else { |
| /* Use a slightly shorter box to leave a small gap between adjacent variables */ |
| printf((const char*)u8"▉"); |
| } |
| } |
| } else { |
| printf((const char*)u8"·"); |
| } |
| } |
| |
| /* helper function for debugging */ |
| UNUSED void |
| print_regs(ra_ctx& ctx, bool vgprs, RegisterFile& reg_file) |
| { |
| PhysRegInterval regs = get_reg_bounds(ctx.program, vgprs ? RegType::vgpr : RegType::sgpr); |
| char reg_char = vgprs ? 'v' : 's'; |
| const int max_regs_per_line = 64; |
| |
| /* print markers */ |
| printf(" "); |
| for (int i = 0; i < std::min<int>(max_regs_per_line, ROUND_DOWN_TO(regs.size, 4)); i += 4) { |
| printf("%-3.2u ", i); |
| } |
| printf("\n"); |
| |
| /* print usage */ |
| auto line_begin_it = regs.begin(); |
| while (line_begin_it != regs.end()) { |
| const int regs_in_line = |
| std::min<int>(max_regs_per_line, std::distance(line_begin_it, regs.end())); |
| |
| if (line_begin_it == regs.begin()) { |
| printf("%cgprs: ", reg_char); |
| } else { |
| printf(" %+4d ", std::distance(regs.begin(), line_begin_it)); |
| } |
| const auto line_end_it = std::next(line_begin_it, regs_in_line); |
| |
| for (auto reg_it = line_begin_it; reg_it != line_end_it; ++reg_it) { |
| bool has_adjacent_variable = |
| (std::next(reg_it) != line_end_it && |
| reg_file[*reg_it] != reg_file[*std::next(reg_it)] && reg_file[*std::next(reg_it)]); |
| print_reg(reg_file, *reg_it, has_adjacent_variable); |
| } |
| |
| line_begin_it = line_end_it; |
| printf("\n"); |
| } |
| |
| const unsigned free_regs = |
| std::count_if(regs.begin(), regs.end(), [&](auto reg) { return !reg_file[reg]; }); |
| printf("%u/%u used, %u/%u free\n", regs.size - free_regs, regs.size, free_regs, regs.size); |
| |
| /* print assignments ordered by registers */ |
| std::map<PhysReg, std::pair<unsigned, unsigned>> |
| regs_to_vars; /* maps to byte size and temp id */ |
| for (unsigned id : find_vars(ctx, reg_file, regs)) { |
| const assignment& var = ctx.assignments[id]; |
| PhysReg reg = var.reg; |
| ASSERTED auto inserted = regs_to_vars.emplace(reg, std::make_pair(var.rc.bytes(), id)); |
| assert(inserted.second); |
| } |
| |
| for (const auto& reg_and_var : regs_to_vars) { |
| const auto& first_reg = reg_and_var.first; |
| const auto& size_id = reg_and_var.second; |
| |
| printf("%%%u ", size_id.second); |
| if (ctx.orig_names.count(size_id.second) && |
| ctx.orig_names[size_id.second].id() != size_id.second) { |
| printf("(was %%%d) ", ctx.orig_names[size_id.second].id()); |
| } |
| printf("= %c[%d", reg_char, first_reg.reg() - regs.lo()); |
| PhysReg last_reg = first_reg.advance(size_id.first - 1); |
| if (first_reg.reg() != last_reg.reg()) { |
| assert(first_reg.byte() == 0 && last_reg.byte() == 3); |
| printf("-%d", last_reg.reg() - regs.lo()); |
| } |
| printf("]"); |
| if (first_reg.byte() != 0 || last_reg.byte() != 3) { |
| printf("[%d:%d]", first_reg.byte() * 8, (last_reg.byte() + 1) * 8); |
| } |
| printf("\n"); |
| } |
| } |
| |
| unsigned |
| get_subdword_operand_stride(amd_gfx_level gfx_level, const aco_ptr<Instruction>& instr, |
| unsigned idx, RegClass rc) |
| { |
| if (instr->isPseudo()) { |
| /* v_readfirstlane_b32 cannot use SDWA */ |
| if (instr->opcode == aco_opcode::p_as_uniform) |
| return 4; |
| else if (gfx_level >= GFX8) |
| return rc.bytes() % 2 == 0 ? 2 : 1; |
| else |
| return 4; |
| } |
| |
| assert(rc.bytes() <= 2); |
| if (instr->isVALU() || instr->isVINTERP_INREG()) { |
| if (can_use_SDWA(gfx_level, instr, false)) |
| return rc.bytes(); |
| if (can_use_opsel(gfx_level, instr->opcode, idx)) |
| return 2; |
| if (instr->format == Format::VOP3P) |
| return 2; |
| } |
| |
| switch (instr->opcode) { |
| case aco_opcode::v_cvt_f32_ubyte0: return 1; |
| case aco_opcode::ds_write_b8: |
| case aco_opcode::ds_write_b16: return gfx_level >= GFX9 ? 2 : 4; |
| case aco_opcode::buffer_store_byte: |
| case aco_opcode::buffer_store_short: |
| case aco_opcode::buffer_store_format_d16_x: |
| case aco_opcode::flat_store_byte: |
| case aco_opcode::flat_store_short: |
| case aco_opcode::scratch_store_byte: |
| case aco_opcode::scratch_store_short: |
| case aco_opcode::global_store_byte: |
| case aco_opcode::global_store_short: return gfx_level >= GFX9 ? 2 : 4; |
| default: return 4; |
| } |
| } |
| |
| void |
| add_subdword_operand(ra_ctx& ctx, aco_ptr<Instruction>& instr, unsigned idx, unsigned byte, |
| RegClass rc) |
| { |
| amd_gfx_level gfx_level = ctx.program->gfx_level; |
| if (instr->isPseudo() || byte == 0) |
| return; |
| |
| assert(rc.bytes() <= 2); |
| if (instr->isVALU() || instr->isVINTERP_INREG()) { |
| /* check if we can use opsel */ |
| if (instr->format == Format::VOP3) { |
| assert(byte == 2); |
| instr->vop3().opsel |= 1 << idx; |
| return; |
| } |
| if (instr->isVINTERP_INREG()) { |
| assert(byte == 2); |
| instr->vinterp_inreg().opsel |= 1 << idx; |
| return; |
| } |
| if (instr->isVOP3P()) { |
| assert(byte == 2 && !(instr->vop3p().opsel_lo & (1 << idx))); |
| instr->vop3p().opsel_lo |= 1 << idx; |
| instr->vop3p().opsel_hi |= 1 << idx; |
| return; |
| } |
| if (instr->opcode == aco_opcode::v_cvt_f32_ubyte0) { |
| switch (byte) { |
| case 0: instr->opcode = aco_opcode::v_cvt_f32_ubyte0; break; |
| case 1: instr->opcode = aco_opcode::v_cvt_f32_ubyte1; break; |
| case 2: instr->opcode = aco_opcode::v_cvt_f32_ubyte2; break; |
| case 3: instr->opcode = aco_opcode::v_cvt_f32_ubyte3; break; |
| } |
| return; |
| } |
| |
| /* use SDWA */ |
| assert(can_use_SDWA(gfx_level, instr, false)); |
| convert_to_SDWA(gfx_level, instr); |
| return; |
| } |
| |
| assert(byte == 2); |
| if (instr->opcode == aco_opcode::ds_write_b8) |
| instr->opcode = aco_opcode::ds_write_b8_d16_hi; |
| else if (instr->opcode == aco_opcode::ds_write_b16) |
| instr->opcode = aco_opcode::ds_write_b16_d16_hi; |
| else if (instr->opcode == aco_opcode::buffer_store_byte) |
| instr->opcode = aco_opcode::buffer_store_byte_d16_hi; |
| else if (instr->opcode == aco_opcode::buffer_store_short) |
| instr->opcode = aco_opcode::buffer_store_short_d16_hi; |
| else if (instr->opcode == aco_opcode::buffer_store_format_d16_x) |
| instr->opcode = aco_opcode::buffer_store_format_d16_hi_x; |
| else if (instr->opcode == aco_opcode::flat_store_byte) |
| instr->opcode = aco_opcode::flat_store_byte_d16_hi; |
| else if (instr->opcode == aco_opcode::flat_store_short) |
| instr->opcode = aco_opcode::flat_store_short_d16_hi; |
| else if (instr->opcode == aco_opcode::scratch_store_byte) |
| instr->opcode = aco_opcode::scratch_store_byte_d16_hi; |
| else if (instr->opcode == aco_opcode::scratch_store_short) |
| instr->opcode = aco_opcode::scratch_store_short_d16_hi; |
| else if (instr->opcode == aco_opcode::global_store_byte) |
| instr->opcode = aco_opcode::global_store_byte_d16_hi; |
| else if (instr->opcode == aco_opcode::global_store_short) |
| instr->opcode = aco_opcode::global_store_short_d16_hi; |
| else |
| unreachable("Something went wrong: Impossible register assignment."); |
| return; |
| } |
| |
| /* minimum_stride, bytes_written */ |
| std::pair<unsigned, unsigned> |
| get_subdword_definition_info(Program* program, const aco_ptr<Instruction>& instr, RegClass rc) |
| { |
| amd_gfx_level gfx_level = program->gfx_level; |
| |
| if (instr->isPseudo()) { |
| if (instr->opcode == aco_opcode::p_interp_gfx11) |
| return std::make_pair(4u, 4u); |
| else if (gfx_level >= GFX8) |
| return std::make_pair(rc.bytes() % 2 == 0 ? 2 : 1, rc.bytes()); |
| else |
| return std::make_pair(4, rc.size() * 4u); |
| } |
| |
| if (instr->isVALU() || instr->isVINTRP() || instr->isVINTERP_INREG()) { |
| assert(rc.bytes() <= 2); |
| |
| if (can_use_SDWA(gfx_level, instr, false)) |
| return std::make_pair(rc.bytes(), rc.bytes()); |
| |
| unsigned bytes_written = 4u; |
| if (instr_is_16bit(gfx_level, instr->opcode)) |
| bytes_written = 2u; |
| |
| unsigned stride = 4u; |
| if (instr->opcode == aco_opcode::v_fma_mixlo_f16 || |
| can_use_opsel(gfx_level, instr->opcode, -1)) |
| stride = 2u; |
| |
| return std::make_pair(stride, bytes_written); |
| } |
| |
| switch (instr->opcode) { |
| /* D16 loads with _hi version */ |
| case aco_opcode::ds_read_u8_d16: |
| case aco_opcode::ds_read_i8_d16: |
| case aco_opcode::ds_read_u16_d16: |
| case aco_opcode::flat_load_ubyte_d16: |
| case aco_opcode::flat_load_sbyte_d16: |
| case aco_opcode::flat_load_short_d16: |
| case aco_opcode::global_load_ubyte_d16: |
| case aco_opcode::global_load_sbyte_d16: |
| case aco_opcode::global_load_short_d16: |
| case aco_opcode::scratch_load_ubyte_d16: |
| case aco_opcode::scratch_load_sbyte_d16: |
| case aco_opcode::scratch_load_short_d16: |
| case aco_opcode::buffer_load_ubyte_d16: |
| case aco_opcode::buffer_load_sbyte_d16: |
| case aco_opcode::buffer_load_short_d16: |
| case aco_opcode::buffer_load_format_d16_x: { |
| assert(gfx_level >= GFX9); |
| if (!program->dev.sram_ecc_enabled) |
| return std::make_pair(2u, 2u); |
| else |
| return std::make_pair(2u, 4u); |
| } |
| /* 3-component D16 loads */ |
| case aco_opcode::buffer_load_format_d16_xyz: |
| case aco_opcode::tbuffer_load_format_d16_xyz: { |
| assert(gfx_level >= GFX9); |
| if (!program->dev.sram_ecc_enabled) |
| return std::make_pair(4u, 6u); |
| break; |
| } |
| |
| default: break; |
| } |
| |
| if (instr->isMIMG() && instr->mimg().d16 && !program->dev.sram_ecc_enabled) { |
| assert(gfx_level >= GFX9); |
| return std::make_pair(4u, rc.bytes()); |
| } |
| |
| return std::make_pair(4, rc.size() * 4u); |
| } |
| |
| void |
| add_subdword_definition(Program* program, aco_ptr<Instruction>& instr, PhysReg reg) |
| { |
| if (instr->isPseudo()) |
| return; |
| |
| if (instr->isVALU() || instr->isVINTERP_INREG()) { |
| amd_gfx_level gfx_level = program->gfx_level; |
| assert(instr->definitions[0].bytes() <= 2); |
| |
| if (reg.byte() == 0 && instr_is_16bit(gfx_level, instr->opcode)) |
| return; |
| |
| /* check if we can use opsel */ |
| if (instr->format == Format::VOP3) { |
| assert(reg.byte() == 2); |
| assert(can_use_opsel(gfx_level, instr->opcode, -1)); |
| instr->vop3().opsel |= (1 << 3); /* dst in high half */ |
| return; |
| } else if (instr->isVINTERP_INREG()) { |
| assert(reg.byte() == 2); |
| assert(can_use_opsel(gfx_level, instr->opcode, -1)); |
| instr->vinterp_inreg().opsel |= (1 << 3); /* dst in high half */ |
| return; |
| } |
| |
| if (instr->opcode == aco_opcode::v_fma_mixlo_f16) { |
| instr->opcode = aco_opcode::v_fma_mixhi_f16; |
| return; |
| } |
| |
| /* use SDWA */ |
| assert(can_use_SDWA(gfx_level, instr, false)); |
| convert_to_SDWA(gfx_level, instr); |
| return; |
| } |
| |
| if (reg.byte() == 0) |
| return; |
| else if (instr->opcode == aco_opcode::buffer_load_ubyte_d16) |
| instr->opcode = aco_opcode::buffer_load_ubyte_d16_hi; |
| else if (instr->opcode == aco_opcode::buffer_load_sbyte_d16) |
| instr->opcode = aco_opcode::buffer_load_sbyte_d16_hi; |
| else if (instr->opcode == aco_opcode::buffer_load_short_d16) |
| instr->opcode = aco_opcode::buffer_load_short_d16_hi; |
| else if (instr->opcode == aco_opcode::buffer_load_format_d16_x) |
| instr->opcode = aco_opcode::buffer_load_format_d16_hi_x; |
| else if (instr->opcode == aco_opcode::flat_load_ubyte_d16) |
| instr->opcode = aco_opcode::flat_load_ubyte_d16_hi; |
| else if (instr->opcode == aco_opcode::flat_load_sbyte_d16) |
| instr->opcode = aco_opcode::flat_load_sbyte_d16_hi; |
| else if (instr->opcode == aco_opcode::flat_load_short_d16) |
| instr->opcode = aco_opcode::flat_load_short_d16_hi; |
| else if (instr->opcode == aco_opcode::scratch_load_ubyte_d16) |
| instr->opcode = aco_opcode::scratch_load_ubyte_d16_hi; |
| else if (instr->opcode == aco_opcode::scratch_load_sbyte_d16) |
| instr->opcode = aco_opcode::scratch_load_sbyte_d16_hi; |
| else if (instr->opcode == aco_opcode::scratch_load_short_d16) |
| instr->opcode = aco_opcode::scratch_load_short_d16_hi; |
| else if (instr->opcode == aco_opcode::global_load_ubyte_d16) |
| instr->opcode = aco_opcode::global_load_ubyte_d16_hi; |
| else if (instr->opcode == aco_opcode::global_load_sbyte_d16) |
| instr->opcode = aco_opcode::global_load_sbyte_d16_hi; |
| else if (instr->opcode == aco_opcode::global_load_short_d16) |
| instr->opcode = aco_opcode::global_load_short_d16_hi; |
| else if (instr->opcode == aco_opcode::ds_read_u8_d16) |
| instr->opcode = aco_opcode::ds_read_u8_d16_hi; |
| else if (instr->opcode == aco_opcode::ds_read_i8_d16) |
| instr->opcode = aco_opcode::ds_read_i8_d16_hi; |
| else if (instr->opcode == aco_opcode::ds_read_u16_d16) |
| instr->opcode = aco_opcode::ds_read_u16_d16_hi; |
| else |
| unreachable("Something went wrong: Impossible register assignment."); |
| } |
| |
| void |
| adjust_max_used_regs(ra_ctx& ctx, RegClass rc, unsigned reg) |
| { |
| uint16_t max_addressible_sgpr = ctx.sgpr_limit; |
| unsigned size = rc.size(); |
| if (rc.type() == RegType::vgpr) { |
| assert(reg >= 256); |
| uint16_t hi = reg - 256 + size - 1; |
| assert(hi <= 255); |
| ctx.max_used_vgpr = std::max(ctx.max_used_vgpr, hi); |
| } else if (reg + rc.size() <= max_addressible_sgpr) { |
| uint16_t hi = reg + size - 1; |
| ctx.max_used_sgpr = std::max(ctx.max_used_sgpr, std::min(hi, max_addressible_sgpr)); |
| } |
| } |
| |
| enum UpdateRenames { |
| rename_not_killed_ops = 0x1, |
| fill_killed_ops = 0x2, |
| rename_precolored_ops = 0x4, |
| }; |
| MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(UpdateRenames); |
| |
| void |
| update_renames(ra_ctx& ctx, RegisterFile& reg_file, |
| std::vector<std::pair<Operand, Definition>>& parallelcopies, |
| aco_ptr<Instruction>& instr, UpdateRenames flags) |
| { |
| /* clear operands */ |
| for (std::pair<Operand, Definition>& copy : parallelcopies) { |
| /* the definitions with id are not from this function and already handled */ |
| if (copy.second.isTemp()) |
| continue; |
| reg_file.clear(copy.first); |
| } |
| |
| /* allocate id's and rename operands: this is done transparently here */ |
| auto it = parallelcopies.begin(); |
| while (it != parallelcopies.end()) { |
| if (it->second.isTemp()) { |
| ++it; |
| continue; |
| } |
| |
| /* check if we moved a definition: change the register and remove copy */ |
| bool is_def = false; |
| for (Definition& def : instr->definitions) { |
| if (def.isTemp() && def.getTemp() == it->first.getTemp()) { |
| // FIXME: ensure that the definition can use this reg |
| def.setFixed(it->second.physReg()); |
| reg_file.fill(def); |
| ctx.assignments[def.tempId()].reg = def.physReg(); |
| it = parallelcopies.erase(it); |
| is_def = true; |
| break; |
| } |
| } |
| if (is_def) |
| continue; |
| |
| /* check if we moved another parallelcopy definition */ |
| for (std::pair<Operand, Definition>& other : parallelcopies) { |
| if (!other.second.isTemp()) |
| continue; |
| if (it->first.getTemp() == other.second.getTemp()) { |
| other.second.setFixed(it->second.physReg()); |
| ctx.assignments[other.second.tempId()].reg = other.second.physReg(); |
| it = parallelcopies.erase(it); |
| is_def = true; |
| /* check if we moved an operand, again */ |
| bool fill = true; |
| for (Operand& op : instr->operands) { |
| if (op.isTemp() && op.tempId() == other.second.tempId()) { |
| // FIXME: ensure that the operand can use this reg |
| op.setFixed(other.second.physReg()); |
| fill = (flags & fill_killed_ops) || !op.isKillBeforeDef(); |
| } |
| } |
| if (fill) |
| reg_file.fill(other.second); |
| break; |
| } |
| } |
| if (is_def) |
| continue; |
| |
| std::pair<Operand, Definition>& copy = *it; |
| copy.second.setTemp(ctx.program->allocateTmp(copy.second.regClass())); |
| ctx.assignments.emplace_back(copy.second.physReg(), copy.second.regClass()); |
| assert(ctx.assignments.size() == ctx.program->peekAllocationId()); |
| |
| /* check if we moved an operand */ |
| bool first = true; |
| bool fill = true; |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| Operand& op = instr->operands[i]; |
| if (!op.isTemp()) |
| continue; |
| if (op.tempId() == copy.first.tempId()) { |
| /* only rename precolored operands if the copy-location matches */ |
| if ((flags & rename_precolored_ops) && op.isFixed() && |
| op.physReg() != copy.second.physReg()) |
| continue; |
| |
| bool omit_renaming = !(flags & rename_not_killed_ops) && !op.isKillBeforeDef(); |
| for (std::pair<Operand, Definition>& pc : parallelcopies) { |
| PhysReg def_reg = pc.second.physReg(); |
| omit_renaming &= def_reg > copy.first.physReg() |
| ? (copy.first.physReg() + copy.first.size() <= def_reg.reg()) |
| : (def_reg + pc.second.size() <= copy.first.physReg().reg()); |
| } |
| if (omit_renaming) { |
| if (first) |
| op.setFirstKill(true); |
| else |
| op.setKill(true); |
| first = false; |
| continue; |
| } |
| op.setTemp(copy.second.getTemp()); |
| op.setFixed(copy.second.physReg()); |
| |
| fill = (flags & fill_killed_ops) || !op.isKillBeforeDef(); |
| } |
| } |
| |
| if (fill) |
| reg_file.fill(copy.second); |
| |
| ++it; |
| } |
| } |
| |
| std::pair<PhysReg, bool> |
| get_reg_simple(ra_ctx& ctx, RegisterFile& reg_file, DefInfo info) |
| { |
| const PhysRegInterval& bounds = info.bounds; |
| uint32_t size = info.size; |
| uint32_t stride = info.rc.is_subdword() ? DIV_ROUND_UP(info.stride, 4) : info.stride; |
| RegClass rc = info.rc; |
| |
| DefInfo new_info = info; |
| new_info.rc = RegClass(rc.type(), size); |
| for (unsigned new_stride = 16; new_stride > stride; new_stride /= 2) { |
| if (size % new_stride) |
| continue; |
| new_info.stride = new_stride; |
| std::pair<PhysReg, bool> res = get_reg_simple(ctx, reg_file, new_info); |
| if (res.second) |
| return res; |
| } |
| |
| auto is_free = [&](PhysReg reg_index) |
| { return reg_file[reg_index] == 0 && !ctx.war_hint[reg_index]; }; |
| |
| if (stride == 1) { |
| /* best fit algorithm: find the smallest gap to fit in the variable */ |
| PhysRegInterval best_gap{PhysReg{0}, UINT_MAX}; |
| const unsigned max_gpr = |
| (rc.type() == RegType::vgpr) ? (256 + ctx.max_used_vgpr) : ctx.max_used_sgpr; |
| |
| PhysRegIterator reg_it = bounds.begin(); |
| const PhysRegIterator end_it = |
| std::min(bounds.end(), std::max(PhysRegIterator{PhysReg{max_gpr + 1}}, reg_it)); |
| while (reg_it != bounds.end()) { |
| /* Find the next chunk of available register slots */ |
| reg_it = std::find_if(reg_it, end_it, is_free); |
| auto next_nonfree_it = std::find_if_not(reg_it, end_it, is_free); |
| if (reg_it == bounds.end()) { |
| break; |
| } |
| |
| if (next_nonfree_it == end_it) { |
| /* All registers past max_used_gpr are free */ |
| next_nonfree_it = bounds.end(); |
| } |
| |
| PhysRegInterval gap = PhysRegInterval::from_until(*reg_it, *next_nonfree_it); |
| |
| /* early return on exact matches */ |
| if (size == gap.size) { |
| adjust_max_used_regs(ctx, rc, gap.lo()); |
| return {gap.lo(), true}; |
| } |
| |
| /* check if it fits and the gap size is smaller */ |
| if (size < gap.size && gap.size < best_gap.size) { |
| best_gap = gap; |
| } |
| |
| /* Move past the processed chunk */ |
| reg_it = next_nonfree_it; |
| } |
| |
| if (best_gap.size == UINT_MAX) |
| return {{}, false}; |
| |
| /* find best position within gap by leaving a good stride for other variables*/ |
| unsigned buffer = best_gap.size - size; |
| if (buffer > 1) { |
| if (((best_gap.lo() + size) % 8 != 0 && (best_gap.lo() + buffer) % 8 == 0) || |
| ((best_gap.lo() + size) % 4 != 0 && (best_gap.lo() + buffer) % 4 == 0) || |
| ((best_gap.lo() + size) % 2 != 0 && (best_gap.lo() + buffer) % 2 == 0)) |
| best_gap = {PhysReg{best_gap.lo() + buffer}, best_gap.size - buffer}; |
| } |
| |
| adjust_max_used_regs(ctx, rc, best_gap.lo()); |
| return {best_gap.lo(), true}; |
| } |
| |
| for (PhysRegInterval reg_win = {bounds.lo(), size}; reg_win.hi() <= bounds.hi(); |
| reg_win += stride) { |
| if (reg_file[reg_win.lo()] != 0) { |
| continue; |
| } |
| |
| bool is_valid = std::all_of(std::next(reg_win.begin()), reg_win.end(), is_free); |
| if (is_valid) { |
| adjust_max_used_regs(ctx, rc, reg_win.lo()); |
| return {reg_win.lo(), true}; |
| } |
| } |
| |
| /* do this late because using the upper bytes of a register can require |
| * larger instruction encodings or copies |
| * TODO: don't do this in situations where it doesn't benefit */ |
| if (rc.is_subdword()) { |
| for (std::pair<const uint32_t, std::array<uint32_t, 4>>& entry : reg_file.subdword_regs) { |
| assert(reg_file[PhysReg{entry.first}] == 0xF0000000); |
| if (!bounds.contains({PhysReg{entry.first}, rc.size()})) |
| continue; |
| |
| for (unsigned i = 0; i < 4; i += info.stride) { |
| /* check if there's a block of free bytes large enough to hold the register */ |
| bool reg_found = |
| std::all_of(&entry.second[i], &entry.second[std::min(4u, i + rc.bytes())], |
| [](unsigned v) { return v == 0; }); |
| |
| /* check if also the neighboring reg is free if needed */ |
| if (reg_found && i + rc.bytes() > 4) |
| reg_found = (reg_file[PhysReg{entry.first + 1}] == 0); |
| |
| if (reg_found) { |
| PhysReg res{entry.first}; |
| res.reg_b += i; |
| adjust_max_used_regs(ctx, rc, entry.first); |
| return {res, true}; |
| } |
| } |
| } |
| } |
| |
| return {{}, false}; |
| } |
| |
| /* collect variables from a register area */ |
| std::vector<unsigned> |
| find_vars(ra_ctx& ctx, RegisterFile& reg_file, const PhysRegInterval reg_interval) |
| { |
| std::vector<unsigned> vars; |
| for (PhysReg j : reg_interval) { |
| if (reg_file.is_blocked(j)) |
| continue; |
| if (reg_file[j] == 0xF0000000) { |
| for (unsigned k = 0; k < 4; k++) { |
| unsigned id = reg_file.subdword_regs[j][k]; |
| if (id && (vars.empty() || id != vars.back())) |
| vars.emplace_back(id); |
| } |
| } else { |
| unsigned id = reg_file[j]; |
| if (id && (vars.empty() || id != vars.back())) |
| vars.emplace_back(id); |
| } |
| } |
| return vars; |
| } |
| |
| /* collect variables from a register area and clear reg_file |
| * variables are sorted in decreasing size and |
| * increasing assigned register |
| */ |
| std::vector<unsigned> |
| collect_vars(ra_ctx& ctx, RegisterFile& reg_file, const PhysRegInterval reg_interval) |
| { |
| std::vector<unsigned> ids = find_vars(ctx, reg_file, reg_interval); |
| std::sort(ids.begin(), ids.end(), |
| [&](unsigned a, unsigned b) |
| { |
| assignment& var_a = ctx.assignments[a]; |
| assignment& var_b = ctx.assignments[b]; |
| return var_a.rc.bytes() > var_b.rc.bytes() || |
| (var_a.rc.bytes() == var_b.rc.bytes() && var_a.reg < var_b.reg); |
| }); |
| |
| for (unsigned id : ids) { |
| assignment& var = ctx.assignments[id]; |
| reg_file.clear(var.reg, var.rc); |
| } |
| return ids; |
| } |
| |
| std::pair<PhysReg, bool> |
| get_reg_for_create_vector_copy(ra_ctx& ctx, RegisterFile& reg_file, |
| std::vector<std::pair<Operand, Definition>>& parallelcopies, |
| aco_ptr<Instruction>& instr, const PhysRegInterval def_reg, |
| DefInfo info, unsigned id) |
| { |
| PhysReg reg = def_reg.lo(); |
| /* dead operand: return position in vector */ |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (instr->operands[i].isTemp() && instr->operands[i].tempId() == id && |
| instr->operands[i].isKillBeforeDef()) { |
| assert(!reg_file.test(reg, instr->operands[i].bytes())); |
| return {reg, info.rc.is_subdword() || reg.byte() == 0}; |
| } |
| reg.reg_b += instr->operands[i].bytes(); |
| } |
| |
| if (ctx.program->gfx_level <= GFX8) |
| return {PhysReg(), false}; |
| |
| /* check if the previous position was in vector */ |
| assignment& var = ctx.assignments[id]; |
| if (def_reg.contains(PhysRegInterval{var.reg, info.size})) { |
| reg = def_reg.lo(); |
| /* try to use the previous register of the operand */ |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (reg != var.reg) { |
| reg.reg_b += instr->operands[i].bytes(); |
| continue; |
| } |
| |
| /* check if we can swap positions */ |
| if (instr->operands[i].isTemp() && instr->operands[i].isFirstKill() && |
| instr->operands[i].regClass() == info.rc) { |
| assignment& op = ctx.assignments[instr->operands[i].tempId()]; |
| /* if everything matches, create parallelcopy for the killed operand */ |
| if (!intersects(def_reg, PhysRegInterval{op.reg, op.rc.size()}) && |
| op.reg != scc && reg_file.get_id(op.reg) == instr->operands[i].tempId()) { |
| Definition pc_def = Definition(reg, info.rc); |
| parallelcopies.emplace_back(instr->operands[i], pc_def); |
| return {op.reg, true}; |
| } |
| } |
| return {PhysReg(), false}; |
| } |
| } |
| return {PhysReg(), false}; |
| } |
| |
| bool |
| get_regs_for_copies(ra_ctx& ctx, RegisterFile& reg_file, |
| std::vector<std::pair<Operand, Definition>>& parallelcopies, |
| const std::vector<unsigned>& vars, aco_ptr<Instruction>& instr, |
| const PhysRegInterval def_reg) |
| { |
| /* Variables are sorted from large to small and with increasing assigned register */ |
| for (unsigned id : vars) { |
| assignment& var = ctx.assignments[id]; |
| PhysRegInterval bounds = get_reg_bounds(ctx.program, var.rc.type()); |
| DefInfo info = DefInfo(ctx, ctx.pseudo_dummy, var.rc, -1); |
| uint32_t size = info.size; |
| |
| /* check if this is a dead operand, then we can re-use the space from the definition |
| * also use the correct stride for sub-dword operands */ |
| bool is_dead_operand = false; |
| std::pair<PhysReg, bool> res{PhysReg(), false}; |
| if (instr->opcode == aco_opcode::p_create_vector) { |
| res = |
| get_reg_for_create_vector_copy(ctx, reg_file, parallelcopies, instr, def_reg, info, id); |
| } else { |
| for (unsigned i = 0; !is_phi(instr) && i < instr->operands.size(); i++) { |
| if (instr->operands[i].isTemp() && instr->operands[i].tempId() == id) { |
| info = DefInfo(ctx, instr, var.rc, i); |
| if (instr->operands[i].isKillBeforeDef()) { |
| info.bounds = def_reg; |
| res = get_reg_simple(ctx, reg_file, info); |
| is_dead_operand = true; |
| } |
| break; |
| } |
| } |
| } |
| if (!res.second && !def_reg.size) { |
| /* If this is before definitions are handled, def_reg may be an empty interval. */ |
| info.bounds = bounds; |
| res = get_reg_simple(ctx, reg_file, info); |
| } else if (!res.second) { |
| /* Try to find space within the bounds but outside of the definition */ |
| info.bounds = PhysRegInterval::from_until(bounds.lo(), MIN2(def_reg.lo(), bounds.hi())); |
| res = get_reg_simple(ctx, reg_file, info); |
| if (!res.second && def_reg.hi() <= bounds.hi()) { |
| unsigned lo = (def_reg.hi() + info.stride - 1) & ~(info.stride - 1); |
| info.bounds = PhysRegInterval::from_until(PhysReg{lo}, bounds.hi()); |
| res = get_reg_simple(ctx, reg_file, info); |
| } |
| } |
| |
| if (res.second) { |
| /* mark the area as blocked */ |
| reg_file.block(res.first, var.rc); |
| |
| /* create parallelcopy pair (without definition id) */ |
| Temp tmp = Temp(id, var.rc); |
| Operand pc_op = Operand(tmp); |
| pc_op.setFixed(var.reg); |
| Definition pc_def = Definition(res.first, pc_op.regClass()); |
| parallelcopies.emplace_back(pc_op, pc_def); |
| continue; |
| } |
| |
| PhysReg best_pos = bounds.lo(); |
| unsigned num_moves = 0xFF; |
| unsigned num_vars = 0; |
| |
| /* we use a sliding window to find potential positions */ |
| unsigned stride = var.rc.is_subdword() ? 1 : info.stride; |
| for (PhysRegInterval reg_win{bounds.lo(), size}; reg_win.hi() <= bounds.hi(); |
| reg_win += stride) { |
| if (!is_dead_operand && intersects(reg_win, def_reg)) |
| continue; |
| |
| /* second, check that we have at most k=num_moves elements in the window |
| * and no element is larger than the currently processed one */ |
| unsigned k = 0; |
| unsigned n = 0; |
| unsigned last_var = 0; |
| bool found = true; |
| for (PhysReg j : reg_win) { |
| if (reg_file[j] == 0 || reg_file[j] == last_var) |
| continue; |
| |
| if (reg_file.is_blocked(j) || k > num_moves) { |
| found = false; |
| break; |
| } |
| if (reg_file[j] == 0xF0000000) { |
| k += 1; |
| n++; |
| continue; |
| } |
| /* we cannot split live ranges of linear vgprs inside control flow */ |
| if (!(ctx.block->kind & block_kind_top_level) && |
| ctx.assignments[reg_file[j]].rc.is_linear_vgpr()) { |
| found = false; |
| break; |
| } |
| bool is_kill = false; |
| for (const Operand& op : instr->operands) { |
| if (op.isTemp() && op.isKillBeforeDef() && op.tempId() == reg_file[j]) { |
| is_kill = true; |
| break; |
| } |
| } |
| if (!is_kill && ctx.assignments[reg_file[j]].rc.size() >= size) { |
| found = false; |
| break; |
| } |
| |
| k += ctx.assignments[reg_file[j]].rc.size(); |
| last_var = reg_file[j]; |
| n++; |
| if (k > num_moves || (k == num_moves && n <= num_vars)) { |
| found = false; |
| break; |
| } |
| } |
| |
| if (found) { |
| best_pos = reg_win.lo(); |
| num_moves = k; |
| num_vars = n; |
| } |
| } |
| |
| /* FIXME: we messed up and couldn't find space for the variables to be copied */ |
| if (num_moves == 0xFF) |
| return false; |
| |
| PhysRegInterval reg_win{best_pos, size}; |
| |
| /* collect variables and block reg file */ |
| std::vector<unsigned> new_vars = collect_vars(ctx, reg_file, reg_win); |
| |
| /* mark the area as blocked */ |
| reg_file.block(reg_win.lo(), var.rc); |
| adjust_max_used_regs(ctx, var.rc, reg_win.lo()); |
| |
| if (!get_regs_for_copies(ctx, reg_file, parallelcopies, new_vars, instr, def_reg)) |
| return false; |
| |
| /* create parallelcopy pair (without definition id) */ |
| Temp tmp = Temp(id, var.rc); |
| Operand pc_op = Operand(tmp); |
| pc_op.setFixed(var.reg); |
| Definition pc_def = Definition(reg_win.lo(), pc_op.regClass()); |
| parallelcopies.emplace_back(pc_op, pc_def); |
| } |
| |
| return true; |
| } |
| |
| std::pair<PhysReg, bool> |
| get_reg_impl(ra_ctx& ctx, RegisterFile& reg_file, |
| std::vector<std::pair<Operand, Definition>>& parallelcopies, const DefInfo& info, |
| aco_ptr<Instruction>& instr) |
| { |
| const PhysRegInterval& bounds = info.bounds; |
| uint32_t size = info.size; |
| uint32_t stride = info.stride; |
| RegClass rc = info.rc; |
| |
| /* check how many free regs we have */ |
| unsigned regs_free = reg_file.count_zero(bounds); |
| |
| /* mark and count killed operands */ |
| unsigned killed_ops = 0; |
| std::bitset<256> is_killed_operand; /* per-register */ |
| for (unsigned j = 0; !is_phi(instr) && j < instr->operands.size(); j++) { |
| Operand& op = instr->operands[j]; |
| if (op.isTemp() && op.isFirstKillBeforeDef() && bounds.contains(op.physReg()) && |
| !reg_file.test(PhysReg{op.physReg().reg()}, align(op.bytes() + op.physReg().byte(), 4))) { |
| assert(op.isFixed()); |
| |
| for (unsigned i = 0; i < op.size(); ++i) { |
| is_killed_operand[(op.physReg() & 0xff) + i] = true; |
| } |
| |
| killed_ops += op.getTemp().size(); |
| } |
| } |
| |
| assert(regs_free >= size); |
| /* we might have to move dead operands to dst in order to make space */ |
| unsigned op_moves = 0; |
| |
| if (size > (regs_free - killed_ops)) |
| op_moves = size - (regs_free - killed_ops); |
| |
| /* find the best position to place the definition */ |
| PhysRegInterval best_win = {bounds.lo(), size}; |
| unsigned num_moves = 0xFF; |
| unsigned num_vars = 0; |
| |
| /* we use a sliding window to check potential positions */ |
| for (PhysRegInterval reg_win = {bounds.lo(), size}; reg_win.hi() <= bounds.hi(); |
| reg_win += stride) { |
| /* first check if the register window starts in the middle of an |
| * allocated variable: this is what we have to fix to allow for |
| * num_moves > size */ |
| if (reg_win.lo() > bounds.lo() && !reg_file.is_empty_or_blocked(reg_win.lo()) && |
| reg_file.get_id(reg_win.lo()) == reg_file.get_id(reg_win.lo().advance(-1))) |
| continue; |
| if (reg_win.hi() < bounds.hi() && !reg_file.is_empty_or_blocked(reg_win.hi().advance(-1)) && |
| reg_file.get_id(reg_win.hi().advance(-1)) == reg_file.get_id(reg_win.hi())) |
| continue; |
| |
| /* second, check that we have at most k=num_moves elements in the window |
| * and no element is larger than the currently processed one */ |
| unsigned k = op_moves; |
| unsigned n = 0; |
| unsigned remaining_op_moves = op_moves; |
| unsigned last_var = 0; |
| bool found = true; |
| bool aligned = rc == RegClass::v4 && reg_win.lo() % 4 == 0; |
| for (const PhysReg j : reg_win) { |
| /* dead operands effectively reduce the number of estimated moves */ |
| if (is_killed_operand[j & 0xFF]) { |
| if (remaining_op_moves) { |
| k--; |
| remaining_op_moves--; |
| } |
| continue; |
| } |
| |
| if (reg_file[j] == 0 || reg_file[j] == last_var) |
| continue; |
| |
| if (reg_file[j] == 0xF0000000) { |
| k += 1; |
| n++; |
| continue; |
| } |
| |
| if (ctx.assignments[reg_file[j]].rc.size() >= size) { |
| found = false; |
| break; |
| } |
| |
| /* we cannot split live ranges of linear vgprs inside control flow */ |
| // TODO: ensure that live range splits inside control flow are never necessary |
| if (!(ctx.block->kind & block_kind_top_level) && |
| ctx.assignments[reg_file[j]].rc.is_linear_vgpr()) { |
| found = false; |
| break; |
| } |
| |
| k += ctx.assignments[reg_file[j]].rc.size(); |
| n++; |
| last_var = reg_file[j]; |
| } |
| |
| if (!found || k > num_moves) |
| continue; |
| if (k == num_moves && n < num_vars) |
| continue; |
| if (!aligned && k == num_moves && n == num_vars) |
| continue; |
| |
| if (found) { |
| best_win = reg_win; |
| num_moves = k; |
| num_vars = n; |
| } |
| } |
| |
| if (num_moves == 0xFF) |
| return {{}, false}; |
| |
| /* now, we figured the placement for our definition */ |
| RegisterFile tmp_file(reg_file); |
| |
| /* p_create_vector: also re-place killed operands in the definition space */ |
| if (instr->opcode == aco_opcode::p_create_vector) { |
| for (Operand& op : instr->operands) { |
| if (op.isTemp() && op.isFirstKillBeforeDef()) |
| tmp_file.fill(op); |
| } |
| } |
| |
| std::vector<unsigned> vars = collect_vars(ctx, tmp_file, best_win); |
| |
| /* re-enable killed operands */ |
| if (!is_phi(instr) && instr->opcode != aco_opcode::p_create_vector) { |
| for (Operand& op : instr->operands) { |
| if (op.isTemp() && op.isFirstKillBeforeDef()) |
| tmp_file.fill(op); |
| } |
| } |
| |
| std::vector<std::pair<Operand, Definition>> pc; |
| if (!get_regs_for_copies(ctx, tmp_file, pc, vars, instr, best_win)) |
| return {{}, false}; |
| |
| parallelcopies.insert(parallelcopies.end(), pc.begin(), pc.end()); |
| |
| adjust_max_used_regs(ctx, rc, best_win.lo()); |
| return {best_win.lo(), true}; |
| } |
| |
| bool |
| get_reg_specified(ra_ctx& ctx, RegisterFile& reg_file, RegClass rc, aco_ptr<Instruction>& instr, |
| PhysReg reg) |
| { |
| /* catch out-of-range registers */ |
| if (reg >= PhysReg{512}) |
| return false; |
| |
| std::pair<unsigned, unsigned> sdw_def_info; |
| if (rc.is_subdword()) |
| sdw_def_info = get_subdword_definition_info(ctx.program, instr, rc); |
| |
| if (rc.is_subdword() && reg.byte() % sdw_def_info.first) |
| return false; |
| if (!rc.is_subdword() && reg.byte()) |
| return false; |
| |
| if (rc.type() == RegType::sgpr && reg % get_stride(rc) != 0) |
| return false; |
| |
| PhysRegInterval reg_win = {reg, rc.size()}; |
| PhysRegInterval bounds = get_reg_bounds(ctx.program, rc.type()); |
| PhysRegInterval vcc_win = {vcc, 2}; |
| /* VCC is outside the bounds */ |
| bool is_vcc = rc.type() == RegType::sgpr && vcc_win.contains(reg_win) && ctx.program->needs_vcc; |
| bool is_m0 = rc == s1 && reg == m0; |
| if (!bounds.contains(reg_win) && !is_vcc && !is_m0) |
| return false; |
| |
| if (rc.is_subdword()) { |
| PhysReg test_reg; |
| test_reg.reg_b = reg.reg_b & ~(sdw_def_info.second - 1); |
| if (reg_file.test(test_reg, sdw_def_info.second)) |
| return false; |
| } else { |
| if (reg_file.test(reg, rc.bytes())) |
| return false; |
| } |
| |
| adjust_max_used_regs(ctx, rc, reg_win.lo()); |
| return true; |
| } |
| |
| bool |
| increase_register_file(ra_ctx& ctx, RegType type) |
| { |
| if (type == RegType::vgpr && ctx.program->max_reg_demand.vgpr < ctx.vgpr_limit) { |
| update_vgpr_sgpr_demand(ctx.program, RegisterDemand(ctx.program->max_reg_demand.vgpr + 1, |
| ctx.program->max_reg_demand.sgpr)); |
| } else if (type == RegType::sgpr && ctx.program->max_reg_demand.sgpr < ctx.sgpr_limit) { |
| update_vgpr_sgpr_demand(ctx.program, RegisterDemand(ctx.program->max_reg_demand.vgpr, |
| ctx.program->max_reg_demand.sgpr + 1)); |
| } else { |
| return false; |
| } |
| return true; |
| } |
| |
| struct IDAndRegClass { |
| IDAndRegClass(unsigned id_, RegClass rc_) : id(id_), rc(rc_) {} |
| |
| unsigned id; |
| RegClass rc; |
| }; |
| |
| struct IDAndInfo { |
| IDAndInfo(unsigned id_, DefInfo info_) : id(id_), info(info_) {} |
| |
| unsigned id; |
| DefInfo info; |
| }; |
| |
| /* Reallocates vars by sorting them and placing each variable after the previous |
| * one. If one of the variables has 0xffffffff as an ID, the register assigned |
| * for that variable will be returned. |
| */ |
| PhysReg |
| compact_relocate_vars(ra_ctx& ctx, const std::vector<IDAndRegClass>& vars, |
| std::vector<std::pair<Operand, Definition>>& parallelcopies, PhysReg start) |
| { |
| /* This function assumes RegisterDemand/live_var_analysis rounds up sub-dword |
| * temporary sizes to dwords. |
| */ |
| std::vector<IDAndInfo> sorted; |
| for (IDAndRegClass var : vars) { |
| DefInfo info(ctx, ctx.pseudo_dummy, var.rc, -1); |
| sorted.emplace_back(var.id, info); |
| } |
| |
| std::sort( |
| sorted.begin(), sorted.end(), |
| [&ctx](const IDAndInfo& a, const IDAndInfo& b) |
| { |
| unsigned a_stride = a.info.stride * (a.info.rc.is_subdword() ? 1 : 4); |
| unsigned b_stride = b.info.stride * (b.info.rc.is_subdword() ? 1 : 4); |
| if (a_stride > b_stride) |
| return true; |
| if (a_stride < b_stride) |
| return false; |
| if (a.id == 0xffffffff || b.id == 0xffffffff) |
| return a.id == |
| 0xffffffff; /* place 0xffffffff before others if possible, not for any reason */ |
| return ctx.assignments[a.id].reg < ctx.assignments[b.id].reg; |
| }); |
| |
| PhysReg next_reg = start; |
| PhysReg space_reg; |
| for (IDAndInfo& var : sorted) { |
| unsigned stride = var.info.rc.is_subdword() ? var.info.stride : var.info.stride * 4; |
| next_reg.reg_b = align(next_reg.reg_b, MAX2(stride, 4)); |
| |
| /* 0xffffffff is a special variable ID used reserve a space for killed |
| * operands and definitions. |
| */ |
| if (var.id != 0xffffffff) { |
| if (next_reg != ctx.assignments[var.id].reg) { |
| RegClass rc = ctx.assignments[var.id].rc; |
| Temp tmp(var.id, rc); |
| |
| Operand pc_op(tmp); |
| pc_op.setFixed(ctx.assignments[var.id].reg); |
| Definition pc_def(next_reg, rc); |
| parallelcopies.emplace_back(pc_op, pc_def); |
| } |
| } else { |
| space_reg = next_reg; |
| } |
| |
| adjust_max_used_regs(ctx, var.info.rc, next_reg); |
| |
| next_reg = next_reg.advance(var.info.rc.size() * 4); |
| } |
| |
| return space_reg; |
| } |
| |
| bool |
| is_mimg_vaddr_intact(ra_ctx& ctx, RegisterFile& reg_file, Instruction* instr) |
| { |
| PhysReg first{512}; |
| for (unsigned i = 0; i < instr->operands.size() - 3u; i++) { |
| Operand op = instr->operands[i + 3]; |
| |
| if (ctx.assignments[op.tempId()].assigned) { |
| PhysReg reg = ctx.assignments[op.tempId()].reg; |
| |
| if (first.reg() == 512) { |
| PhysRegInterval bounds = get_reg_bounds(ctx.program, RegType::vgpr); |
| first = reg.advance(i * -4); |
| PhysRegInterval vec = PhysRegInterval{first, instr->operands.size() - 3u}; |
| if (!bounds.contains(vec)) /* not enough space for other operands */ |
| return false; |
| } else { |
| if (reg != first.advance(i * 4)) /* not at the best position */ |
| return false; |
| } |
| } else { |
| /* If there's an unexpected temporary, this operand is unlikely to be |
| * placed in the best position. |
| */ |
| if (first.reg() != 512 && reg_file.test(first.advance(i * 4), 4)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| std::pair<PhysReg, bool> |
| get_reg_vector(ra_ctx& ctx, RegisterFile& reg_file, Temp temp, aco_ptr<Instruction>& instr) |
| { |
| Instruction* vec = ctx.vectors[temp.id()]; |
| unsigned first_operand = vec->format == Format::MIMG ? 3 : 0; |
| unsigned our_offset = 0; |
| for (unsigned i = first_operand; i < vec->operands.size(); i++) { |
| Operand& op = vec->operands[i]; |
| if (op.isTemp() && op.tempId() == temp.id()) |
| break; |
| else |
| our_offset += op.bytes(); |
| } |
| |
| if (vec->format != Format::MIMG || is_mimg_vaddr_intact(ctx, reg_file, vec)) { |
| unsigned their_offset = 0; |
| /* check for every operand of the vector |
| * - whether the operand is assigned and |
| * - we can use the register relative to that operand |
| */ |
| for (unsigned i = first_operand; i < vec->operands.size(); i++) { |
| Operand& op = vec->operands[i]; |
| if (op.isTemp() && op.tempId() != temp.id() && op.getTemp().type() == temp.type() && |
| ctx.assignments[op.tempId()].assigned) { |
| PhysReg reg = ctx.assignments[op.tempId()].reg; |
| reg.reg_b += (our_offset - their_offset); |
| if (get_reg_specified(ctx, reg_file, temp.regClass(), instr, reg)) |
| return {reg, true}; |
| |
| /* return if MIMG vaddr components don't remain vector-aligned */ |
| if (vec->format == Format::MIMG) |
| return {{}, false}; |
| } |
| their_offset += op.bytes(); |
| } |
| |
| /* We didn't find a register relative to other vector operands. |
| * Try to find new space which fits the whole vector. |
| */ |
| RegClass vec_rc = RegClass::get(temp.type(), their_offset); |
| DefInfo info(ctx, ctx.pseudo_dummy, vec_rc, -1); |
| std::pair<PhysReg, bool> res = get_reg_simple(ctx, reg_file, info); |
| PhysReg reg = res.first; |
| if (res.second) { |
| reg.reg_b += our_offset; |
| /* make sure to only use byte offset if the instruction supports it */ |
| if (get_reg_specified(ctx, reg_file, temp.regClass(), instr, reg)) |
| return {reg, true}; |
| } |
| } |
| return {{}, false}; |
| } |
| |
| PhysReg |
| get_reg(ra_ctx& ctx, RegisterFile& reg_file, Temp temp, |
| std::vector<std::pair<Operand, Definition>>& parallelcopies, aco_ptr<Instruction>& instr, |
| int operand_index = -1) |
| { |
| auto split_vec = ctx.split_vectors.find(temp.id()); |
| if (split_vec != ctx.split_vectors.end()) { |
| unsigned offset = 0; |
| for (Definition def : split_vec->second->definitions) { |
| if (ctx.assignments[def.tempId()].affinity) { |
| assignment& affinity = ctx.assignments[ctx.assignments[def.tempId()].affinity]; |
| if (affinity.assigned) { |
| PhysReg reg = affinity.reg; |
| reg.reg_b -= offset; |
| if (get_reg_specified(ctx, reg_file, temp.regClass(), instr, reg)) |
| return reg; |
| } |
| } |
| offset += def.bytes(); |
| } |
| } |
| |
| if (ctx.assignments[temp.id()].affinity) { |
| assignment& affinity = ctx.assignments[ctx.assignments[temp.id()].affinity]; |
| if (affinity.assigned) { |
| if (get_reg_specified(ctx, reg_file, temp.regClass(), instr, affinity.reg)) |
| return affinity.reg; |
| } |
| } |
| if (ctx.assignments[temp.id()].vcc) { |
| if (get_reg_specified(ctx, reg_file, temp.regClass(), instr, vcc)) |
| return vcc; |
| } |
| |
| std::pair<PhysReg, bool> res; |
| |
| if (ctx.vectors.find(temp.id()) != ctx.vectors.end()) { |
| res = get_reg_vector(ctx, reg_file, temp, instr); |
| if (res.second) |
| return res.first; |
| } |
| |
| DefInfo info(ctx, instr, temp.regClass(), operand_index); |
| |
| if (!ctx.policy.skip_optimistic_path) { |
| /* try to find space without live-range splits */ |
| res = get_reg_simple(ctx, reg_file, info); |
| |
| if (res.second) |
| return res.first; |
| } |
| |
| /* try to find space with live-range splits */ |
| res = get_reg_impl(ctx, reg_file, parallelcopies, info, instr); |
| |
| if (res.second) |
| return res.first; |
| |
| /* try using more registers */ |
| |
| /* We should only fail here because keeping under the limit would require |
| * too many moves. */ |
| assert(reg_file.count_zero(info.bounds) >= info.size); |
| |
| if (!increase_register_file(ctx, info.rc.type())) { |
| /* fallback algorithm: reallocate all variables at once */ |
| unsigned def_size = info.rc.size(); |
| for (Definition def : instr->definitions) { |
| if (ctx.assignments[def.tempId()].assigned && def.regClass().type() == info.rc.type()) |
| def_size += def.regClass().size(); |
| } |
| |
| unsigned killed_op_size = 0; |
| for (Operand op : instr->operands) { |
| if (op.isTemp() && op.isKillBeforeDef() && op.regClass().type() == info.rc.type()) |
| killed_op_size += op.regClass().size(); |
| } |
| |
| const PhysRegInterval regs = get_reg_bounds(ctx.program, info.rc.type()); |
| |
| /* reallocate passthrough variables and non-killed operands */ |
| std::vector<IDAndRegClass> vars; |
| for (unsigned id : find_vars(ctx, reg_file, regs)) |
| vars.emplace_back(id, ctx.assignments[id].rc); |
| vars.emplace_back(0xffffffff, RegClass(info.rc.type(), MAX2(def_size, killed_op_size))); |
| |
| PhysReg space = compact_relocate_vars(ctx, vars, parallelcopies, regs.lo()); |
| |
| /* reallocate killed operands */ |
| std::vector<IDAndRegClass> killed_op_vars; |
| for (Operand op : instr->operands) { |
| if (op.isKillBeforeDef() && op.regClass().type() == info.rc.type()) |
| killed_op_vars.emplace_back(op.tempId(), op.regClass()); |
| } |
| compact_relocate_vars(ctx, killed_op_vars, parallelcopies, space); |
| |
| /* reallocate definitions */ |
| std::vector<IDAndRegClass> def_vars; |
| for (Definition def : instr->definitions) { |
| if (ctx.assignments[def.tempId()].assigned && def.regClass().type() == info.rc.type()) |
| def_vars.emplace_back(def.tempId(), def.regClass()); |
| } |
| def_vars.emplace_back(0xffffffff, info.rc); |
| return compact_relocate_vars(ctx, def_vars, parallelcopies, space); |
| } |
| |
| return get_reg(ctx, reg_file, temp, parallelcopies, instr, operand_index); |
| } |
| |
| PhysReg |
| get_reg_create_vector(ra_ctx& ctx, RegisterFile& reg_file, Temp temp, |
| std::vector<std::pair<Operand, Definition>>& parallelcopies, |
| aco_ptr<Instruction>& instr) |
| { |
| RegClass rc = temp.regClass(); |
| /* create_vector instructions have different costs w.r.t. register coalescing */ |
| uint32_t size = rc.size(); |
| uint32_t bytes = rc.bytes(); |
| uint32_t stride = get_stride(rc); |
| PhysRegInterval bounds = get_reg_bounds(ctx.program, rc.type()); |
| |
| // TODO: improve p_create_vector for sub-dword vectors |
| |
| PhysReg best_pos{0xFFF}; |
| unsigned num_moves = 0xFF; |
| bool best_avoid = true; |
| uint32_t correct_pos_mask = 0; |
| |
| /* test for each operand which definition placement causes the least shuffle instructions */ |
| for (unsigned i = 0, offset = 0; i < instr->operands.size(); |
| offset += instr->operands[i].bytes(), i++) { |
| // TODO: think about, if we can alias live operands on the same register |
| if (!instr->operands[i].isTemp() || !instr->operands[i].isKillBeforeDef() || |
| instr->operands[i].getTemp().type() != rc.type()) |
| continue; |
| |
| if (offset > instr->operands[i].physReg().reg_b) |
| continue; |
| |
| unsigned reg_lower = instr->operands[i].physReg().reg_b - offset; |
| if (reg_lower % 4) |
| continue; |
| PhysRegInterval reg_win = {PhysReg{reg_lower / 4}, size}; |
| unsigned k = 0; |
| |
| /* no need to check multiple times */ |
| if (reg_win.lo() == best_pos) |
| continue; |
| |
| /* check borders */ |
| // TODO: this can be improved */ |
| if (!bounds.contains(reg_win) || reg_win.lo() % stride != 0) |
| continue; |
| if (reg_win.lo() > bounds.lo() && reg_file[reg_win.lo()] != 0 && |
| reg_file.get_id(reg_win.lo()) == reg_file.get_id(reg_win.lo().advance(-1))) |
| continue; |
| if (reg_win.hi() < bounds.hi() && reg_file[reg_win.hi().advance(-4)] != 0 && |
| reg_file.get_id(reg_win.hi().advance(-1)) == reg_file.get_id(reg_win.hi())) |
| continue; |
| |
| /* count variables to be moved and check "avoid" */ |
| bool avoid = false; |
| bool linear_vgpr = false; |
| for (PhysReg j : reg_win) { |
| if (reg_file[j] != 0) { |
| if (reg_file[j] == 0xF0000000) { |
| PhysReg reg; |
| reg.reg_b = j * 4; |
| unsigned bytes_left = bytes - ((unsigned)j - reg_win.lo()) * 4; |
| for (unsigned byte_idx = 0; byte_idx < MIN2(bytes_left, 4); byte_idx++, reg.reg_b++) |
| k += reg_file.test(reg, 1); |
| } else { |
| k += 4; |
| linear_vgpr |= ctx.assignments[reg_file[j]].rc.is_linear_vgpr(); |
| } |
| } |
| avoid |= ctx.war_hint[j]; |
| } |
| |
| if (linear_vgpr) { |
| /* we cannot split live ranges of linear vgprs inside control flow */ |
| if (ctx.block->kind & block_kind_top_level) |
| avoid = true; |
| else |
| continue; |
| } |
| |
| if (avoid && !best_avoid) |
| continue; |
| |
| /* count operands in wrong positions */ |
| uint32_t correct_pos_mask_new = 0; |
| for (unsigned j = 0, offset2 = 0; j < instr->operands.size(); |
| offset2 += instr->operands[j].bytes(), j++) { |
| Operand& op = instr->operands[j]; |
| if (op.isTemp() && op.physReg().reg_b == reg_win.lo() * 4 + offset2) |
| correct_pos_mask_new |= 1 << j; |
| else |
| k += op.bytes(); |
| } |
| bool aligned = rc == RegClass::v4 && reg_win.lo() % 4 == 0; |
| if (k > num_moves || (!aligned && k == num_moves)) |
| continue; |
| |
| best_pos = reg_win.lo(); |
| num_moves = k; |
| best_avoid = avoid; |
| correct_pos_mask = correct_pos_mask_new; |
| } |
| |
| /* too many moves: try the generic get_reg() function */ |
| if (num_moves >= 2 * bytes) { |
| return get_reg(ctx, reg_file, temp, parallelcopies, instr); |
| } else if (num_moves > bytes) { |
| DefInfo info(ctx, instr, rc, -1); |
| std::pair<PhysReg, bool> res = get_reg_simple(ctx, reg_file, info); |
| if (res.second) |
| return res.first; |
| } |
| |
| /* re-enable killed operands which are in the wrong position */ |
| RegisterFile tmp_file(reg_file); |
| for (Operand& op : instr->operands) { |
| if (op.isTemp() && op.isFirstKillBeforeDef()) |
| tmp_file.fill(op); |
| } |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if ((correct_pos_mask >> i) & 1u && instr->operands[i].isKill()) |
| tmp_file.clear(instr->operands[i]); |
| } |
| |
| /* collect variables to be moved */ |
| std::vector<unsigned> vars = collect_vars(ctx, tmp_file, PhysRegInterval{best_pos, size}); |
| |
| bool success = false; |
| std::vector<std::pair<Operand, Definition>> pc; |
| success = get_regs_for_copies(ctx, tmp_file, pc, vars, instr, PhysRegInterval{best_pos, size}); |
| |
| if (!success) { |
| if (!increase_register_file(ctx, temp.type())) { |
| /* use the fallback algorithm in get_reg() */ |
| return get_reg(ctx, reg_file, temp, parallelcopies, instr); |
| } |
| return get_reg_create_vector(ctx, reg_file, temp, parallelcopies, instr); |
| } |
| |
| parallelcopies.insert(parallelcopies.end(), pc.begin(), pc.end()); |
| adjust_max_used_regs(ctx, rc, best_pos); |
| |
| return best_pos; |
| } |
| |
| void |
| handle_pseudo(ra_ctx& ctx, const RegisterFile& reg_file, Instruction* instr) |
| { |
| if (instr->format != Format::PSEUDO) |
| return; |
| |
| /* all instructions which use handle_operands() need this information */ |
| switch (instr->opcode) { |
| case aco_opcode::p_extract_vector: |
| case aco_opcode::p_create_vector: |
| case aco_opcode::p_split_vector: |
| case aco_opcode::p_parallelcopy: |
| case aco_opcode::p_wqm: break; |
| default: return; |
| } |
| |
| bool writes_linear = false; |
| /* if all definitions are logical vgpr, no need to care for SCC */ |
| for (Definition& def : instr->definitions) { |
| if (def.getTemp().regClass().is_linear()) |
| writes_linear = true; |
| } |
| /* if all operands are constant, no need to care either */ |
| bool reads_linear = false; |
| bool reads_subdword = false; |
| for (Operand& op : instr->operands) { |
| if (op.isTemp() && op.getTemp().regClass().is_linear()) |
| reads_linear = true; |
| if (op.isTemp() && op.regClass().is_subdword()) |
| reads_subdword = true; |
| } |
| bool needs_scratch_reg = (writes_linear && reads_linear && reg_file[scc]) || |
| (ctx.program->gfx_level <= GFX7 && reads_subdword); |
| if (!needs_scratch_reg) |
| return; |
| |
| instr->pseudo().tmp_in_scc = reg_file[scc]; |
| |
| int reg = ctx.max_used_sgpr; |
| for (; reg >= 0 && reg_file[PhysReg{(unsigned)reg}]; reg--) |
| ; |
| if (reg < 0) { |
| reg = ctx.max_used_sgpr + 1; |
| for (; reg < ctx.program->max_reg_demand.sgpr && reg_file[PhysReg{(unsigned)reg}]; reg++) |
| ; |
| if (reg == ctx.program->max_reg_demand.sgpr) { |
| assert(reads_subdword && reg_file[m0] == 0); |
| reg = m0; |
| } |
| } |
| |
| adjust_max_used_regs(ctx, s1, reg); |
| instr->pseudo().scratch_sgpr = PhysReg{(unsigned)reg}; |
| } |
| |
| bool |
| operand_can_use_reg(amd_gfx_level gfx_level, aco_ptr<Instruction>& instr, unsigned idx, PhysReg reg, |
| RegClass rc) |
| { |
| bool is_writelane = instr->opcode == aco_opcode::v_writelane_b32 || |
| instr->opcode == aco_opcode::v_writelane_b32_e64; |
| if (gfx_level <= GFX9 && is_writelane && idx <= 1) { |
| /* v_writelane_b32 can take two sgprs but only if one is m0. */ |
| bool is_other_sgpr = |
| instr->operands[!idx].isTemp() && |
| (!instr->operands[!idx].isFixed() || instr->operands[!idx].physReg() != m0); |
| if (is_other_sgpr && instr->operands[!idx].tempId() != instr->operands[idx].tempId()) { |
| instr->operands[idx].setFixed(m0); |
| return reg == m0; |
| } |
| } |
| |
| if (reg.byte()) { |
| unsigned stride = get_subdword_operand_stride(gfx_level, instr, idx, rc); |
| if (reg.byte() % stride) |
| return false; |
| } |
| |
| switch (instr->format) { |
| case Format::SMEM: |
| return reg != scc && reg != exec && |
| (reg != m0 || idx == 1 || idx == 3) && /* offset can be m0 */ |
| (reg != vcc || (instr->definitions.empty() && idx == 2) || |
| gfx_level >= GFX10); /* sdata can be vcc */ |
| default: |
| // TODO: there are more instructions with restrictions on registers |
| return true; |
| } |
| } |
| |
| void |
| handle_fixed_operands(ra_ctx& ctx, RegisterFile& register_file, |
| std::vector<std::pair<Operand, Definition>>& parallelcopy, |
| aco_ptr<Instruction>& instr) |
| { |
| assert(instr->operands.size() <= 64); |
| |
| RegisterFile tmp_file(register_file); |
| |
| uint64_t mask = 0; |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| Operand& op = instr->operands[i]; |
| |
| if (!op.isTemp() || !op.isFixed()) |
| continue; |
| |
| PhysReg src = ctx.assignments[op.tempId()].reg; |
| |
| if (op.physReg() == src) { |
| tmp_file.block(op.physReg(), op.regClass()); |
| continue; |
| } |
| |
| bool found = false; |
| u_foreach_bit64 (j, mask) { |
| if (instr->operands[j].tempId() == op.tempId() && |
| instr->operands[j].physReg() == op.physReg()) { |
| found = true; |
| break; |
| } |
| } |
| if (found) |
| continue; /* the copy is already added to the list */ |
| |
| /* clear from register_file so fixed operands are not collected be collect_vars() */ |
| tmp_file.clear(src, op.regClass()); // TODO: try to avoid moving block vars to src |
| |
| mask |= (uint64_t)1 << i; |
| |
| Operand pc_op(instr->operands[i].getTemp(), src); |
| Definition pc_def = Definition(op.physReg(), pc_op.regClass()); |
| parallelcopy.emplace_back(pc_op, pc_def); |
| } |
| |
| if (!mask) |
| return; |
| |
| std::vector<unsigned> blocking_vars; |
| u_foreach_bit64 (i, mask) { |
| Operand& op = instr->operands[i]; |
| PhysRegInterval target{op.physReg(), op.size()}; |
| std::vector<unsigned> blocking_vars2 = collect_vars(ctx, tmp_file, target); |
| blocking_vars.insert(blocking_vars.end(), blocking_vars2.begin(), blocking_vars2.end()); |
| |
| /* prevent get_regs_for_copies() from using these registers */ |
| tmp_file.block(op.physReg(), op.regClass()); |
| } |
| |
| get_regs_for_copies(ctx, tmp_file, parallelcopy, blocking_vars, instr, PhysRegInterval()); |
| update_renames(ctx, register_file, parallelcopy, instr, |
| rename_not_killed_ops | fill_killed_ops | rename_precolored_ops); |
| } |
| |
| void |
| get_reg_for_operand(ra_ctx& ctx, RegisterFile& register_file, |
| std::vector<std::pair<Operand, Definition>>& parallelcopy, |
| aco_ptr<Instruction>& instr, Operand& operand, unsigned operand_index) |
| { |
| /* clear the operand in case it's only a stride mismatch */ |
| PhysReg src = ctx.assignments[operand.tempId()].reg; |
| register_file.clear(src, operand.regClass()); |
| PhysReg dst = get_reg(ctx, register_file, operand.getTemp(), parallelcopy, instr, operand_index); |
| |
| Operand pc_op = operand; |
| pc_op.setFixed(src); |
| Definition pc_def = Definition(dst, pc_op.regClass()); |
| parallelcopy.emplace_back(pc_op, pc_def); |
| update_renames(ctx, register_file, parallelcopy, instr, rename_not_killed_ops | fill_killed_ops); |
| } |
| |
| PhysReg |
| get_reg_phi(ra_ctx& ctx, IDSet& live_in, RegisterFile& register_file, |
| std::vector<aco_ptr<Instruction>>& instructions, Block& block, |
| aco_ptr<Instruction>& phi, Temp tmp) |
| { |
| std::vector<std::pair<Operand, Definition>> parallelcopy; |
| PhysReg reg = get_reg(ctx, register_file, tmp, parallelcopy, phi); |
| update_renames(ctx, register_file, parallelcopy, phi, rename_not_killed_ops); |
| |
| /* process parallelcopy */ |
| for (std::pair<Operand, Definition> pc : parallelcopy) { |
| /* see if it's a copy from a different phi */ |
| // TODO: prefer moving some previous phis over live-ins |
| // TODO: somehow prevent phis fixed before the RA from being updated (shouldn't be a |
| // problem in practice since they can only be fixed to exec) |
| Instruction* prev_phi = NULL; |
| std::vector<aco_ptr<Instruction>>::iterator phi_it; |
| for (phi_it = instructions.begin(); phi_it != instructions.end(); ++phi_it) { |
| if ((*phi_it)->definitions[0].tempId() == pc.first.tempId()) |
| prev_phi = phi_it->get(); |
| } |
| if (prev_phi) { |
| /* if so, just update that phi's register */ |
| prev_phi->definitions[0].setFixed(pc.second.physReg()); |
| register_file.fill(prev_phi->definitions[0]); |
| ctx.assignments[prev_phi->definitions[0].tempId()] = {pc.second.physReg(), |
| pc.second.regClass()}; |
| continue; |
| } |
| |
| /* rename */ |
| std::unordered_map<unsigned, Temp>::iterator orig_it = ctx.orig_names.find(pc.first.tempId()); |
| Temp orig = orig_it != ctx.orig_names.end() ? orig_it->second : pc.first.getTemp(); |
| ctx.orig_names[pc.second.tempId()] = orig; |
| ctx.renames[block.index][orig.id()] = pc.second.getTemp(); |
| |
| /* otherwise, this is a live-in and we need to create a new phi |
| * to move it in this block's predecessors */ |
| aco_opcode opcode = |
| pc.first.getTemp().is_linear() ? aco_opcode::p_linear_phi : aco_opcode::p_phi; |
| std::vector<unsigned>& preds = |
| pc.first.getTemp().is_linear() ? block.linear_preds : block.logical_preds; |
| aco_ptr<Instruction> new_phi{ |
| create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, preds.size(), 1)}; |
| new_phi->definitions[0] = pc.second; |
| for (unsigned i = 0; i < preds.size(); i++) |
| new_phi->operands[i] = Operand(pc.first); |
| instructions.emplace_back(std::move(new_phi)); |
| |
| /* Remove from live_in, because handle_loop_phis() would re-create this phi later if this is |
| * a loop header. |
| */ |
| live_in.erase(orig.id()); |
| } |
| |
| return reg; |
| } |
| |
| void |
| get_regs_for_phis(ra_ctx& ctx, Block& block, RegisterFile& register_file, |
| std::vector<aco_ptr<Instruction>>& instructions, IDSet& live_in) |
| { |
| /* move all phis to instructions */ |
| for (aco_ptr<Instruction>& phi : block.instructions) { |
| if (!is_phi(phi)) |
| break; |
| if (!phi->definitions[0].isKill()) |
| instructions.emplace_back(std::move(phi)); |
| } |
| |
| /* assign phis with all-matching registers to that register */ |
| for (aco_ptr<Instruction>& phi : instructions) { |
| Definition& definition = phi->definitions[0]; |
| if (definition.isFixed()) |
| continue; |
| |
| if (!phi->operands[0].isTemp()) |
| continue; |
| |
| PhysReg reg = phi->operands[0].physReg(); |
| auto OpsSame = [=](const Operand& op) -> bool |
| { return op.isTemp() && (!op.isFixed() || op.physReg() == reg); }; |
| bool all_same = std::all_of(phi->operands.cbegin() + 1, phi->operands.cend(), OpsSame); |
| if (!all_same) |
| continue; |
| |
| if (!get_reg_specified(ctx, register_file, definition.regClass(), phi, reg)) |
| continue; |
| |
| definition.setFixed(reg); |
| register_file.fill(definition); |
| ctx.assignments[definition.tempId()].set(definition); |
| } |
| |
| /* try to find a register that is used by at least one operand */ |
| for (aco_ptr<Instruction>& phi : instructions) { |
| Definition& definition = phi->definitions[0]; |
| if (definition.isFixed()) |
| continue; |
| |
| /* use affinity if available */ |
| if (ctx.assignments[definition.tempId()].affinity && |
| ctx.assignments[ctx.assignments[definition.tempId()].affinity].assigned) { |
| assignment& affinity = ctx.assignments[ctx.assignments[definition.tempId()].affinity]; |
| assert(affinity.rc == definition.regClass()); |
| if (get_reg_specified(ctx, register_file, definition.regClass(), phi, affinity.reg)) { |
| definition.setFixed(affinity.reg); |
| register_file.fill(definition); |
| ctx.assignments[definition.tempId()].set(definition); |
| continue; |
| } |
| } |
| |
| /* by going backwards, we aim to avoid copies in else-blocks */ |
| for (int i = phi->operands.size() - 1; i >= 0; i--) { |
| const Operand& op = phi->operands[i]; |
| if (!op.isTemp() || !op.isFixed()) |
| continue; |
| |
| PhysReg reg = op.physReg(); |
| if (get_reg_specified(ctx, register_file, definition.regClass(), phi, reg)) { |
| definition.setFixed(reg); |
| register_file.fill(definition); |
| ctx.assignments[definition.tempId()].set(definition); |
| break; |
| } |
| } |
| } |
| |
| /* find registers for phis where the register was blocked or no operand was assigned */ |
| |
| /* Don't use iterators because get_reg_phi() can add phis to the end of the vector. */ |
| for (unsigned i = 0; i < instructions.size(); i++) { |
| aco_ptr<Instruction>& phi = instructions[i]; |
| Definition& definition = phi->definitions[0]; |
| if (definition.isFixed()) |
| continue; |
| |
| definition.setFixed( |
| get_reg_phi(ctx, live_in, register_file, instructions, block, phi, definition.getTemp())); |
| |
| register_file.fill(definition); |
| ctx.assignments[definition.tempId()].set(definition); |
| } |
| } |
| |
| Temp |
| read_variable(ra_ctx& ctx, Temp val, unsigned block_idx) |
| { |
| std::unordered_map<unsigned, Temp>::iterator it = ctx.renames[block_idx].find(val.id()); |
| if (it == ctx.renames[block_idx].end()) |
| return val; |
| else |
| return it->second; |
| } |
| |
| Temp |
| handle_live_in(ra_ctx& ctx, Temp val, Block* block) |
| { |
| std::vector<unsigned>& preds = val.is_linear() ? block->linear_preds : block->logical_preds; |
| if (preds.size() == 0) |
| return val; |
| |
| if (preds.size() == 1) { |
| /* if the block has only one predecessor, just look there for the name */ |
| return read_variable(ctx, val, preds[0]); |
| } |
| |
| /* there are multiple predecessors and the block is sealed */ |
| Temp* const ops = (Temp*)alloca(preds.size() * sizeof(Temp)); |
| |
| /* get the rename from each predecessor and check if they are the same */ |
| Temp new_val; |
| bool needs_phi = false; |
| for (unsigned i = 0; i < preds.size(); i++) { |
| ops[i] = read_variable(ctx, val, preds[i]); |
| if (i == 0) |
| new_val = ops[i]; |
| else |
| needs_phi |= !(new_val == ops[i]); |
| } |
| |
| if (needs_phi) { |
| assert(!val.regClass().is_linear_vgpr()); |
| |
| /* the variable has been renamed differently in the predecessors: we need to insert a phi */ |
| aco_opcode opcode = val.is_linear() ? aco_opcode::p_linear_phi : aco_opcode::p_phi; |
| aco_ptr<Instruction> phi{ |
| create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, preds.size(), 1)}; |
| new_val = ctx.program->allocateTmp(val.regClass()); |
| phi->definitions[0] = Definition(new_val); |
| ctx.assignments.emplace_back(); |
| assert(ctx.assignments.size() == ctx.program->peekAllocationId()); |
| for (unsigned i = 0; i < preds.size(); i++) { |
| /* update the operands so that it uses the new affinity */ |
| phi->operands[i] = Operand(ops[i]); |
| assert(ctx.assignments[ops[i].id()].assigned); |
| assert(ops[i].regClass() == new_val.regClass()); |
| phi->operands[i].setFixed(ctx.assignments[ops[i].id()].reg); |
| } |
| block->instructions.insert(block->instructions.begin(), std::move(phi)); |
| } |
| |
| return new_val; |
| } |
| |
| void |
| handle_loop_phis(ra_ctx& ctx, const IDSet& live_in, uint32_t loop_header_idx, |
| uint32_t loop_exit_idx) |
| { |
| Block& loop_header = ctx.program->blocks[loop_header_idx]; |
| std::unordered_map<unsigned, Temp> renames; |
| |
| /* create phis for variables renamed during the loop */ |
| for (unsigned t : live_in) { |
| Temp val = Temp(t, ctx.program->temp_rc[t]); |
| Temp prev = read_variable(ctx, val, loop_header_idx - 1); |
| Temp renamed = handle_live_in(ctx, val, &loop_header); |
| if (renamed == prev) |
| continue; |
| |
| /* insert additional renames at block end, but don't overwrite */ |
| renames[prev.id()] = renamed; |
| ctx.orig_names[renamed.id()] = val; |
| for (unsigned idx = loop_header_idx; idx < loop_exit_idx; idx++) { |
| auto it = ctx.renames[idx].emplace(val.id(), renamed); |
| /* if insertion is unsuccessful, update if necessary */ |
| if (!it.second && it.first->second == prev) |
| it.first->second = renamed; |
| } |
| |
| /* update loop-carried values of the phi created by handle_live_in() */ |
| for (unsigned i = 1; i < loop_header.instructions[0]->operands.size(); i++) { |
| Operand& op = loop_header.instructions[0]->operands[i]; |
| if (op.getTemp() == prev) |
| op.setTemp(renamed); |
| } |
| |
| /* use the assignment from the loop preheader and fix def reg */ |
| assignment& var = ctx.assignments[prev.id()]; |
| ctx.assignments[renamed.id()] = var; |
| loop_header.instructions[0]->definitions[0].setFixed(var.reg); |
| } |
| |
| /* rename loop carried phi operands */ |
| for (unsigned i = renames.size(); i < loop_header.instructions.size(); i++) { |
| aco_ptr<Instruction>& phi = loop_header.instructions[i]; |
| if (!is_phi(phi)) |
| break; |
| const std::vector<unsigned>& preds = |
| phi->opcode == aco_opcode::p_phi ? loop_header.logical_preds : loop_header.linear_preds; |
| for (unsigned j = 1; j < phi->operands.size(); j++) { |
| Operand& op = phi->operands[j]; |
| if (!op.isTemp()) |
| continue; |
| |
| /* Find the original name, since this operand might not use the original name if the phi |
| * was created after init_reg_file(). |
| */ |
| std::unordered_map<unsigned, Temp>::iterator it = ctx.orig_names.find(op.tempId()); |
| Temp orig = it != ctx.orig_names.end() ? it->second : op.getTemp(); |
| |
| op.setTemp(read_variable(ctx, orig, preds[j])); |
| op.setFixed(ctx.assignments[op.tempId()].reg); |
| } |
| } |
| |
| /* return early if no new phi was created */ |
| if (renames.empty()) |
| return; |
| |
| /* propagate new renames through loop */ |
| for (unsigned idx = loop_header_idx; idx < loop_exit_idx; idx++) { |
| Block& current = ctx.program->blocks[idx]; |
| /* rename all uses in this block */ |
| for (aco_ptr<Instruction>& instr : current.instructions) { |
| /* phis are renamed after RA */ |
| if (idx == loop_header_idx && is_phi(instr)) |
| continue; |
| |
| for (Operand& op : instr->operands) { |
| if (!op.isTemp()) |
| continue; |
| |
| auto rename = renames.find(op.tempId()); |
| if (rename != renames.end()) { |
| assert(rename->second.id()); |
| op.setTemp(rename->second); |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * This function serves the purpose to correctly initialize the register file |
| * at the beginning of a block (before any existing phis). |
| * In order to do so, all live-in variables are entered into the RegisterFile. |
| * Reg-to-reg moves (renames) from previous blocks are taken into account and |
| * the SSA is repaired by inserting corresponding phi-nodes. |
| */ |
| RegisterFile |
| init_reg_file(ra_ctx& ctx, const std::vector<IDSet>& live_out_per_block, Block& block) |
| { |
| if (block.kind & block_kind_loop_exit) { |
| uint32_t header = ctx.loop_header.back(); |
| ctx.loop_header.pop_back(); |
| handle_loop_phis(ctx, live_out_per_block[header], header, block.index); |
| } |
| |
| RegisterFile register_file; |
| const IDSet& live_in = live_out_per_block[block.index]; |
| assert(block.index != 0 || live_in.empty()); |
| |
| if (block.kind & block_kind_loop_header) { |
| ctx.loop_header.emplace_back(block.index); |
| /* already rename phis incoming value */ |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| if (!is_phi(instr)) |
| break; |
| Operand& operand = instr->operands[0]; |
| if (operand.isTemp()) { |
| operand.setTemp(read_variable(ctx, operand.getTemp(), block.index - 1)); |
| operand.setFixed(ctx.assignments[operand.tempId()].reg); |
| } |
| } |
| for (unsigned t : live_in) { |
| Temp val = Temp(t, ctx.program->temp_rc[t]); |
| Temp renamed = read_variable(ctx, val, block.index - 1); |
| if (renamed != val) |
| ctx.renames[block.index][val.id()] = renamed; |
| assignment& var = ctx.assignments[renamed.id()]; |
| assert(var.assigned); |
| register_file.fill(Definition(renamed.id(), var.reg, var.rc)); |
| } |
| } else { |
| /* rename phi operands */ |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| if (!is_phi(instr)) |
| break; |
| const std::vector<unsigned>& preds = |
| instr->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds; |
| |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| Operand& operand = instr->operands[i]; |
| if (!operand.isTemp()) |
| continue; |
| operand.setTemp(read_variable(ctx, operand.getTemp(), preds[i])); |
| operand.setFixed(ctx.assignments[operand.tempId()].reg); |
| } |
| } |
| for (unsigned t : live_in) { |
| Temp val = Temp(t, ctx.program->temp_rc[t]); |
| Temp renamed = handle_live_in(ctx, val, &block); |
| assignment& var = ctx.assignments[renamed.id()]; |
| /* due to live-range splits, the live-in might be a phi, now */ |
| if (var.assigned) { |
| register_file.fill(Definition(renamed.id(), var.reg, var.rc)); |
| } |
| if (renamed != val) { |
| ctx.renames[block.index].emplace(t, renamed); |
| ctx.orig_names[renamed.id()] = val; |
| } |
| } |
| } |
| |
| return register_file; |
| } |
| |
| void |
| get_affinities(ra_ctx& ctx, std::vector<IDSet>& live_out_per_block) |
| { |
| std::vector<std::vector<Temp>> phi_ressources; |
| std::unordered_map<unsigned, unsigned> temp_to_phi_ressources; |
| |
| for (auto block_rit = ctx.program->blocks.rbegin(); block_rit != ctx.program->blocks.rend(); |
| block_rit++) { |
| Block& block = *block_rit; |
| |
| /* first, compute the death points of all live vars within the block */ |
| IDSet& live = live_out_per_block[block.index]; |
| |
| std::vector<aco_ptr<Instruction>>::reverse_iterator rit; |
| for (rit = block.instructions.rbegin(); rit != block.instructions.rend(); ++rit) { |
| aco_ptr<Instruction>& instr = *rit; |
| if (is_phi(instr)) |
| break; |
| |
| /* add vector affinities */ |
| if (instr->opcode == aco_opcode::p_create_vector) { |
| for (const Operand& op : instr->operands) { |
| if (op.isTemp() && op.isFirstKill() && |
| op.getTemp().type() == instr->definitions[0].getTemp().type()) |
| ctx.vectors[op.tempId()] = instr.get(); |
| } |
| } else if (instr->format == Format::MIMG && instr->operands.size() > 4) { |
| for (unsigned i = 3; i < instr->operands.size(); i++) |
| ctx.vectors[instr->operands[i].tempId()] = instr.get(); |
| } else if (instr->opcode == aco_opcode::p_split_vector && |
| instr->operands[0].isFirstKillBeforeDef()) { |
| ctx.split_vectors[instr->operands[0].tempId()] = instr.get(); |
| } else if (instr->isVOPC() && !instr->isVOP3()) { |
| if (!instr->isSDWA() || ctx.program->gfx_level == GFX8) |
| ctx.assignments[instr->definitions[0].tempId()].vcc = true; |
| } else if (instr->isVOP2() && !instr->isVOP3()) { |
| if (instr->operands.size() == 3 && instr->operands[2].isTemp() && |
| instr->operands[2].regClass().type() == RegType::sgpr) |
| ctx.assignments[instr->operands[2].tempId()].vcc = true; |
| if (instr->definitions.size() == 2) |
| ctx.assignments[instr->definitions[1].tempId()].vcc = true; |
| } else if (instr->opcode == aco_opcode::s_and_b32 || |
| instr->opcode == aco_opcode::s_and_b64) { |
| /* If SCC is used by a branch, we might be able to use |
| * s_cbranch_vccz/s_cbranch_vccnz if the operand is VCC. |
| */ |
| if (!instr->definitions[1].isKill() && instr->operands[0].isTemp() && |
| instr->operands[1].isFixed() && instr->operands[1].physReg() == exec) |
| ctx.assignments[instr->operands[0].tempId()].vcc = true; |
| } |
| |
| /* add operands to live variables */ |
| for (const Operand& op : instr->operands) { |
| if (op.isTemp()) |
| live.insert(op.tempId()); |
| } |
| |
| /* erase definitions from live */ |
| for (unsigned i = 0; i < instr->definitions.size(); i++) { |
| const Definition& def = instr->definitions[i]; |
| if (!def.isTemp()) |
| continue; |
| live.erase(def.tempId()); |
| /* mark last-seen phi operand */ |
| std::unordered_map<unsigned, unsigned>::iterator it = |
| temp_to_phi_ressources.find(def.tempId()); |
| if (it != temp_to_phi_ressources.end() && |
| def.regClass() == phi_ressources[it->second][0].regClass()) { |
| phi_ressources[it->second][0] = def.getTemp(); |
| /* try to coalesce phi affinities with parallelcopies */ |
| Operand op = Operand(); |
| switch (instr->opcode) { |
| case aco_opcode::p_parallelcopy: op = instr->operands[i]; break; |
| |
| case aco_opcode::v_interp_p2_f32: |
| case aco_opcode::v_writelane_b32: |
| case aco_opcode::v_writelane_b32_e64: op = instr->operands[2]; break; |
| |
| case aco_opcode::v_fma_f32: |
| case aco_opcode::v_fma_f16: |
| case aco_opcode::v_pk_fma_f16: |
| if (ctx.program->gfx_level < GFX10) |
| continue; |
| FALLTHROUGH; |
| case aco_opcode::v_mad_f32: |
| case aco_opcode::v_mad_f16: |
| if (instr->usesModifiers()) |
| continue; |
| op = instr->operands[2]; |
| break; |
| |
| case aco_opcode::v_mad_legacy_f32: |
| case aco_opcode::v_fma_legacy_f32: |
|
|