| /* |
| * Copyright © 2021 Valve Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "aco_builder.h" |
| #include "aco_ir.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <bitset> |
| #include <vector> |
| |
| namespace aco { |
| namespace { |
| |
| constexpr const size_t max_reg_cnt = 512; |
| constexpr const size_t max_sgpr_cnt = 128; |
| constexpr const size_t min_vgpr = 256; |
| constexpr const size_t max_vgpr_cnt = 256; |
| |
| struct Idx { |
| bool operator==(const Idx& other) const { return block == other.block && instr == other.instr; } |
| bool operator!=(const Idx& other) const { return !operator==(other); } |
| |
| bool found() const { return block != UINT32_MAX; } |
| |
| uint32_t block; |
| uint32_t instr; |
| }; |
| |
| /** Indicates that a register range was not yet written in the shader. */ |
| Idx not_written_yet{UINT32_MAX, 0}; |
| |
| /** Indicates that an operand is constant or undefined, not written by any instruction. */ |
| Idx const_or_undef{UINT32_MAX, 2}; |
| |
| /** |
| * Indicates that a register range was overwritten but we can't track the instruction that wrote it. |
| * Possible reasons for this: |
| * - Some registers in the range were overwritten by different instructions. |
| * - The register was used as a subdword definition which we don't support here. |
| */ |
| Idx overwritten_untrackable{UINT32_MAX, 3}; |
| |
| struct pr_opt_ctx { |
| using Idx_array = std::array<Idx, max_reg_cnt>; |
| |
| Program* program; |
| Block* current_block; |
| uint32_t current_instr_idx; |
| std::vector<uint16_t> uses; |
| std::unique_ptr<Idx_array[]> instr_idx_by_regs; |
| |
| pr_opt_ctx(Program* p) |
| : program(p), current_block(nullptr), current_instr_idx(0), uses(dead_code_analysis(p)), |
| instr_idx_by_regs(std::unique_ptr<Idx_array[]>{new Idx_array[p->blocks.size()]}) |
| {} |
| |
| ALWAYS_INLINE void reset_block_regs(const std::vector<uint32_t>& preds, |
| const unsigned block_index, const unsigned min_reg, |
| const unsigned num_regs) |
| { |
| const unsigned num_preds = preds.size(); |
| const unsigned first_pred = preds[0]; |
| |
| /* Copy information from the first predecessor. */ |
| memcpy(&instr_idx_by_regs[block_index][min_reg], &instr_idx_by_regs[first_pred][min_reg], |
| num_regs * sizeof(Idx)); |
| |
| /* Mark overwritten if it doesn't match with other predecessors. */ |
| const unsigned until_reg = min_reg + num_regs; |
| for (unsigned i = 1; i < num_preds; ++i) { |
| unsigned pred = preds[i]; |
| for (unsigned reg = min_reg; reg < until_reg; ++reg) { |
| Idx& idx = instr_idx_by_regs[block_index][reg]; |
| if (idx == overwritten_untrackable) |
| continue; |
| |
| if (idx != instr_idx_by_regs[pred][reg]) |
| idx = overwritten_untrackable; |
| } |
| } |
| } |
| |
| void reset_block(Block* block) |
| { |
| current_block = block; |
| current_instr_idx = 0; |
| |
| if ((block->kind & block_kind_loop_header) || block->linear_preds.empty()) { |
| std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(), |
| not_written_yet); |
| } else { |
| reset_block_regs(block->linear_preds, block->index, 0, max_sgpr_cnt); |
| reset_block_regs(block->linear_preds, block->index, 251, 3); |
| |
| if (!block->logical_preds.empty()) { |
| /* We assume that VGPRs are only read by blocks which have a logical predecessor, |
| * ie. any block that reads any VGPR has at least 1 logical predecessor. |
| */ |
| reset_block_regs(block->logical_preds, block->index, min_vgpr, max_vgpr_cnt); |
| } else { |
| /* If a block has no logical predecessors, it is not part of the |
| * logical CFG and therefore it also won't have any logical successors. |
| * Such a block does not write any VGPRs ever. |
| */ |
| assert(block->logical_succs.empty()); |
| } |
| } |
| } |
| |
| Instruction* get(Idx idx) { return program->blocks[idx.block].instructions[idx.instr].get(); } |
| }; |
| |
| void |
| save_reg_writes(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| for (const Definition& def : instr->definitions) { |
| assert(def.regClass().type() != RegType::sgpr || def.physReg().reg() <= 255); |
| assert(def.regClass().type() != RegType::vgpr || def.physReg().reg() >= 256); |
| |
| unsigned dw_size = DIV_ROUND_UP(def.bytes(), 4u); |
| unsigned r = def.physReg().reg(); |
| Idx idx{ctx.current_block->index, ctx.current_instr_idx}; |
| |
| if (def.regClass().is_subdword()) |
| idx = overwritten_untrackable; |
| |
| assert((r + dw_size) <= max_reg_cnt); |
| assert(def.size() == dw_size || def.regClass().is_subdword()); |
| std::fill(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r, |
| ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, idx); |
| } |
| } |
| |
| Idx |
| last_writer_idx(pr_opt_ctx& ctx, PhysReg physReg, RegClass rc) |
| { |
| /* Verify that all of the operand's registers are written by the same instruction. */ |
| assert(physReg.reg() < max_reg_cnt); |
| Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][physReg.reg()]; |
| unsigned dw_size = DIV_ROUND_UP(rc.bytes(), 4u); |
| unsigned r = physReg.reg(); |
| bool all_same = |
| std::all_of(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r, |
| ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, |
| [instr_idx](Idx i) { return i == instr_idx; }); |
| |
| return all_same ? instr_idx : overwritten_untrackable; |
| } |
| |
| Idx |
| last_writer_idx(pr_opt_ctx& ctx, const Operand& op) |
| { |
| if (op.isConstant() || op.isUndefined()) |
| return const_or_undef; |
| |
| return last_writer_idx(ctx, op.physReg(), op.regClass()); |
| } |
| |
| /** |
| * Check whether a register has been overwritten since the given location. |
| * This is an important part of checking whether certain optimizations are |
| * valid. |
| * Note that the decision is made based on registers and not on SSA IDs. |
| */ |
| bool |
| is_overwritten_since(pr_opt_ctx& ctx, PhysReg reg, RegClass rc, const Idx& since_idx) |
| { |
| /* If we didn't find an instruction, assume that the register is overwritten. */ |
| if (!since_idx.found()) |
| return true; |
| |
| /* TODO: We currently can't keep track of subdword registers. */ |
| if (rc.is_subdword()) |
| return true; |
| |
| unsigned begin_reg = reg.reg(); |
| unsigned end_reg = begin_reg + rc.size(); |
| unsigned current_block_idx = ctx.current_block->index; |
| |
| for (unsigned r = begin_reg; r < end_reg; ++r) { |
| Idx& i = ctx.instr_idx_by_regs[current_block_idx][r]; |
| if (i == overwritten_untrackable) |
| return true; |
| else if (i == not_written_yet) |
| continue; |
| |
| assert(i.found()); |
| |
| if (i.block > since_idx.block || (i.block == since_idx.block && i.instr > since_idx.instr)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <typename T> |
| bool |
| is_overwritten_since(pr_opt_ctx& ctx, const T& t, const Idx& idx) |
| { |
| return is_overwritten_since(ctx, t.physReg(), t.regClass(), idx); |
| } |
| |
| void |
| try_apply_branch_vcc(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| /* We are looking for the following pattern: |
| * |
| * vcc = ... ; last_vcc_wr |
| * sX, scc = s_and_bXX vcc, exec ; op0_instr |
| * (...vcc and exec must not be overwritten inbetween...) |
| * s_cbranch_XX scc ; instr |
| * |
| * If possible, the above is optimized into: |
| * |
| * vcc = ... ; last_vcc_wr |
| * s_cbranch_XX vcc ; instr modified to use vcc |
| */ |
| |
| /* Don't try to optimize this on GFX6-7 because SMEM may corrupt the vccz bit. */ |
| if (ctx.program->gfx_level < GFX8) |
| return; |
| |
| if (instr->format != Format::PSEUDO_BRANCH || instr->operands.size() == 0 || |
| instr->operands[0].physReg() != scc) |
| return; |
| |
| Idx op0_instr_idx = last_writer_idx(ctx, instr->operands[0]); |
| Idx last_vcc_wr_idx = last_writer_idx(ctx, vcc, ctx.program->lane_mask); |
| |
| /* We need to make sure: |
| * - the instructions that wrote the operand register and VCC are both found |
| * - the operand register used by the branch, and VCC were both written in the current block |
| * - EXEC hasn't been overwritten since the last VCC write |
| * - VCC hasn't been overwritten since the operand register was written |
| * (ie. the last VCC writer precedes the op0 writer) |
| */ |
| if (!op0_instr_idx.found() || !last_vcc_wr_idx.found() || |
| op0_instr_idx.block != ctx.current_block->index || |
| last_vcc_wr_idx.block != ctx.current_block->index || |
| is_overwritten_since(ctx, exec, ctx.program->lane_mask, last_vcc_wr_idx) || |
| is_overwritten_since(ctx, vcc, ctx.program->lane_mask, op0_instr_idx)) |
| return; |
| |
| Instruction* op0_instr = ctx.get(op0_instr_idx); |
| Instruction* last_vcc_wr = ctx.get(last_vcc_wr_idx); |
| |
| if ((op0_instr->opcode != aco_opcode::s_and_b64 /* wave64 */ && |
| op0_instr->opcode != aco_opcode::s_and_b32 /* wave32 */) || |
| op0_instr->operands[0].physReg() != vcc || op0_instr->operands[1].physReg() != exec || |
| !last_vcc_wr->isVOPC()) |
| return; |
| |
| assert(last_vcc_wr->definitions[0].tempId() == op0_instr->operands[0].tempId()); |
| |
| /* Reduce the uses of the SCC def */ |
| ctx.uses[instr->operands[0].tempId()]--; |
| /* Use VCC instead of SCC in the branch */ |
| instr->operands[0] = op0_instr->operands[0]; |
| } |
| |
| void |
| try_optimize_scc_nocompare(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| /* We are looking for the following pattern: |
| * |
| * s_bfe_u32 s0, s3, 0x40018 ; outputs SGPR and SCC if the SGPR != 0 |
| * s_cmp_eq_i32 s0, 0 ; comparison between the SGPR and 0 |
| * s_cbranch_scc0 BB3 ; use the result of the comparison, eg. branch or cselect |
| * |
| * If possible, the above is optimized into: |
| * |
| * s_bfe_u32 s0, s3, 0x40018 ; original instruction |
| * s_cbranch_scc1 BB3 ; modified to use SCC directly rather than the SGPR with comparison |
| * |
| */ |
| |
| if (!instr->isSALU() && !instr->isBranch()) |
| return; |
| |
| if (instr->isSOPC() && |
| (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 || |
| instr->opcode == aco_opcode::s_cmp_lg_u32 || instr->opcode == aco_opcode::s_cmp_lg_i32 || |
| instr->opcode == aco_opcode::s_cmp_eq_u64 || instr->opcode == aco_opcode::s_cmp_lg_u64) && |
| (instr->operands[0].constantEquals(0) || instr->operands[1].constantEquals(0)) && |
| (instr->operands[0].isTemp() || instr->operands[1].isTemp())) { |
| /* Make sure the constant is always in operand 1 */ |
| if (instr->operands[0].isConstant()) |
| std::swap(instr->operands[0], instr->operands[1]); |
| |
| if (ctx.uses[instr->operands[0].tempId()] > 1) |
| return; |
| |
| /* Find the writer instruction of Operand 0. */ |
| Idx wr_idx = last_writer_idx(ctx, instr->operands[0]); |
| if (!wr_idx.found()) |
| return; |
| |
| Instruction* wr_instr = ctx.get(wr_idx); |
| if (!wr_instr->isSALU() || wr_instr->definitions.size() < 2 || |
| wr_instr->definitions[1].physReg() != scc) |
| return; |
| |
| /* Look for instructions which set SCC := (D != 0) */ |
| switch (wr_instr->opcode) { |
| case aco_opcode::s_bfe_i32: |
| case aco_opcode::s_bfe_i64: |
| case aco_opcode::s_bfe_u32: |
| case aco_opcode::s_bfe_u64: |
| case aco_opcode::s_and_b32: |
| case aco_opcode::s_and_b64: |
| case aco_opcode::s_andn2_b32: |
| case aco_opcode::s_andn2_b64: |
| case aco_opcode::s_or_b32: |
| case aco_opcode::s_or_b64: |
| case aco_opcode::s_orn2_b32: |
| case aco_opcode::s_orn2_b64: |
| case aco_opcode::s_xor_b32: |
| case aco_opcode::s_xor_b64: |
| case aco_opcode::s_not_b32: |
| case aco_opcode::s_not_b64: |
| case aco_opcode::s_nor_b32: |
| case aco_opcode::s_nor_b64: |
| case aco_opcode::s_xnor_b32: |
| case aco_opcode::s_xnor_b64: |
| case aco_opcode::s_nand_b32: |
| case aco_opcode::s_nand_b64: |
| case aco_opcode::s_lshl_b32: |
| case aco_opcode::s_lshl_b64: |
| case aco_opcode::s_lshr_b32: |
| case aco_opcode::s_lshr_b64: |
| case aco_opcode::s_ashr_i32: |
| case aco_opcode::s_ashr_i64: |
| case aco_opcode::s_abs_i32: |
| case aco_opcode::s_absdiff_i32: break; |
| default: return; |
| } |
| |
| /* Check whether both SCC and Operand 0 are written by the same instruction. */ |
| Idx sccwr_idx = last_writer_idx(ctx, scc, s1); |
| if (wr_idx != sccwr_idx) { |
| /* Check whether the current instruction is the only user of its first operand. */ |
| if (ctx.uses[wr_instr->definitions[1].tempId()] || |
| ctx.uses[wr_instr->definitions[0].tempId()] > 1) |
| return; |
| |
| /* Check whether the operands of the writer are overwritten. */ |
| for (const Operand& op : wr_instr->operands) { |
| if (!op.isConstant() && is_overwritten_since(ctx, op, wr_idx)) |
| return; |
| } |
| |
| aco_opcode pulled_opcode = wr_instr->opcode; |
| if (instr->opcode == aco_opcode::s_cmp_eq_u32 || |
| instr->opcode == aco_opcode::s_cmp_eq_i32 || |
| instr->opcode == aco_opcode::s_cmp_eq_u64) { |
| /* When s_cmp_eq is used, it effectively inverts the SCC def. |
| * However, we can't simply invert the opcodes here because that |
| * would change the meaning of the program. |
| */ |
| return; |
| } |
| |
| Definition scc_def = instr->definitions[0]; |
| ctx.uses[wr_instr->definitions[0].tempId()]--; |
| |
| /* Copy the writer instruction, but use SCC from the current instr. |
| * This means that the original instruction will be eliminated. |
| */ |
| if (wr_instr->format == Format::SOP2) { |
| instr.reset(create_instruction<SOP2_instruction>(pulled_opcode, Format::SOP2, 2, 2)); |
| instr->operands[1] = wr_instr->operands[1]; |
| } else if (wr_instr->format == Format::SOP1) { |
| instr.reset(create_instruction<SOP1_instruction>(pulled_opcode, Format::SOP1, 1, 2)); |
| } |
| instr->definitions[0] = wr_instr->definitions[0]; |
| instr->definitions[1] = scc_def; |
| instr->operands[0] = wr_instr->operands[0]; |
| return; |
| } |
| |
| /* Use the SCC def from wr_instr */ |
| ctx.uses[instr->operands[0].tempId()]--; |
| instr->operands[0] = Operand(wr_instr->definitions[1].getTemp(), scc); |
| ctx.uses[instr->operands[0].tempId()]++; |
| |
| /* Set the opcode and operand to 32-bit */ |
| instr->operands[1] = Operand::zero(); |
| instr->opcode = |
| (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 || |
| instr->opcode == aco_opcode::s_cmp_eq_u64) |
| ? aco_opcode::s_cmp_eq_u32 |
| : aco_opcode::s_cmp_lg_u32; |
| } else if ((instr->format == Format::PSEUDO_BRANCH && instr->operands.size() == 1 && |
| instr->operands[0].physReg() == scc) || |
| instr->opcode == aco_opcode::s_cselect_b32 || |
| instr->opcode == aco_opcode::s_cselect_b64) { |
| |
| /* For cselect, operand 2 is the SCC condition */ |
| unsigned scc_op_idx = 0; |
| if (instr->opcode == aco_opcode::s_cselect_b32 || |
| instr->opcode == aco_opcode::s_cselect_b64) { |
| scc_op_idx = 2; |
| } |
| |
| Idx wr_idx = last_writer_idx(ctx, instr->operands[scc_op_idx]); |
| if (!wr_idx.found()) |
| return; |
| |
| Instruction* wr_instr = ctx.get(wr_idx); |
| |
| /* Check if we found the pattern above. */ |
| if (wr_instr->opcode != aco_opcode::s_cmp_eq_u32 && |
| wr_instr->opcode != aco_opcode::s_cmp_lg_u32) |
| return; |
| if (wr_instr->operands[0].physReg() != scc) |
| return; |
| if (!wr_instr->operands[1].constantEquals(0)) |
| return; |
| |
| /* The optimization can be unsafe when there are other users. */ |
| if (ctx.uses[instr->operands[scc_op_idx].tempId()] > 1) |
| return; |
| |
| if (wr_instr->opcode == aco_opcode::s_cmp_eq_u32) { |
| /* Flip the meaning of the instruction to correctly use the SCC. */ |
| if (instr->format == Format::PSEUDO_BRANCH) |
| instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz |
| : aco_opcode::p_cbranch_z; |
| else if (instr->opcode == aco_opcode::s_cselect_b32 || |
| instr->opcode == aco_opcode::s_cselect_b64) |
| std::swap(instr->operands[0], instr->operands[1]); |
| else |
| unreachable( |
| "scc_nocompare optimization is only implemented for p_cbranch and s_cselect"); |
| } |
| |
| /* Use the SCC def from the original instruction, not the comparison */ |
| ctx.uses[instr->operands[scc_op_idx].tempId()]--; |
| instr->operands[scc_op_idx] = wr_instr->operands[0]; |
| } |
| } |
| |
| void |
| try_combine_dpp(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| /* We are looking for the following pattern: |
| * |
| * v_mov_dpp vA, vB, ... ; move instruction with DPP |
| * v_xxx vC, vA, ... ; current instr that uses the result from the move |
| * |
| * If possible, the above is optimized into: |
| * |
| * v_xxx_dpp vC, vB, ... ; current instr modified to use DPP directly |
| * |
| */ |
| |
| if (!instr->isVALU() || instr->isDPP()) |
| return; |
| |
| for (unsigned i = 0; i < MIN2(2, instr->operands.size()); i++) { |
| Idx op_instr_idx = last_writer_idx(ctx, instr->operands[i]); |
| if (!op_instr_idx.found()) |
| continue; |
| |
| const Instruction* mov = ctx.get(op_instr_idx); |
| if (mov->opcode != aco_opcode::v_mov_b32 || !mov->isDPP()) |
| continue; |
| bool dpp8 = mov->isDPP8(); |
| if (!can_use_DPP(instr, false, dpp8)) |
| return; |
| |
| /* If we aren't going to remove the v_mov_b32, we have to ensure that it doesn't overwrite |
| * it's own operand before we use it. |
| */ |
| if (mov->definitions[0].physReg() == mov->operands[0].physReg() && |
| (!mov->definitions[0].tempId() || ctx.uses[mov->definitions[0].tempId()] > 1)) |
| continue; |
| |
| /* Don't propagate DPP if the source register is overwritten since the move. */ |
| if (is_overwritten_since(ctx, mov->operands[0], op_instr_idx)) |
| continue; |
| |
| if (i && !can_swap_operands(instr, &instr->opcode)) |
| continue; |
| |
| if (!dpp8) /* anything else doesn't make sense in SSA */ |
| assert(mov->dpp16().row_mask == 0xf && mov->dpp16().bank_mask == 0xf); |
| |
| if (--ctx.uses[mov->definitions[0].tempId()]) |
| ctx.uses[mov->operands[0].tempId()]++; |
| |
| convert_to_DPP(instr, dpp8); |
| |
| if (dpp8) { |
| DPP8_instruction* dpp = &instr->dpp8(); |
| if (i) { |
| std::swap(dpp->operands[0], dpp->operands[1]); |
| } |
| dpp->operands[0] = mov->operands[0]; |
| memcpy(dpp->lane_sel, mov->dpp8().lane_sel, sizeof(dpp->lane_sel)); |
| } else { |
| DPP16_instruction* dpp = &instr->dpp16(); |
| if (i) { |
| std::swap(dpp->operands[0], dpp->operands[1]); |
| std::swap(dpp->neg[0], dpp->neg[1]); |
| std::swap(dpp->abs[0], dpp->abs[1]); |
| } |
| dpp->operands[0] = mov->operands[0]; |
| dpp->dpp_ctrl = mov->dpp16().dpp_ctrl; |
| dpp->bound_ctrl = true; |
| dpp->neg[0] ^= mov->dpp16().neg[0] && !dpp->abs[0]; |
| dpp->abs[0] |= mov->dpp16().abs[0]; |
| } |
| return; |
| } |
| } |
| |
| void |
| process_instruction(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| /* Don't try to optimize instructions which are already dead. */ |
| if (!instr || is_dead(ctx.uses, instr.get())) { |
| instr.reset(); |
| ctx.current_instr_idx++; |
| return; |
| } |
| |
| try_apply_branch_vcc(ctx, instr); |
| |
| try_optimize_scc_nocompare(ctx, instr); |
| |
| try_combine_dpp(ctx, instr); |
| |
| if (instr) |
| save_reg_writes(ctx, instr); |
| |
| ctx.current_instr_idx++; |
| } |
| |
| } // namespace |
| |
| void |
| optimize_postRA(Program* program) |
| { |
| pr_opt_ctx ctx(program); |
| |
| /* Forward pass |
| * Goes through each instruction exactly once, and can transform |
| * instructions or adjust the use counts of temps. |
| */ |
| for (auto& block : program->blocks) { |
| ctx.reset_block(&block); |
| |
| for (aco_ptr<Instruction>& instr : block.instructions) |
| process_instruction(ctx, instr); |
| } |
| |
| /* Cleanup pass |
| * Gets rid of instructions which are manually deleted or |
| * no longer have any uses. |
| */ |
| for (auto& block : program->blocks) { |
| std::vector<aco_ptr<Instruction>> instructions; |
| instructions.reserve(block.instructions.size()); |
| |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| if (!instr || is_dead(ctx.uses, instr.get())) |
| continue; |
| |
| instructions.emplace_back(std::move(instr)); |
| } |
| |
| block.instructions = std::move(instructions); |
| } |
| } |
| |
| } // namespace aco |