| /* |
| * Copyright © 2018 Valve Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "aco_builder.h" |
| #include "aco_ir.h" |
| |
| #include "common/sid.h" |
| |
| #include <map> |
| #include <vector> |
| |
| namespace aco { |
| |
| struct lower_context { |
| Program* program; |
| Block* block; |
| std::vector<aco_ptr<Instruction>> instructions; |
| }; |
| |
| /* used by handle_operands() indirectly through Builder::copy */ |
| uint8_t int8_mul_table[512] = { |
| 0, 20, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, |
| 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, |
| 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, |
| 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, |
| 1, 40, 1, 41, 1, 42, 1, 43, 1, 44, 1, 45, 1, 46, 1, 47, 1, 48, 1, 49, |
| 1, 50, 1, 51, 1, 52, 1, 53, 1, 54, 1, 55, 1, 56, 1, 57, 1, 58, 1, 59, |
| 1, 60, 1, 61, 1, 62, 1, 63, 1, 64, 5, 13, 2, 33, 17, 19, 2, 34, 3, 23, |
| 2, 35, 11, 53, 2, 36, 7, 47, 2, 37, 3, 25, 2, 38, 7, 11, 2, 39, 53, 243, |
| 2, 40, 3, 27, 2, 41, 17, 35, 2, 42, 5, 17, 2, 43, 3, 29, 2, 44, 15, 23, |
| 2, 45, 7, 13, 2, 46, 3, 31, 2, 47, 5, 19, 2, 48, 19, 59, 2, 49, 3, 33, |
| 2, 50, 7, 51, 2, 51, 15, 41, 2, 52, 3, 35, 2, 53, 11, 33, 2, 54, 23, 27, |
| 2, 55, 3, 37, 2, 56, 9, 41, 2, 57, 5, 23, 2, 58, 3, 39, 2, 59, 7, 17, |
| 2, 60, 9, 241, 2, 61, 3, 41, 2, 62, 5, 25, 2, 63, 35, 245, 2, 64, 3, 43, |
| 5, 26, 9, 43, 3, 44, 7, 19, 10, 39, 3, 45, 4, 34, 11, 59, 3, 46, 9, 243, |
| 4, 35, 3, 47, 22, 53, 7, 57, 3, 48, 5, 29, 10, 245, 3, 49, 4, 37, 9, 45, |
| 3, 50, 7, 241, 4, 38, 3, 51, 7, 22, 5, 31, 3, 52, 7, 59, 7, 242, 3, 53, |
| 4, 40, 7, 23, 3, 54, 15, 45, 4, 41, 3, 55, 6, 241, 9, 47, 3, 56, 13, 13, |
| 5, 34, 3, 57, 4, 43, 11, 39, 3, 58, 5, 35, 4, 44, 3, 59, 6, 243, 7, 245, |
| 3, 60, 5, 241, 7, 26, 3, 61, 4, 46, 5, 37, 3, 62, 11, 17, 4, 47, 3, 63, |
| 5, 38, 5, 243, 3, 64, 7, 247, 9, 50, 5, 39, 4, 241, 33, 37, 6, 33, 13, 35, |
| 4, 242, 5, 245, 6, 247, 7, 29, 4, 51, 5, 41, 5, 246, 7, 249, 3, 240, 11, 19, |
| 5, 42, 3, 241, 4, 245, 25, 29, 3, 242, 5, 43, 4, 246, 3, 243, 17, 58, 17, 43, |
| 3, 244, 5, 249, 6, 37, 3, 245, 2, 240, 5, 45, 2, 241, 21, 23, 2, 242, 3, 247, |
| 2, 243, 5, 251, 2, 244, 29, 61, 2, 245, 3, 249, 2, 246, 17, 29, 2, 247, 9, 55, |
| 1, 240, 1, 241, 1, 242, 1, 243, 1, 244, 1, 245, 1, 246, 1, 247, 1, 248, 1, 249, |
| 1, 250, 1, 251, 1, 252, 1, 253, 1, 254, 1, 255}; |
| |
| aco_opcode |
| get_reduce_opcode(amd_gfx_level gfx_level, ReduceOp op) |
| { |
| /* Because some 16-bit instructions are already VOP3 on GFX10, we use the |
| * 32-bit opcodes (VOP2) which allows to remove the tempory VGPR and to use |
| * DPP with the arithmetic instructions. This requires to sign-extend. |
| */ |
| switch (op) { |
| case iadd8: |
| case iadd16: |
| if (gfx_level >= GFX10) { |
| return aco_opcode::v_add_u32; |
| } else if (gfx_level >= GFX8) { |
| return aco_opcode::v_add_u16; |
| } else { |
| return aco_opcode::v_add_co_u32; |
| } |
| break; |
| case imul8: |
| case imul16: |
| if (gfx_level >= GFX10) { |
| return aco_opcode::v_mul_lo_u16_e64; |
| } else if (gfx_level >= GFX8) { |
| return aco_opcode::v_mul_lo_u16; |
| } else { |
| return aco_opcode::v_mul_u32_u24; |
| } |
| break; |
| case fadd16: return aco_opcode::v_add_f16; |
| case fmul16: return aco_opcode::v_mul_f16; |
| case imax8: |
| case imax16: |
| if (gfx_level >= GFX10) { |
| return aco_opcode::v_max_i32; |
| } else if (gfx_level >= GFX8) { |
| return aco_opcode::v_max_i16; |
| } else { |
| return aco_opcode::v_max_i32; |
| } |
| break; |
| case imin8: |
| case imin16: |
| if (gfx_level >= GFX10) { |
| return aco_opcode::v_min_i32; |
| } else if (gfx_level >= GFX8) { |
| return aco_opcode::v_min_i16; |
| } else { |
| return aco_opcode::v_min_i32; |
| } |
| break; |
| case umin8: |
| case umin16: |
| if (gfx_level >= GFX10) { |
| return aco_opcode::v_min_u32; |
| } else if (gfx_level >= GFX8) { |
| return aco_opcode::v_min_u16; |
| } else { |
| return aco_opcode::v_min_u32; |
| } |
| break; |
| case umax8: |
| case umax16: |
| if (gfx_level >= GFX10) { |
| return aco_opcode::v_max_u32; |
| } else if (gfx_level >= GFX8) { |
| return aco_opcode::v_max_u16; |
| } else { |
| return aco_opcode::v_max_u32; |
| } |
| break; |
| case fmin16: return aco_opcode::v_min_f16; |
| case fmax16: return aco_opcode::v_max_f16; |
| case iadd32: return gfx_level >= GFX9 ? aco_opcode::v_add_u32 : aco_opcode::v_add_co_u32; |
| case imul32: return aco_opcode::v_mul_lo_u32; |
| case fadd32: return aco_opcode::v_add_f32; |
| case fmul32: return aco_opcode::v_mul_f32; |
| case imax32: return aco_opcode::v_max_i32; |
| case imin32: return aco_opcode::v_min_i32; |
| case umin32: return aco_opcode::v_min_u32; |
| case umax32: return aco_opcode::v_max_u32; |
| case fmin32: return aco_opcode::v_min_f32; |
| case fmax32: return aco_opcode::v_max_f32; |
| case iand8: |
| case iand16: |
| case iand32: return aco_opcode::v_and_b32; |
| case ixor8: |
| case ixor16: |
| case ixor32: return aco_opcode::v_xor_b32; |
| case ior8: |
| case ior16: |
| case ior32: return aco_opcode::v_or_b32; |
| case iadd64: return aco_opcode::num_opcodes; |
| case imul64: return aco_opcode::num_opcodes; |
| case fadd64: return aco_opcode::v_add_f64; |
| case fmul64: return aco_opcode::v_mul_f64; |
| case imin64: return aco_opcode::num_opcodes; |
| case imax64: return aco_opcode::num_opcodes; |
| case umin64: return aco_opcode::num_opcodes; |
| case umax64: return aco_opcode::num_opcodes; |
| case fmin64: return aco_opcode::v_min_f64; |
| case fmax64: return aco_opcode::v_max_f64; |
| case iand64: return aco_opcode::num_opcodes; |
| case ior64: return aco_opcode::num_opcodes; |
| case ixor64: return aco_opcode::num_opcodes; |
| default: return aco_opcode::num_opcodes; |
| } |
| } |
| |
| bool |
| is_vop3_reduce_opcode(aco_opcode opcode) |
| { |
| /* 64-bit reductions are VOP3. */ |
| if (opcode == aco_opcode::num_opcodes) |
| return true; |
| |
| return instr_info.format[(int)opcode] == Format::VOP3; |
| } |
| |
| void |
| emit_vadd32(Builder& bld, Definition def, Operand src0, Operand src1) |
| { |
| Instruction* instr = bld.vadd32(def, src0, src1, false, Operand(s2), true); |
| if (instr->definitions.size() >= 2) { |
| assert(instr->definitions[1].regClass() == bld.lm); |
| instr->definitions[1].setFixed(vcc); |
| } |
| } |
| |
| void |
| emit_int64_dpp_op(lower_context* ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, |
| PhysReg vtmp_reg, ReduceOp op, unsigned dpp_ctrl, unsigned row_mask, |
| unsigned bank_mask, bool bound_ctrl, Operand* identity = NULL) |
| { |
| Builder bld(ctx->program, &ctx->instructions); |
| Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg + 1}, v1)}; |
| Definition vtmp_def[] = {Definition(vtmp_reg, v1), Definition(PhysReg{vtmp_reg + 1}, v1)}; |
| Operand src0[] = {Operand(src0_reg, v1), Operand(PhysReg{src0_reg + 1}, v1)}; |
| Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg + 1}, v1)}; |
| Operand src1_64 = Operand(src1_reg, v2); |
| Operand vtmp_op[] = {Operand(vtmp_reg, v1), Operand(PhysReg{vtmp_reg + 1}, v1)}; |
| Operand vtmp_op64 = Operand(vtmp_reg, v2); |
| if (op == iadd64) { |
| if (ctx->program->gfx_level >= GFX10) { |
| if (identity) |
| bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); |
| bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), vtmp_op[0], src1[0]); |
| } else { |
| bld.vop2_dpp(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0], |
| dpp_ctrl, row_mask, bank_mask, bound_ctrl); |
| } |
| bld.vop2_dpp(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], |
| Operand(vcc, bld.lm), dpp_ctrl, row_mask, bank_mask, bound_ctrl); |
| } else if (op == iand64) { |
| bld.vop2_dpp(aco_opcode::v_and_b32, dst[0], src0[0], src1[0], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| bld.vop2_dpp(aco_opcode::v_and_b32, dst[1], src0[1], src1[1], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| } else if (op == ior64) { |
| bld.vop2_dpp(aco_opcode::v_or_b32, dst[0], src0[0], src1[0], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| bld.vop2_dpp(aco_opcode::v_or_b32, dst[1], src0[1], src1[1], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| } else if (op == ixor64) { |
| bld.vop2_dpp(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| bld.vop2_dpp(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) { |
| aco_opcode cmp = aco_opcode::num_opcodes; |
| switch (op) { |
| case umin64: cmp = aco_opcode::v_cmp_gt_u64; break; |
| case umax64: cmp = aco_opcode::v_cmp_lt_u64; break; |
| case imin64: cmp = aco_opcode::v_cmp_gt_i64; break; |
| case imax64: cmp = aco_opcode::v_cmp_lt_i64; break; |
| default: break; |
| } |
| |
| if (identity) { |
| bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); |
| bld.vop1(aco_opcode::v_mov_b32, vtmp_def[1], identity[1]); |
| } |
| bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[1], src0[1], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| |
| bld.vopc(cmp, bld.def(bld.lm, vcc), vtmp_op64, src1_64); |
| bld.vop2(aco_opcode::v_cndmask_b32, dst[0], vtmp_op[0], src1[0], Operand(vcc, bld.lm)); |
| bld.vop2(aco_opcode::v_cndmask_b32, dst[1], vtmp_op[1], src1[1], Operand(vcc, bld.lm)); |
| } else if (op == imul64) { |
| /* t4 = dpp(x_hi) |
| * t1 = umul_lo(t4, y_lo) |
| * t3 = dpp(x_lo) |
| * t0 = umul_lo(t3, y_hi) |
| * t2 = iadd(t0, t1) |
| * t5 = umul_hi(t3, y_lo) |
| * res_hi = iadd(t2, t5) |
| * res_lo = umul_lo(t3, y_lo) |
| * Requires that res_hi != src0[0] and res_hi != src1[0] |
| * and that vtmp[0] != res_hi. |
| */ |
| if (identity) |
| bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[1]); |
| bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[1], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[1], vtmp_op[0], src1[0]); |
| if (identity) |
| bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); |
| bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[0], vtmp_op[0], src1[1]); |
| emit_vadd32(bld, vtmp_def[1], vtmp_op[0], vtmp_op[1]); |
| if (identity) |
| bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); |
| bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| bld.vop3(aco_opcode::v_mul_hi_u32, vtmp_def[0], vtmp_op[0], src1[0]); |
| emit_vadd32(bld, dst[1], vtmp_op[1], vtmp_op[0]); |
| if (identity) |
| bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); |
| bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], vtmp_op[0], src1[0]); |
| } |
| } |
| |
| void |
| emit_int64_op(lower_context* ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, |
| ReduceOp op) |
| { |
| Builder bld(ctx->program, &ctx->instructions); |
| Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg + 1}, v1)}; |
| RegClass src0_rc = src0_reg.reg() >= 256 ? v1 : s1; |
| Operand src0[] = {Operand(src0_reg, src0_rc), Operand(PhysReg{src0_reg + 1}, src0_rc)}; |
| Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg + 1}, v1)}; |
| Operand src0_64 = Operand(src0_reg, src0_reg.reg() >= 256 ? v2 : s2); |
| Operand src1_64 = Operand(src1_reg, v2); |
| |
| if (src0_rc == s1 && |
| (op == imul64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)) { |
| assert(vtmp.reg() != 0); |
| bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), src0[0]); |
| bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + 1}, v1), src0[1]); |
| src0_reg = vtmp; |
| src0[0] = Operand(vtmp, v1); |
| src0[1] = Operand(PhysReg{vtmp + 1}, v1); |
| src0_64 = Operand(vtmp, v2); |
| } else if (src0_rc == s1 && op == iadd64) { |
| assert(vtmp.reg() != 0); |
| bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + 1}, v1), src0[1]); |
| src0[1] = Operand(PhysReg{vtmp + 1}, v1); |
| } |
| |
| if (op == iadd64) { |
| if (ctx->program->gfx_level >= GFX10) { |
| bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]); |
| } else { |
| bld.vop2(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]); |
| } |
| bld.vop2(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], |
| Operand(vcc, bld.lm)); |
| } else if (op == iand64) { |
| bld.vop2(aco_opcode::v_and_b32, dst[0], src0[0], src1[0]); |
| bld.vop2(aco_opcode::v_and_b32, dst[1], src0[1], src1[1]); |
| } else if (op == ior64) { |
| bld.vop2(aco_opcode::v_or_b32, dst[0], src0[0], src1[0]); |
| bld.vop2(aco_opcode::v_or_b32, dst[1], src0[1], src1[1]); |
| } else if (op == ixor64) { |
| bld.vop2(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0]); |
| bld.vop2(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1]); |
| } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) { |
| aco_opcode cmp = aco_opcode::num_opcodes; |
| switch (op) { |
| case umin64: cmp = aco_opcode::v_cmp_gt_u64; break; |
| case umax64: cmp = aco_opcode::v_cmp_lt_u64; break; |
| case imin64: cmp = aco_opcode::v_cmp_gt_i64; break; |
| case imax64: cmp = aco_opcode::v_cmp_lt_i64; break; |
| default: break; |
| } |
| |
| bld.vopc(cmp, bld.def(bld.lm, vcc), src0_64, src1_64); |
| bld.vop2(aco_opcode::v_cndmask_b32, dst[0], src0[0], src1[0], Operand(vcc, bld.lm)); |
| bld.vop2(aco_opcode::v_cndmask_b32, dst[1], src0[1], src1[1], Operand(vcc, bld.lm)); |
| } else if (op == imul64) { |
| if (src1_reg == dst_reg) { |
| /* it's fine if src0==dst but not if src1==dst */ |
| std::swap(src0_reg, src1_reg); |
| std::swap(src0[0], src1[0]); |
| std::swap(src0[1], src1[1]); |
| std::swap(src0_64, src1_64); |
| } |
| assert(!(src0_reg == src1_reg)); |
| /* t1 = umul_lo(x_hi, y_lo) |
| * t0 = umul_lo(x_lo, y_hi) |
| * t2 = iadd(t0, t1) |
| * t5 = umul_hi(x_lo, y_lo) |
| * res_hi = iadd(t2, t5) |
| * res_lo = umul_lo(x_lo, y_lo) |
| * assumes that it's ok to modify x_hi/y_hi, since we might not have vtmp |
| */ |
| Definition tmp0_def(PhysReg{src0_reg + 1}, v1); |
| Definition tmp1_def(PhysReg{src1_reg + 1}, v1); |
| Operand tmp0_op = src0[1]; |
| Operand tmp1_op = src1[1]; |
| bld.vop3(aco_opcode::v_mul_lo_u32, tmp0_def, src0[1], src1[0]); |
| bld.vop3(aco_opcode::v_mul_lo_u32, tmp1_def, src0[0], src1[1]); |
| emit_vadd32(bld, tmp0_def, tmp1_op, tmp0_op); |
| bld.vop3(aco_opcode::v_mul_hi_u32, tmp1_def, src0[0], src1[0]); |
| emit_vadd32(bld, dst[1], tmp0_op, tmp1_op); |
| bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], src0[0], src1[0]); |
| } |
| } |
| |
| void |
| emit_dpp_op(lower_context* ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, |
| ReduceOp op, unsigned size, unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, |
| bool bound_ctrl, Operand* identity = NULL) /* for VOP3 with sparse writes */ |
| { |
| Builder bld(ctx->program, &ctx->instructions); |
| RegClass rc = RegClass(RegType::vgpr, size); |
| Definition dst(dst_reg, rc); |
| Operand src0(src0_reg, rc); |
| Operand src1(src1_reg, rc); |
| |
| aco_opcode opcode = get_reduce_opcode(ctx->program->gfx_level, op); |
| bool vop3 = is_vop3_reduce_opcode(opcode); |
| |
| if (!vop3) { |
| if (opcode == aco_opcode::v_add_co_u32) |
| bld.vop2_dpp(opcode, dst, bld.def(bld.lm, vcc), src0, src1, dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl); |
| else |
| bld.vop2_dpp(opcode, dst, src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl); |
| return; |
| } |
| |
| if (opcode == aco_opcode::num_opcodes) { |
| emit_int64_dpp_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op, dpp_ctrl, row_mask, bank_mask, |
| bound_ctrl, identity); |
| return; |
| } |
| |
| if (identity) |
| bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]); |
| if (identity && size >= 2) |
| bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + 1}, v1), identity[1]); |
| |
| for (unsigned i = 0; i < size; i++) |
| bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + i}, v1), |
| Operand(PhysReg{src0_reg + i}, v1), dpp_ctrl, row_mask, bank_mask, bound_ctrl); |
| |
| bld.vop3(opcode, dst, Operand(vtmp, rc), src1); |
| } |
| |
| void |
| emit_op(lower_context* ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, |
| ReduceOp op, unsigned size) |
| { |
| Builder bld(ctx->program, &ctx->instructions); |
| RegClass rc = RegClass(RegType::vgpr, size); |
| Definition dst(dst_reg, rc); |
| Operand src0(src0_reg, RegClass(src0_reg.reg() >= 256 ? RegType::vgpr : RegType::sgpr, size)); |
| Operand src1(src1_reg, rc); |
| |
| aco_opcode opcode = get_reduce_opcode(ctx->program->gfx_level, op); |
| bool vop3 = is_vop3_reduce_opcode(opcode); |
| |
| if (opcode == aco_opcode::num_opcodes) { |
| emit_int64_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op); |
| return; |
| } |
| |
| if (vop3) { |
| bld.vop3(opcode, dst, src0, src1); |
| } else if (opcode == aco_opcode::v_add_co_u32) { |
| bld.vop2(opcode, dst, bld.def(bld.lm, vcc), src0, src1); |
| } else { |
| bld.vop2(opcode, dst, src0, src1); |
| } |
| } |
| |
| void |
| emit_dpp_mov(lower_context* ctx, PhysReg dst, PhysReg src0, unsigned size, unsigned dpp_ctrl, |
| unsigned row_mask, unsigned bank_mask, bool bound_ctrl) |
| { |
| Builder bld(ctx->program, &ctx->instructions); |
| for (unsigned i = 0; i < size; i++) { |
| bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{dst + i}, v1), |
| Operand(PhysReg{src0 + i}, v1), dpp_ctrl, row_mask, bank_mask, bound_ctrl); |
| } |
| } |
| |
| void |
| emit_ds_swizzle(Builder bld, PhysReg dst, PhysReg src, unsigned size, unsigned ds_pattern) |
| { |
| for (unsigned i = 0; i < size; i++) { |
| bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{dst + i}, v1), |
| Operand(PhysReg{src + i}, v1), ds_pattern); |
| } |
| } |
| |
| void |
| emit_reduction(lower_context* ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, |
| PhysReg tmp, PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst) |
| { |
| assert(cluster_size == ctx->program->wave_size || op == aco_opcode::p_reduce); |
| assert(cluster_size <= ctx->program->wave_size); |
| |
| Builder bld(ctx->program, &ctx->instructions); |
| |
| Operand identity[2]; |
| identity[0] = Operand::c32(get_reduction_identity(reduce_op, 0)); |
| identity[1] = Operand::c32(get_reduction_identity(reduce_op, 1)); |
| Operand vcndmask_identity[2] = {identity[0], identity[1]}; |
| |
| /* First, copy the source to tmp and set inactive lanes to the identity */ |
| bld.sop1(Builder::s_or_saveexec, Definition(stmp, bld.lm), Definition(scc, s1), |
| Definition(exec, bld.lm), Operand::c64(UINT64_MAX), Operand(exec, bld.lm)); |
| |
| for (unsigned i = 0; i < src.size(); i++) { |
| /* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32 |
| * except on GFX10, where v_writelane_b32 can take a literal. */ |
| if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan && |
| ctx->program->gfx_level < GFX10) { |
| bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp + i}, s1), identity[i]); |
| identity[i] = Operand(PhysReg{sitmp + i}, s1); |
| |
| bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp + i}, v1), identity[i]); |
| vcndmask_identity[i] = Operand(PhysReg{tmp + i}, v1); |
| } else if (identity[i].isLiteral()) { |
| bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp + i}, v1), identity[i]); |
| vcndmask_identity[i] = Operand(PhysReg{tmp + i}, v1); |
| } |
| } |
| |
| for (unsigned i = 0; i < src.size(); i++) { |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1), |
| vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1), |
| Operand(stmp, bld.lm)); |
| } |
| |
| if (src.regClass() == v1b) { |
| if (ctx->program->gfx_level >= GFX8 && ctx->program->gfx_level < GFX11) { |
| aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>( |
| aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)}; |
| sdwa->operands[0] = Operand(PhysReg{tmp}, v1); |
| sdwa->definitions[0] = Definition(PhysReg{tmp}, v1); |
| bool sext = reduce_op == imin8 || reduce_op == imax8; |
| sdwa->sel[0] = SubdwordSel(1, 0, sext); |
| sdwa->dst_sel = SubdwordSel::dword; |
| bld.insert(std::move(sdwa)); |
| } else { |
| aco_opcode opcode; |
| |
| if (reduce_op == imin8 || reduce_op == imax8) |
| opcode = aco_opcode::v_bfe_i32; |
| else |
| opcode = aco_opcode::v_bfe_u32; |
| |
| bld.vop3(opcode, Definition(PhysReg{tmp}, v1), Operand(PhysReg{tmp}, v1), Operand::zero(), |
| Operand::c32(8u)); |
| } |
| } else if (src.regClass() == v2b) { |
| bool is_add_cmp = reduce_op == iadd16 || reduce_op == imax16 || reduce_op == imin16 || |
| reduce_op == umin16 || reduce_op == umax16; |
| if (ctx->program->gfx_level >= GFX10 && ctx->program->gfx_level < GFX11 && is_add_cmp) { |
| aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>( |
| aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)}; |
| sdwa->operands[0] = Operand(PhysReg{tmp}, v1); |
| sdwa->definitions[0] = Definition(PhysReg{tmp}, v1); |
| bool sext = reduce_op == imin16 || reduce_op == imax16 || reduce_op == iadd16; |
| sdwa->sel[0] = SubdwordSel(2, 0, sext); |
| sdwa->dst_sel = SubdwordSel::dword; |
| bld.insert(std::move(sdwa)); |
| } else if (ctx->program->gfx_level <= GFX7 || |
| (ctx->program->gfx_level >= GFX11 && is_add_cmp)) { |
| aco_opcode opcode; |
| |
| if (reduce_op == imin16 || reduce_op == imax16 || reduce_op == iadd16) |
| opcode = aco_opcode::v_bfe_i32; |
| else |
| opcode = aco_opcode::v_bfe_u32; |
| |
| bld.vop3(opcode, Definition(PhysReg{tmp}, v1), Operand(PhysReg{tmp}, v1), Operand::zero(), |
| Operand::c32(16u)); |
| } |
| } |
| |
| bool reduction_needs_last_op = false; |
| switch (op) { |
| case aco_opcode::p_reduce: |
| if (cluster_size == 1) |
| break; |
| |
| if (ctx->program->gfx_level <= GFX7) { |
| reduction_needs_last_op = true; |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(1, 0, 3, 2)); |
| if (cluster_size == 2) |
| break; |
| emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(2, 3, 0, 1)); |
| if (cluster_size == 4) |
| break; |
| emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x04)); |
| if (cluster_size == 8) |
| break; |
| emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x08)); |
| if (cluster_size == 16) |
| break; |
| emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10)); |
| if (cluster_size == 32) |
| break; |
| emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); |
| for (unsigned i = 0; i < src.size(); i++) |
| bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1), |
| Operand::zero()); |
| // TODO: it would be more effective to do the last reduction step on SALU |
| emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size()); |
| reduction_needs_last_op = false; |
| break; |
| } |
| |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(1, 0, 3, 2), 0xf, |
| 0xf, false); |
| if (cluster_size == 2) |
| break; |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(2, 3, 0, 1), 0xf, |
| 0xf, false); |
| if (cluster_size == 4) |
| break; |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_half_mirror, 0xf, 0xf, |
| false); |
| if (cluster_size == 8) |
| break; |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_mirror, 0xf, 0xf, false); |
| if (cluster_size == 16) |
| break; |
| |
| if (ctx->program->gfx_level >= GFX10) { |
| /* GFX10+ doesn't support row_bcast15 and row_bcast31 */ |
| for (unsigned i = 0; i < src.size(); i++) |
| bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp + i}, v1), |
| Operand(PhysReg{tmp + i}, v1), Operand::zero(), Operand::zero()); |
| |
| if (cluster_size == 32) { |
| reduction_needs_last_op = true; |
| break; |
| } |
| |
| emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); |
| for (unsigned i = 0; i < src.size(); i++) |
| bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1), |
| Operand::zero()); |
| // TODO: it would be more effective to do the last reduction step on SALU |
| emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size()); |
| break; |
| } |
| |
| if (cluster_size == 32) { |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10)); |
| reduction_needs_last_op = true; |
| break; |
| } |
| assert(cluster_size == 64); |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, |
| false); |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, |
| false); |
| break; |
| case aco_opcode::p_exclusive_scan: |
| if (ctx->program->gfx_level >= GFX10) { /* gfx10 doesn't support wf_sr1, so emulate it */ |
| /* shift rows right */ |
| emit_dpp_mov(ctx, vtmp, tmp, src.size(), dpp_row_sr(1), 0xf, 0xf, true); |
| |
| /* fill in the gaps in rows 1 and 3 */ |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0x10000u)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand::c32(0x10000u)); |
| for (unsigned i = 0; i < src.size(); i++) { |
| Instruction* perm = |
| bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp + i}, v1), |
| Operand(PhysReg{tmp + i}, v1), Operand::c32(0xffffffffu), |
| Operand::c32(0xffffffffu)) |
| .instr; |
| perm->vop3().opsel = 1; /* FI (Fetch Inactive) */ |
| } |
| bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand::c64(UINT64_MAX)); |
| |
| if (ctx->program->wave_size == 64) { |
| /* fill in the gap in row 2 */ |
| for (unsigned i = 0; i < src.size(); i++) { |
| bld.readlane(Definition(PhysReg{sitmp + i}, s1), Operand(PhysReg{tmp + i}, v1), |
| Operand::c32(31u)); |
| bld.writelane(Definition(PhysReg{vtmp + i}, v1), Operand(PhysReg{sitmp + i}, s1), |
| Operand::c32(32u), Operand(PhysReg{vtmp + i}, v1)); |
| } |
| } |
| std::swap(tmp, vtmp); |
| } else if (ctx->program->gfx_level >= GFX8) { |
| emit_dpp_mov(ctx, tmp, tmp, src.size(), dpp_wf_sr1, 0xf, 0xf, true); |
| } else { |
| // TODO: use LDS on CS with a single write and shifted read |
| /* wavefront shift_right by 1 on SI/CI */ |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(0, 0, 1, 2)); |
| emit_ds_swizzle(bld, tmp, tmp, src.size(), |
| ds_pattern_bitmode(0x1F, 0x00, 0x07)); /* mirror(8) */ |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0x10101010u)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); |
| for (unsigned i = 0; i < src.size(); i++) |
| bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + i}, v1), |
| Operand(PhysReg{tmp + i}, v1)); |
| |
| bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX)); |
| emit_ds_swizzle(bld, tmp, tmp, src.size(), |
| ds_pattern_bitmode(0x1F, 0x00, 0x08)); /* swap(8) */ |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0x01000100u)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); |
| for (unsigned i = 0; i < src.size(); i++) |
| bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + i}, v1), |
| Operand(PhysReg{tmp + i}, v1)); |
| |
| bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX)); |
| emit_ds_swizzle(bld, tmp, tmp, src.size(), |
| ds_pattern_bitmode(0x1F, 0x00, 0x10)); /* swap(16) */ |
| bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand::c32(1u), |
| Operand::c32(16u)); |
| bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand::c32(1u), |
| Operand::c32(16u)); |
| for (unsigned i = 0; i < src.size(); i++) |
| bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + i}, v1), |
| Operand(PhysReg{tmp + i}, v1)); |
| |
| bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX)); |
| for (unsigned i = 0; i < src.size(); i++) { |
| bld.writelane(Definition(PhysReg{vtmp + i}, v1), identity[i], Operand::zero(), |
| Operand(PhysReg{vtmp + i}, v1)); |
| bld.readlane(Definition(PhysReg{sitmp + i}, s1), Operand(PhysReg{tmp + i}, v1), |
| Operand::zero()); |
| bld.writelane(Definition(PhysReg{vtmp + i}, v1), Operand(PhysReg{sitmp + i}, s1), |
| Operand::c32(32u), Operand(PhysReg{vtmp + i}, v1)); |
| identity[i] = Operand::zero(); /* prevent further uses of identity */ |
| } |
| std::swap(tmp, vtmp); |
| } |
| |
| for (unsigned i = 0; i < src.size(); i++) { |
| if (!identity[i].isConstant() || |
| identity[i].constantValue()) { /* bound_ctrl should take care of this overwise */ |
| if (ctx->program->gfx_level < GFX10) |
| assert((identity[i].isConstant() && !identity[i].isLiteral()) || |
| identity[i].physReg() == PhysReg{sitmp + i}); |
| bld.writelane(Definition(PhysReg{tmp + i}, v1), identity[i], Operand::zero(), |
| Operand(PhysReg{tmp + i}, v1)); |
| } |
| } |
| FALLTHROUGH; |
| case aco_opcode::p_inclusive_scan: |
| assert(cluster_size == ctx->program->wave_size); |
| if (ctx->program->gfx_level <= GFX7) { |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1e, 0x00, 0x00)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0xAAAAAAAAu)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); |
| emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); |
| |
| bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX)); |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1c, 0x01, 0x00)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0xCCCCCCCCu)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); |
| emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); |
| |
| bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX)); |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x18, 0x03, 0x00)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0xF0F0F0F0u)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); |
| emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); |
| |
| bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX)); |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x10, 0x07, 0x00)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0xFF00FF00u)); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); |
| emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); |
| |
| bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX)); |
| emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x00, 0x0f, 0x00)); |
| bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand::c32(16u), |
| Operand::c32(16u)); |
| bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand::c32(16u), |
| Operand::c32(16u)); |
| emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); |
| |
| for (unsigned i = 0; i < src.size(); i++) |
| bld.readlane(Definition(PhysReg{sitmp + i}, s1), Operand(PhysReg{tmp + i}, v1), |
| Operand::c32(31u)); |
| bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand::c32(32u), |
| Operand::c32(32u)); |
| emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size()); |
| break; |
| } |
| |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(1), 0xf, 0xf, false, |
| identity); |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(2), 0xf, 0xf, false, |
| identity); |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(4), 0xf, 0xf, false, |
| identity); |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(8), 0xf, 0xf, false, |
| identity); |
| if (ctx->program->gfx_level >= GFX10) { |
| bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand::c32(16u), |
| Operand::c32(16u)); |
| bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand::c32(16u), |
| Operand::c32(16u)); |
| for (unsigned i = 0; i < src.size(); i++) { |
| Instruction* perm = |
| bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp + i}, v1), |
| Operand(PhysReg{tmp + i}, v1), Operand::c32(0xffffffffu), |
| Operand::c32(0xffffffffu)) |
| .instr; |
| perm->vop3().opsel = 1; /* FI (Fetch Inactive) */ |
| } |
| emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); |
| |
| if (ctx->program->wave_size == 64) { |
| bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand::c32(32u), |
| Operand::c32(32u)); |
| for (unsigned i = 0; i < src.size(); i++) |
| bld.readlane(Definition(PhysReg{sitmp + i}, s1), Operand(PhysReg{tmp + i}, v1), |
| Operand::c32(31u)); |
| emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size()); |
| } |
| } else { |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, |
| false, identity); |
| emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, |
| false, identity); |
| } |
| break; |
| default: unreachable("Invalid reduction mode"); |
| } |
| |
| if (op == aco_opcode::p_reduce) { |
| if (reduction_needs_last_op && dst.regClass().type() == RegType::vgpr) { |
| bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm)); |
| emit_op(ctx, dst.physReg(), tmp, vtmp, PhysReg{0}, reduce_op, src.size()); |
| return; |
| } |
| |
| if (reduction_needs_last_op) |
| emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); |
| } |
| |
| /* restore exec */ |
| bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm)); |
| |
| if (dst.regClass().type() == RegType::sgpr) { |
| for (unsigned k = 0; k < src.size(); k++) { |
| bld.readlane(Definition(PhysReg{dst.physReg() + k}, s1), Operand(PhysReg{tmp + k}, v1), |
| Operand::c32(ctx->program->wave_size - 1)); |
| } |
| } else if (dst.physReg() != tmp) { |
| for (unsigned k = 0; k < src.size(); k++) { |
| bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, v1), |
| Operand(PhysReg{tmp + k}, v1)); |
| } |
| } |
| } |
| |
| void |
| emit_gfx10_wave64_bpermute(Program* program, aco_ptr<Instruction>& instr, Builder& bld) |
| { |
| /* Emulates proper bpermute on GFX10 in wave64 mode. |
| * |
| * This is necessary because on GFX10 the bpermute instruction only works |
| * on half waves (you can think of it as having a cluster size of 32), so we |
| * manually swap the data between the two halves using two shared VGPRs. |
| */ |
| |
| assert(program->gfx_level >= GFX10); |
| assert(program->wave_size == 64); |
| |
| unsigned shared_vgpr_reg_0 = align(program->config->num_vgprs, 4) + 256; |
| Definition dst = instr->definitions[0]; |
| Definition tmp_exec = instr->definitions[1]; |
| Definition clobber_scc = instr->definitions[2]; |
| Operand index_x4 = instr->operands[0]; |
| Operand input_data = instr->operands[1]; |
| Operand same_half = instr->operands[2]; |
| |
| assert(dst.regClass() == v1); |
| assert(tmp_exec.regClass() == bld.lm); |
| assert(clobber_scc.isFixed() && clobber_scc.physReg() == scc); |
| assert(same_half.regClass() == bld.lm); |
| assert(index_x4.regClass() == v1); |
| assert(input_data.regClass().type() == RegType::vgpr); |
| assert(input_data.bytes() <= 4); |
| assert(dst.physReg() != index_x4.physReg()); |
| assert(dst.physReg() != input_data.physReg()); |
| assert(tmp_exec.physReg() != same_half.physReg()); |
| |
| PhysReg shared_vgpr_lo(shared_vgpr_reg_0); |
| PhysReg shared_vgpr_hi(shared_vgpr_reg_0 + 1); |
| |
| /* Permute the input within the same half-wave */ |
| bld.ds(aco_opcode::ds_bpermute_b32, dst, index_x4, input_data); |
| |
| /* HI: Copy data from high lanes 32-63 to shared vgpr */ |
| bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(shared_vgpr_hi, v1), input_data, |
| dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false); |
| /* Save EXEC */ |
| bld.sop1(aco_opcode::s_mov_b64, tmp_exec, Operand(exec, s2)); |
| /* Set EXEC to enable LO lanes only */ |
| bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand::c32(32u), Operand::zero()); |
| /* LO: Copy data from low lanes 0-31 to shared vgpr */ |
| bld.vop1(aco_opcode::v_mov_b32, Definition(shared_vgpr_lo, v1), input_data); |
| /* LO: bpermute shared vgpr (high lanes' data) */ |
| bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_hi, v1), index_x4, |
| Operand(shared_vgpr_hi, v1)); |
| /* Set EXEC to enable HI lanes only */ |
| bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand::c32(32u), Operand::c32(32u)); |
| /* HI: bpermute shared vgpr (low lanes' data) */ |
| bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_lo, v1), index_x4, |
| Operand(shared_vgpr_lo, v1)); |
| |
| /* Only enable lanes which use the other half's data */ |
| bld.sop2(aco_opcode::s_andn2_b64, Definition(exec, s2), clobber_scc, |
| Operand(tmp_exec.physReg(), s2), same_half); |
| /* LO: Copy shared vgpr (high lanes' bpermuted data) to output vgpr */ |
| bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_hi, v1), dpp_quad_perm(0, 1, 2, 3), |
| 0x3, 0xf, false); |
| /* HI: Copy shared vgpr (low lanes' bpermuted data) to output vgpr */ |
| bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_lo, v1), dpp_quad_perm(0, 1, 2, 3), |
| 0xc, 0xf, false); |
| |
| /* Restore saved EXEC */ |
| bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(tmp_exec.physReg(), s2)); |
| |
| /* RA assumes that the result is always in the low part of the register, so we have to shift, if |
| * it's not there already */ |
| if (input_data.physReg().byte()) { |
| unsigned right_shift = input_data.physReg().byte() * 8; |
| bld.vop2(aco_opcode::v_lshrrev_b32, dst, Operand::c32(right_shift), |
| Operand(dst.physReg(), v1)); |
| } |
| } |
| |
| void |
| emit_gfx6_bpermute(Program* program, aco_ptr<Instruction>& instr, Builder& bld) |
| { |
| /* Emulates bpermute using readlane instructions */ |
| |
| Operand index = instr->operands[0]; |
| Operand input = instr->operands[1]; |
| Definition dst = instr->definitions[0]; |
| Definition temp_exec = instr->definitions[1]; |
| Definition clobber_vcc = instr->definitions[2]; |
| |
| assert(dst.regClass() == v1); |
| assert(temp_exec.regClass() == bld.lm); |
| assert(clobber_vcc.regClass() == bld.lm); |
| assert(clobber_vcc.physReg() == vcc); |
| assert(index.regClass() == v1); |
| assert(index.physReg() != dst.physReg()); |
| assert(input.regClass().type() == RegType::vgpr); |
| assert(input.bytes() <= 4); |
| assert(input.physReg() != dst.physReg()); |
| |
| /* Save original EXEC */ |
| bld.sop1(aco_opcode::s_mov_b64, temp_exec, Operand(exec, s2)); |
| |
| /* An "unrolled loop" that is executed per each lane. |
| * This takes only a few instructions per lane, as opposed to a "real" loop |
| * with branching, where the branch instruction alone would take 16+ cycles. |
| */ |
| for (unsigned n = 0; n < program->wave_size; ++n) { |
| /* Activate the lane which has N for its source index */ |
| bld.vopc(aco_opcode::v_cmpx_eq_u32, Definition(exec, bld.lm), clobber_vcc, Operand::c32(n), |
| index); |
| /* Read the data from lane N */ |
| bld.readlane(Definition(vcc, s1), input, Operand::c32(n)); |
| /* On the active lane, move the data we read from lane N to the destination VGPR */ |
| bld.vop1(aco_opcode::v_mov_b32, dst, Operand(vcc, s1)); |
| /* Restore original EXEC */ |
| bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(temp_exec.physReg(), s2)); |
| } |
| } |
| |
| struct copy_operation { |
| Operand op; |
| Definition def; |
| unsigned bytes; |
| union { |
| uint8_t uses[8]; |
| uint64_t is_used = 0; |
| }; |
| }; |
| |
| void |
| split_copy(lower_context* ctx, unsigned offset, Definition* def, Operand* op, |
| const copy_operation& src, bool ignore_uses, unsigned max_size) |
| { |
| PhysReg def_reg = src.def.physReg(); |
| PhysReg op_reg = src.op.physReg(); |
| def_reg.reg_b += offset; |
| op_reg.reg_b += offset; |
| |
| /* 64-bit VGPR copies (implemented with v_lshrrev_b64) are slow before GFX10 */ |
| if (ctx->program->gfx_level < GFX10 && src.def.regClass().type() == RegType::vgpr) |
| max_size = MIN2(max_size, 4); |
| unsigned max_align = src.def.regClass().type() == RegType::vgpr ? 4 : 16; |
| |
| /* make sure the size is a power of two and reg % bytes == 0 */ |
| unsigned bytes = 1; |
| for (; bytes <= max_size; bytes *= 2) { |
| unsigned next = bytes * 2u; |
| bool can_increase = def_reg.reg_b % MIN2(next, max_align) == 0 && |
| offset + next <= src.bytes && next <= max_size; |
| if (!src.op.isConstant() && can_increase) |
| can_increase = op_reg.reg_b % MIN2(next, max_align) == 0; |
| for (unsigned i = 0; !ignore_uses && can_increase && (i < bytes); i++) |
| can_increase = (src.uses[offset + bytes + i] == 0) == (src.uses[offset] == 0); |
| if (!can_increase) |
| break; |
| } |
| |
| *def = Definition(src.def.tempId(), def_reg, src.def.regClass().resize(bytes)); |
| if (src.op.isConstant()) { |
| assert(bytes >= 1 && bytes <= 8); |
| uint64_t val = src.op.constantValue64() >> (offset * 8u); |
| *op = Operand::get_const(ctx->program->gfx_level, val, bytes); |
| } else { |
| RegClass op_cls = src.op.regClass().resize(bytes); |
| *op = Operand(op_reg, op_cls); |
| op->setTemp(Temp(src.op.tempId(), op_cls)); |
| } |
| } |
| |
| uint32_t |
| get_intersection_mask(int a_start, int a_size, int b_start, int b_size) |
| { |
| int intersection_start = MAX2(b_start - a_start, 0); |
| int intersection_end = MAX2(b_start + b_size - a_start, 0); |
| if (intersection_start >= a_size || intersection_end == 0) |
| return 0; |
| |
| uint32_t mask = u_bit_consecutive(0, a_size); |
| return u_bit_consecutive(intersection_start, intersection_end - intersection_start) & mask; |
| } |
| |
| /* src1 are bytes 0-3. dst/src0 are bytes 4-7. */ |
| void |
| create_bperm(Builder& bld, uint8_t swiz[4], Definition dst, Operand src1, |
| Operand src0 = Operand(v1)) |
| { |
| uint32_t swiz_packed = |
| swiz[0] | ((uint32_t)swiz[1] << 8) | ((uint32_t)swiz[2] << 16) | ((uint32_t)swiz[3] << 24); |
| |
| dst = Definition(PhysReg(dst.physReg().reg()), v1); |
| if (!src1.isConstant()) |
| src1 = Operand(PhysReg(src1.physReg().reg()), v1); |
| if (src0.isUndefined()) |
| src0 = Operand(dst.physReg(), v1); |
| else if (!src0.isConstant()) |
| src0 = Operand(PhysReg(src0.physReg().reg()), v1); |
| bld.vop3(aco_opcode::v_perm_b32, dst, src0, src1, Operand::c32(swiz_packed)); |
| } |
| |
| void |
| copy_constant(lower_context* ctx, Builder& bld, Definition dst, Operand op) |
| { |
| assert(op.bytes() == dst.bytes()); |
| |
| if (dst.bytes() == 4 && op.isLiteral()) { |
| uint32_t imm = op.constantValue(); |
| if (dst.regClass() == s1 && (imm >= 0xffff8000 || imm <= 0x7fff)) { |
| bld.sopk(aco_opcode::s_movk_i32, dst, imm & 0xFFFFu); |
| return; |
| } else if (util_bitreverse(imm) <= 64 || util_bitreverse(imm) >= 0xFFFFFFF0) { |
| uint32_t rev = util_bitreverse(imm); |
| if (dst.regClass() == s1) |
| bld.sop1(aco_opcode::s_brev_b32, dst, Operand::c32(rev)); |
| else |
| bld.vop1(aco_opcode::v_bfrev_b32, dst, Operand::c32(rev)); |
| return; |
| } else if (dst.regClass() == s1 && imm != 0) { |
| unsigned start = (ffs(imm) - 1) & 0x1f; |
| unsigned size = util_bitcount(imm) & 0x1f; |
| if ((((1u << size) - 1u) << start) == imm) { |
| bld.sop2(aco_opcode::s_bfm_b32, dst, Operand::c32(size), Operand::c32(start)); |
| return; |
| } |
| } |
| } |
| |
| if (op.bytes() == 4 && op.constantEquals(0x3e22f983) && ctx->program->gfx_level >= GFX8) |
| op.setFixed(PhysReg{248}); /* it can be an inline constant on GFX8+ */ |
| |
| if (dst.regClass() == s1) { |
| bld.sop1(aco_opcode::s_mov_b32, dst, op); |
| } else if (dst.regClass() == s2) { |
| /* s_ashr_i64 writes SCC, so we can't use it */ |
| assert(Operand::is_constant_representable(op.constantValue64(), 8, true, false)); |
| bld.sop1(aco_opcode::s_mov_b64, dst, op); |
| } else if (dst.regClass() == v2) { |
| if (Operand::is_constant_representable(op.constantValue64(), 8, true, false)) { |
| bld.vop3(aco_opcode::v_lshrrev_b64, dst, Operand::zero(), op); |
| } else { |
| assert(Operand::is_constant_representable(op.constantValue64(), 8, false, true)); |
| bld.vop3(aco_opcode::v_ashrrev_i64, dst, Operand::zero(), op); |
| } |
| } else if (dst.regClass() == v1) { |
| bld.vop1(aco_opcode::v_mov_b32, dst, op); |
| } else { |
| assert(dst.regClass() == v1b || dst.regClass() == v2b); |
| |
| bool use_sdwa = ctx->program->gfx_level >= GFX9 && ctx->program->gfx_level < GFX11; |
| /* We need the v_perm_b32 (VOP3) to be able to take literals, and that's a GFX10+ feature. */ |
| bool can_use_perm = ctx->program->gfx_level >= GFX10 && |
| (op.constantEquals(0) || op.constantEquals(0xff) || |
| op.constantEquals(0xffff) || op.constantEquals(0xff00)); |
| if (dst.regClass() == v1b && use_sdwa) { |
| uint8_t val = op.constantValue(); |
| Operand op32 = Operand::c32((uint32_t)val | (val & 0x80u ? 0xffffff00u : 0u)); |
| if (op32.isLiteral()) { |
| uint32_t a = (uint32_t)int8_mul_table[val * 2]; |
| uint32_t b = (uint32_t)int8_mul_table[val * 2 + 1]; |
| bld.vop2_sdwa(aco_opcode::v_mul_u32_u24, dst, |
| Operand::c32(a | (a & 0x80u ? 0xffffff00u : 0x0u)), |
| Operand::c32(b | (b & 0x80u ? 0xffffff00u : 0x0u))); |
| } else { |
| bld.vop1_sdwa(aco_opcode::v_mov_b32, dst, op32); |
| } |
| } else if (dst.regClass() == v2b && use_sdwa && !op.isLiteral()) { |
| if (op.constantValue() >= 0xfff0 || op.constantValue() <= 64) { |
| /* use v_mov_b32 to avoid possible issues with denormal flushing or |
| * NaN. v_add_f16 is still needed for float constants. */ |
| uint32_t val32 = (int32_t)(int16_t)op.constantValue(); |
| bld.vop1_sdwa(aco_opcode::v_mov_b32, dst, Operand::c32(val32)); |
| } else { |
| bld.vop2_sdwa(aco_opcode::v_add_f16, dst, op, Operand::zero()); |
| } |
| } else if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10 && |
| (ctx->block->fp_mode.denorm16_64 & fp_denorm_keep_in)) { |
| if (dst.physReg().byte() == 2) { |
| Operand def_lo(dst.physReg().advance(-2), v2b); |
| Instruction* instr = bld.vop3(aco_opcode::v_pack_b32_f16, dst, def_lo, op); |
| instr->vop3().opsel = 0; |
| } else { |
| assert(dst.physReg().byte() == 0); |
| Operand def_hi(dst.physReg().advance(2), v2b); |
| Instruction* instr = bld.vop3(aco_opcode::v_pack_b32_f16, dst, op, def_hi); |
| instr->vop3().opsel = 2; |
| } |
| } else if (can_use_perm) { |
| uint8_t swiz[] = {4, 5, 6, 7}; |
| swiz[dst.physReg().byte()] = op.constantValue() & 0xff ? bperm_255 : bperm_0; |
| if (dst.bytes() == 2) |
| swiz[dst.physReg().byte() + 1] = op.constantValue() >> 8 ? bperm_255 : bperm_0; |
| create_bperm(bld, swiz, dst, Operand::zero()); |
| } else { |
| uint32_t offset = dst.physReg().byte() * 8u; |
| uint32_t mask = ((1u << (dst.bytes() * 8)) - 1) << offset; |
| uint32_t val = (op.constantValue() << offset) & mask; |
| dst = Definition(PhysReg(dst.physReg().reg()), v1); |
| Operand def_op(dst.physReg(), v1); |
| if (val != mask) |
| bld.vop2(aco_opcode::v_and_b32, dst, Operand::c32(~mask), def_op); |
| if (val != 0) |
| bld.vop2(aco_opcode::v_or_b32, dst, Operand::c32(val), def_op); |
| } |
| } |
| } |
| |
| void |
| copy_linear_vgpr(Builder& bld, Definition def, Operand op, bool preserve_scc, PhysReg scratch_sgpr) |
| { |
| if (preserve_scc) |
| bld.sop1(aco_opcode::s_mov_b32, Definition(scratch_sgpr, s1), Operand(scc, s1)); |
| |
| for (unsigned i = 0; i < 2; i++) { |
| if (def.size() == 2) |
| bld.vop3(aco_opcode::v_lshrrev_b64, def, Operand::zero(), op); |
| else |
| bld.vop1(aco_opcode::v_mov_b32, def, op); |
| |
| bld.sop1(Builder::s_not, Definition(exec, bld.lm), Definition(scc, s1), |
| Operand(exec, bld.lm)); |
| } |
| |
| if (preserve_scc) |
| bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(scratch_sgpr, s1), |
| Operand::zero()); |
| } |
| |
| void |
| swap_linear_vgpr(Builder& bld, Definition def, Operand op, bool preserve_scc, PhysReg scratch_sgpr) |
| { |
| if (preserve_scc) |
| bld.sop1(aco_opcode::s_mov_b32, Definition(scratch_sgpr, s1), Operand(scc, s1)); |
| |
| Operand def_as_op = Operand(def.physReg(), def.regClass()); |
| Definition op_as_def = Definition(op.physReg(), op.regClass()); |
| |
| for (unsigned i = 0; i < 2; i++) { |
| if (bld.program->gfx_level >= GFX9) { |
| bld.vop1(aco_opcode::v_swap_b32, def, op_as_def, op, def_as_op); |
| } else { |
| bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op); |
| bld.vop2(aco_opcode::v_xor_b32, def, op, def_as_op); |
| bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op); |
| } |
| |
| bld.sop1(Builder::s_not, Definition(exec, bld.lm), Definition(scc, s1), |
| Operand(exec, bld.lm)); |
| } |
| |
| if (preserve_scc) |
| bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(scratch_sgpr, s1), |
| Operand::zero()); |
| } |
| |
| void |
| addsub_subdword_gfx11(Builder& bld, Definition dst, Operand src0, Operand src1, bool sub) |
| { |
| Instruction* instr = |
| bld.vop3(sub ? aco_opcode::v_sub_u16_e64 : aco_opcode::v_add_u16_e64, dst, src0, src1).instr; |
| if (src0.physReg().byte() == 2) |
| instr->vop3().opsel |= 0x1; |
| if (src1.physReg().byte() == 2) |
| instr->vop3().opsel |= 0x2; |
| if (dst.physReg().byte() == 2) |
| instr->vop3().opsel |= 0x8; |
| } |
| |
| bool |
| do_copy(lower_context* ctx, Builder& bld, const copy_operation& copy, bool* preserve_scc, |
| PhysReg scratch_sgpr) |
| { |
| bool did_copy = false; |
| for (unsigned offset = 0; offset < copy.bytes;) { |
| if (copy.uses[offset]) { |
| offset++; |
| continue; |
| } |
| |
| Definition def; |
| Operand op; |
| split_copy(ctx, offset, &def, &op, copy, false, 8); |
| |
| if (def.physReg() == scc) { |
| bld.sopc(aco_opcode::s_cmp_lg_i32, def, op, Operand::zero()); |
| *preserve_scc = true; |
| } else if (op.isConstant()) { |
| copy_constant(ctx, bld, def, op); |
| } else if (def.regClass().is_linear_vgpr()) { |
| copy_linear_vgpr(bld, def, op, *preserve_scc, scratch_sgpr); |
| } else if (def.regClass() == v1) { |
| bld.vop1(aco_opcode::v_mov_b32, def, op); |
| } else if (def.regClass() == v2) { |
| bld.vop3(aco_opcode::v_lshrrev_b64, def, Operand::zero(), op); |
| } else if (def.regClass() == s1) { |
| bld.sop1(aco_opcode::s_mov_b32, def, op); |
| } else if (def.regClass() == s2) { |
| bld.sop1(aco_opcode::s_mov_b64, def, op); |
| } else if (def.regClass().is_subdword() && ctx->program->gfx_level < GFX8) { |
| if (op.physReg().byte()) { |
| assert(def.physReg().byte() == 0); |
| bld.vop2(aco_opcode::v_lshrrev_b32, def, Operand::c32(op.physReg().byte() * 8), op); |
| } else if (def.physReg().byte()) { |
| assert(op.physReg().byte() == 0); |
| /* preserve the target's lower half */ |
| uint32_t bits = def.physReg().byte() * 8; |
| PhysReg lo_reg = PhysReg(def.physReg().reg()); |
| Definition lo_half = |
| Definition(lo_reg, RegClass::get(RegType::vgpr, def.physReg().byte())); |
| Definition dst = |
| Definition(lo_reg, RegClass::get(RegType::vgpr, lo_half.bytes() + op.bytes())); |
| |
| if (def.physReg().reg() == op.physReg().reg()) { |
| bld.vop2(aco_opcode::v_and_b32, lo_half, Operand::c32((1 << bits) - 1u), |
| Operand(lo_reg, lo_half.regClass())); |
| if (def.physReg().byte() == 1) { |
| bld.vop2(aco_opcode::v_mul_u32_u24, dst, Operand::c32((1 << bits) + 1u), op); |
| } else if (def.physReg().byte() == 2) { |
| bld.vop2(aco_opcode::v_cvt_pk_u16_u32, dst, Operand(lo_reg, v2b), op); |
| } else if (def.physReg().byte() == 3) { |
| bld.sop1(aco_opcode::s_mov_b32, Definition(scratch_sgpr, s1), |
| Operand::c32((1 << bits) + 1u)); |
| bld.vop3(aco_opcode::v_mul_lo_u32, dst, Operand(scratch_sgpr, s1), op); |
| } |
| } else { |
| lo_half.setFixed(lo_half.physReg().advance(4 - def.physReg().byte())); |
| bld.vop2(aco_opcode::v_lshlrev_b32, lo_half, Operand::c32(32 - bits), |
| Operand(lo_reg, lo_half.regClass())); |
| bld.vop3(aco_opcode::v_alignbyte_b32, dst, op, |
| Operand(lo_half.physReg(), lo_half.regClass()), |
| Operand::c32(4 - def.physReg().byte())); |
| } |
| } else { |
| bld.vop1(aco_opcode::v_mov_b32, def, op); |
| } |
| } else if (def.regClass() == v1b && ctx->program->gfx_level >= GFX11) { |
| uint8_t swiz[] = {4, 5, 6, 7}; |
| swiz[def.physReg().byte()] = op.physReg().byte(); |
| create_bperm(bld, swiz, def, op); |
| } else if (def.regClass() == v2b && ctx->program->gfx_level >= GFX11) { |
| addsub_subdword_gfx11(bld, def, op, Operand::zero(), false); |
| } else if (def.regClass().is_subdword()) { |
| bld.vop1_sdwa(aco_opcode::v_mov_b32, def, op); |
| } else { |
| unreachable("unsupported copy"); |
| } |
| |
| did_copy = true; |
| offset += def.bytes(); |
| } |
| return did_copy; |
| } |
| |
| void |
| swap_subdword_gfx11(Builder& bld, Definition def, Operand op) |
| { |
| if (def.physReg().reg() == op.physReg().reg()) { |
| assert(def.bytes() != 2); /* handled by caller */ |
| uint8_t swiz[] = {4, 5, 6, 7}; |
| std::swap(swiz[def.physReg().byte()], swiz[op.physReg().byte()]); |
| create_bperm(bld, swiz, def, Operand::zero()); |
| return; |
| } |
| |
| if (def.bytes() == 2) { |
| Operand def_as_op = Operand(def.physReg(), def.regClass()); |
| Definition op_as_def = Definition(op.physReg(), op.regClass()); |
| addsub_subdword_gfx11(bld, def, def_as_op, op, false); |
| addsub_subdword_gfx11(bld, op_as_def, def_as_op, op, true); |
| addsub_subdword_gfx11(bld, def, def_as_op, op, true); |
| } else { |
| PhysReg op_half = op.physReg(); |
| op_half.reg_b &= ~1; |
| |
| PhysReg def_other_half = def.physReg(); |
| def_other_half.reg_b &= ~1; |
| def_other_half.reg_b ^= 2; |
| |
| /* We can only swap individual bytes within a single VGPR, so temporarily move both bytes |
| * into the same VGPR. |
| */ |
| swap_subdword_gfx11(bld, Definition(def_other_half, v2b), Operand(op_half, v2b)); |
| swap_subdword_gfx11(bld, def, Operand(def_other_half.advance(op.physReg().byte() & 1), v1b)); |
| swap_subdword_gfx11(bld, Definition(def_other_half, v2b), Operand(op_half, v2b)); |
| } |
| } |
| |
| void |
| do_swap(lower_context* ctx, Builder& bld, const copy_operation& copy, bool preserve_scc, |
| Pseudo_instruction* pi) |
| { |
| unsigned offset = 0; |
| |
| if (copy.bytes == 3 && (copy.def.physReg().reg_b % 4 <= 1) && |
| (copy.def.physReg().reg_b % 4) == (copy.op.physReg().reg_b % 4)) { |
| /* instead of doing a 2-byte and 1-byte swap, do a 4-byte swap and then fixup with a 1-byte |
| * swap */ |
| PhysReg op = copy.op.physReg(); |
| PhysReg def = copy.def.physReg(); |
| op.reg_b &= ~0x3; |
| def.reg_b &= ~0x3; |
| |
| copy_operation tmp; |
| tmp.op = Operand(op, v1); |
| tmp.def = Definition(def, v1); |
| tmp.bytes = 4; |
| memset(tmp.uses, 1, 4); |
| do_swap(ctx, bld, tmp, preserve_scc, pi); |
| |
| op.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0; |
| def.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0; |
| tmp.op = Operand(op, v1b); |
| tmp.def = Definition(def, v1b); |
| tmp.bytes = 1; |
| tmp.uses[0] = 1; |
| do_swap(ctx, bld, tmp, preserve_scc, pi); |
| |
| offset = copy.bytes; |
| } |
| |
| for (; offset < copy.bytes;) { |
| Definition def; |
| Operand op; |
| unsigned max_size = copy.def.regClass().type() == RegType::vgpr ? 4 : 8; |
| split_copy(ctx, offset, &def, &op, copy, true, max_size); |
| |
| assert(op.regClass() == def.regClass()); |
| Operand def_as_op = Operand(def.physReg(), def.regClass()); |
| Definition op_as_def = Definition(op.physReg(), op.regClass()); |
| if (def.regClass().is_linear_vgpr()) { |
| swap_linear_vgpr(bld, def, op, preserve_scc, pi->scratch_sgpr); |
| } else if (ctx->program->gfx_level >= GFX9 && def.regClass() == v1) { |
| bld.vop1(aco_opcode::v_swap_b32, def, op_as_def, op, def_as_op); |
| } else if (def.regClass() == v1) { |
| assert(def.physReg().byte() == 0 && op.physReg().byte() == 0); |
| bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op); |
| bld.vop2(aco_opcode::v_xor_b32, def, op, def_as_op); |
| bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op); |
| } else if (op.physReg() == scc || def.physReg() == scc) { |
| /* we need to swap scc and another sgpr */ |
| assert(!preserve_scc); |
| |
| PhysReg other = op.physReg() == scc ? def.physReg() : op.physReg(); |
| |
| bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1)); |
| bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), |
| Operand::zero()); |
| bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1)); |
| } else if (def.regClass() == s1) { |
| if (preserve_scc) { |
| bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), op); |
| bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op); |
| bld.sop1(aco_opcode::s_mov_b32, def, Operand(pi->scratch_sgpr, s1)); |
| } else { |
| bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op); |
| bld.sop2(aco_opcode::s_xor_b32, def, Definition(scc, s1), op, def_as_op); |
| bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op); |
| } |
| } else if (def.regClass() == s2) { |
| if (preserve_scc) |
| bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1)); |
| bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op); |
| bld.sop2(aco_opcode::s_xor_b64, def, Definition(scc, s1), op, def_as_op); |
| bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op); |
| if (preserve_scc) |
| bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(pi->scratch_sgpr, s1), |
| Operand::zero()); |
| } else if (def.bytes() == 2 && def.physReg().reg() == op.physReg().reg()) { |
| bld.vop3(aco_opcode::v_alignbyte_b32, Definition(def.physReg(), v1), def_as_op, op, |
| Operand::c32(2u)); |
| } else { |
| assert(def.regClass().is_subdword()); |
| if (ctx->program->gfx_level >= GFX11) { |
| swap_subdword_gfx11(bld, def, op); |
| } else { |
| bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op); |
| bld.vop2_sdwa(aco_opcode::v_xor_b32, def, op, def_as_op); |
| bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op); |
| } |
| } |
| |
| offset += def.bytes(); |
| } |
| |
| if (ctx->program->gfx_level <= GFX7) |
| return; |
| |
| /* fixup in case we swapped bytes we shouldn't have */ |
| copy_operation tmp_copy = copy; |
| tmp_copy.op.setFixed(copy.def.physReg()); |
| tmp_copy.def.setFixed(copy.op.physReg()); |
| do_copy(ctx, bld, tmp_copy, &preserve_scc, pi->scratch_sgpr); |
| } |
| |
| void |
| do_pack_2x16(lower_context* ctx, Builder& bld, Definition def, Operand lo, Operand hi) |
| { |
| if (lo.isConstant() && hi.isConstant()) { |
| copy_constant(ctx, bld, def, Operand::c32(lo.constantValue() | (hi.constantValue() << 16))); |
| return; |
| } |
| |
| bool can_use_pack = (ctx->block->fp_mode.denorm16_64 & fp_denorm_keep_in) && |
| (ctx->program->gfx_level >= GFX10 || |
| (ctx->program->gfx_level >= GFX9 && !lo.isLiteral() && !hi.isLiteral())); |
| |
| if (can_use_pack) { |
| Instruction* instr = bld.vop3(aco_opcode::v_pack_b32_f16, def, lo, hi); |
| /* opsel: 0 = select low half, 1 = select high half. [0] = src0, [1] = src1 */ |
| instr->vop3().opsel = hi.physReg().byte() | (lo.physReg().byte() >> 1); |
| return; |
| } |
| |
| /* a single alignbyte can be sufficient: hi can be a 32-bit integer constant */ |
| if (lo.physReg().byte() == 2 && hi.physReg().byte() == 0 && |
| (!hi.isConstant() || !Operand::c32(hi.constantValue()).isLiteral() || |
| ctx->program->gfx_level >= GFX10)) { |
| if (hi.isConstant()) |
| bld.vop3(aco_opcode::v_alignbyte_b32, def, Operand::c32(hi.constantValue()), lo, |
| Operand::c32(2u)); |
| else |
| bld.vop3(aco_opcode::v_alignbyte_b32, def, hi, lo, Operand::c32(2u)); |
| return; |
| } |
| |
| Definition def_lo = Definition(def.physReg(), v2b); |
| Definition def_hi = Definition(def.physReg().advance(2), v2b); |
| |
| if (lo.isConstant()) { |
| /* move hi and zero low bits */ |
| if (hi.physReg().byte() == 0) |
| bld.vop2(aco_opcode::v_lshlrev_b32, def_hi, Operand::c32(16u), hi); |
| else |
| bld.vop2(aco_opcode::v_and_b32, def_hi, Operand::c32(~0xFFFFu), hi); |
| bld.vop2(aco_opcode::v_or_b32, def, Operand::c32(lo.constantValue()), |
| Operand(def.physReg(), v1)); |
| return; |
| } |
| if (hi.isConstant()) { |
| /* move lo and zero high bits */ |
| if (lo.physReg().byte() == 2) |
| bld.vop2(aco_opcode::v_lshrrev_b32, def_lo, Operand::c32(16u), lo); |
| else |
| bld.vop2(aco_opcode::v_and_b32, def_lo, Operand::c32(0xFFFFu), lo); |
| bld.vop2(aco_opcode::v_or_b32, def, Operand::c32(hi.constantValue() << 16u), |
| Operand(def.physReg(), v1)); |
| return; |
| } |
| |
| if (lo.physReg().reg() == def.physReg().reg()) { |
| /* lo is in the high bits of def */ |
| assert(lo.physReg().byte() == 2); |
| bld.vop2(aco_opcode::v_lshrrev_b32, def_lo, Operand::c32(16u), lo); |
| lo.setFixed(def.physReg()); |
| } else if (hi.physReg() == def.physReg()) { |
| /* hi is in the low bits of def */ |
| assert(hi.physReg().byte() == 0); |
| bld.vop2(aco_opcode::v_lshlrev_b32, def_hi, Operand::c32(16u), hi); |
| hi.setFixed(def.physReg().advance(2)); |
| } else if (ctx->program->gfx_level >= GFX8) { |
| /* Either lo or hi can be placed with just a v_mov. SDWA is not needed, because |
| * op.physReg().byte()==def.physReg().byte() and the other half will be overwritten. |
| */ |
| assert(lo.physReg().byte() == 0 || hi.physReg().byte() == 2); |
| Operand& op = lo.physReg().byte() == 0 ? lo : hi; |
| PhysReg reg = def.physReg().advance(op.physReg().byte()); |
| bld.vop1(aco_opcode::v_mov_b32, Definition(reg, v2b), op); |
| op.setFixed(reg); |
| } |
| |
| /* either hi or lo are already placed correctly */ |
| if (ctx->program->gfx_level >= GFX11) { |
| if (lo.physReg().reg() == def.physReg().reg()) |
| addsub_subdword_gfx11(bld, def_hi, hi, Operand::zero(), false); |
| else |
| addsub_subdword_gfx11(bld, def_lo, lo, Operand::zero(), false); |
| return; |
| } else if (ctx->program->gfx_level >= GFX8) { |
| if (lo.physReg().reg() == def.physReg().reg()) |
| bld.vop1_sdwa(aco_opcode::v_mov_b32, def_hi, hi); |
| else |
| bld.vop1_sdwa(aco_opcode::v_mov_b32, def_lo, lo); |
| return; |
| } |
| |
| /* alignbyte needs the operands in the following way: |
| * | xx hi | lo xx | >> 2 byte */ |
| if (lo.physReg().byte() != hi.physReg().byte()) { |
| /* | xx lo | hi xx | => | lo hi | lo hi | */ |
| assert(lo.physReg().byte() == 0 && hi.physReg().byte() == 2); |
| bld.vop3(aco_opcode::v_alignbyte_b32, def, lo, hi, Operand::c32(2u)); |
| lo = Operand(def_hi.physReg(), v2b); |
| hi = Operand(def_lo.physReg(), v2b); |
| } else if (lo.physReg().byte() == 0) { |
| /* | xx hi | xx lo | => | xx hi | lo 00 | */ |
| bld.vop2(aco_opcode::v_lshlrev_b32, def_hi, Operand::c32(16u), lo); |
| lo = Operand(def_hi.physReg(), v2b); |
| } else { |
| /* | hi xx | lo xx | => | 00 hi | lo xx | */ |
| assert(hi.physReg().byte() == 2); |
| bld.vop2(aco_opcode::v_lshrrev_b32, def_lo, Operand::c32(16u), hi); |
| hi = Operand(def_lo.physReg(), v2b); |
| } |
| /* perform the alignbyte */ |
| bld.vop3(aco_opcode::v_alignbyte_b32, def, hi, lo, Operand::c32(2u)); |
| } |
| |
| void |
| try_coalesce_copies(lower_context* ctx, std::map<PhysReg, copy_operation>& copy_map, |
| copy_operation& copy) |
| { |
| // TODO try more relaxed alignment for subdword copies |
| unsigned next_def_align = util_next_power_of_two(copy.bytes + 1); |
| unsigned next_op_align = next_def_align; |
| if (copy.def.regClass().type() == RegType::vgpr) |
| next_def_align = MIN2(next_def_align, 4); |
| if (copy.op.regClass().type() == RegType::vgpr) |
| next_op_align = MIN2(next_op_align, 4); |
| |
| if (copy.bytes >= 8 || copy.def.physReg().reg_b % next_def_align || |
| (!copy.op.isConstant() && copy.op.physReg().reg_b % next_op_align)) |
| return; |
| |
| auto other = copy_map.find(copy.def.physReg().advance(copy.bytes)); |
| if (other == copy_map.end() || copy.bytes + other->second.bytes > 8 || |
| copy.op.isConstant() != other->second.op.isConstant()) |
| return; |
| |
| /* don't create 64-bit copies before GFX10 */ |
| if (copy.bytes >= 4 && copy.def.regClass().type() == RegType::vgpr && |
| ctx->program->gfx_level < GFX10) |
| return; |
| |
| unsigned new_size = copy.bytes + other->second.bytes; |
| if (copy.op.isConstant()) { |
| uint64_t val = |
| copy.op.constantValue64() | (other->second.op.constantValue64() << (copy.bytes * 8u)); |
| if (!util_is_power_of_two_or_zero(new_size)) |
| return; |
| if (!Operand::is_constant_representable(val, new_size, true, |
| copy.def.regClass().type() == RegType::vgpr)) |
| return; |
| copy.op = Operand::get_const(ctx->program->gfx_level, val, new_size); |
| } else { |
| if (other->second.op.physReg() != copy.op.physReg().advance(copy.bytes)) |
| return; |
| copy.op = Operand(copy.op.physReg(), copy.op.regClass().resize(new_size)); |
| } |
| |
| copy.bytes = new_size; |
| copy.def = Definition(copy.def.physReg(), copy.def.regClass().resize(copy.bytes)); |
| copy_map.erase(other); |
| } |
| |
| void |
| handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx, |
| amd_gfx_level gfx_level, Pseudo_instruction* pi) |
| { |
| Builder bld(ctx->program, &ctx->instructions); |
| unsigned num_instructions_before = ctx->instructions.size(); |
| aco_ptr<Instruction> mov; |
| bool writes_scc = false; |
| |
| /* count the number of uses for each dst reg */ |
| for (auto it = copy_map.begin(); it != copy_map.end();) { |
| |
| if (it->second.def.physReg() == scc) |
| writes_scc = true; |
| |
| assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr)); |
| |
| /* if src and dst reg are the same, remove operation */ |
| if (it->first == it->second.op.physReg()) { |
| it = copy_map.erase(it); |
| continue; |
| } |
| |
| /* split large copies */ |
| if (it->second.bytes > 8) { |
| assert(!it->second.op.isConstant()); |
| assert(!it->second.def.regClass().is_subdword()); |
| RegClass rc = RegClass(it->second.def.regClass().type(), it->second.def.size() - 2); |
| Definition hi_def = Definition(PhysReg{it->first + 2}, rc); |
| rc = RegClass(it->second.op.regClass().type(), it->second.op.size() - 2); |
| Operand hi_op = Operand(PhysReg{it->second.op.physReg() + 2}, rc); |
| copy_operation copy = {hi_op, hi_def, it->second.bytes - 8}; |
| copy_map[hi_def.physReg()] = copy; |
| assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0); |
| it->second.op = Operand(it->second.op.physReg(), |
| it->second.op.regClass().type() == RegType::sgpr ? s2 : v2); |
| it->second.def = Definition(it->second.def.physReg(), |
| it->second.def.regClass().type() == RegType::sgpr ? s2 : v2); |
| it->second.bytes = 8; |
| } |
| |
| try_coalesce_copies(ctx, copy_map, it->second); |
| |
| /* check if the definition reg is used by another copy operation */ |
| for (std::pair<const PhysReg, copy_operation>& copy : copy_map) { |
| if (copy.second.op.isConstant()) |
| continue; |
| for (uint16_t i = 0; i < it->second.bytes; i++) { |
| /* distance might underflow */ |
| unsigned distance = it->first.reg_b + i - copy.second.op.physReg().reg_b; |
| if (distance < copy.second.bytes) |
| it->second.uses[i] += 1; |
| } |
| } |
| |
| ++it; |
| } |
| |
| /* first, handle paths in the location transfer graph */ |
| bool preserve_scc = pi->tmp_in_scc && !writes_scc; |
| bool skip_partial_copies = true; |
| for (auto it = copy_map.begin();;) { |
| if (copy_map.empty()) { |
| ctx->program->statistics[statistic_copies] += |
| ctx->instructions.size() - num_instructions_before; |
| return; |
| } |
| if (it == copy_map.end()) { |
| if (!skip_partial_copies) |
| break; |
| skip_partial_copies = false; |
| it = copy_map.begin(); |
| } |
| |
| /* check if we can pack one register at once */ |
| if (it->first.byte() == 0 && it->second.bytes == 2) { |
| PhysReg reg_hi = it->first.advance(2); |
| std::map<PhysReg, copy_operation>::iterator other = copy_map.find(reg_hi); |
| if (other != copy_map.end() && other->second.bytes == 2) { |
| /* check if the target register is otherwise unused */ |
| bool unused_lo = !it->second.is_used || (it->second.is_used == 0x0101 && |
| other->second.op.physReg() == it->first); |
| bool unused_hi = !other->second.is_used || |
| (other->second.is_used == 0x0101 && it->second.op.physReg() == reg_hi); |
| if (unused_lo && unused_hi) { |
| Operand lo = it->second.op; |
| Operand hi = other->second.op; |
| do_pack_2x16(ctx, bld, Definition(it->first, v1), lo, hi); |
| copy_map.erase(it); |
| copy_map.erase(other); |
| |
| for (std::pair<const PhysReg, copy_operation>& other2 : copy_map) { |
| for (uint16_t i = 0; i < other2.second.bytes; i++) { |
| /* distance might underflow */ |
| unsigned distance_lo = other2.first.reg_b + i - lo.physReg().reg_b; |
| unsigned distance_hi = other2.first.reg_b + i - hi.physReg().reg_b; |
| if (distance_lo < 2 || distance_hi < 2) |
| other2.second.uses[i] -= 1; |
| } |
| } |
| it = copy_map.begin(); |
| continue; |
| } |
| } |
| } |
| |
| /* on GFX6/7, we need some small workarounds as there is no |
| * SDWA instruction to do partial register writes */ |
| if (ctx->program->gfx_level < GFX8 && it->second.bytes < 4) { |
| if (it->first.byte() == 0 && it->second.op.physReg().byte() == 0 && !it->second.is_used && |
| pi->opcode == aco_opcode::p_split_vector) { |
| /* Other operations might overwrite the high bits, so change all users |
| * of the high bits to the new target where they are still available. |
| * This mechanism depends on also emitting dead definitions. */ |
| PhysReg reg_hi = it->second.op.physReg().advance(it->second.bytes); |
| while (reg_hi != PhysReg(it->second.op.physReg().reg() + 1)) { |
| std::map<PhysReg, copy_operation>::iterator other = copy_map.begin(); |
| for (other = copy_map.begin(); other != copy_map.end(); other++) { |
| /* on GFX6/7, if the high bits are used as operand, they cannot be a target */ |
| if (other->second.op.physReg() == reg_hi) { |
| other->second.op.setFixed(it->first.advance(reg_hi.byte())); |
| break; /* break because an operand can only be used once */ |
| } |
| } |
| reg_hi = reg_hi.advance(it->second.bytes); |
| } |
| } else if (it->first.byte()) { |
| assert(pi->opcode == aco_opcode::p_create_vector); |
| /* on GFX6/7, if we target an upper half where the lower half hasn't yet been handled, |
| * move to the target operand's high bits. This is save to do as it cannot be an operand |
| */ |
| PhysReg lo = PhysReg(it->first.reg()); |
| std::map<PhysReg, copy_operation>::iterator other = copy_map.find(lo); |
| if (other != copy_map.end()) { |
| assert(other->second.bytes == it->first.byte()); |
| PhysReg new_reg_hi = other->second.op.physReg().advance(it->first.byte()); |
| it->second.def = Definition(new_reg_hi, it->second.def.regClass()); |
| it->second.is_used = 0; |
| other->second.bytes += it->second.bytes; |
| other->second.def.setTemp(Temp(other->second.def.tempId(), |
| RegClass::get(RegType::vgpr, other->second.bytes))); |
| other->second.op.setTemp(Temp(other->second.op.tempId(), |
| RegClass::get(RegType::vgpr, other->second.bytes))); |
| /* if the new target's high bits are also a target, change uses */ |
| std::map<PhysReg, copy_operation>::iterator target = copy_map.find(new_reg_hi); |
| if (target != copy_map.end()) { |
| for (unsigned i = 0; i < it->second.bytes; i++) |
| target->second.uses[i]++; |
| } |
| } |
| } |
| } |
| |
| /* find portions where the target reg is not used as operand for any other copy */ |
| if (it->second.is_used) { |
| if (it->second.op.isConstant() || skip_partial_copies) { |
| /* we have to skip constants until is_used=0. |
| * we also skip partial copies at the beginning to help coalescing */ |
| ++it; |
| continue; |
| } |
| |
| unsigned has_zero_use_bytes = 0; |
| for (unsigned i = 0; i < it->second.bytes; i++) |
| has_zero_use_bytes |= (it->second.uses[i] == 0) << i; |
| |
| if (has_zero_use_bytes) { |
| /* Skipping partial copying and doing a v_swap_b32 and then fixup |
| * copies is usually beneficial for sub-dword copies, but if doing |
| * a partial copy allows further copies, it should be done instead. */ |
| bool partial_copy = (has_zero_use_bytes == 0xf) || (has_zero_use_bytes == 0xf0); |
| for (std::pair<const PhysReg, copy_operation>& copy : copy_map) { |
| /* on GFX6/7, we can only do copies with full registers */ |
| if (partial_copy || ctx->program->gfx_level <= GFX7) |
| break; |
| for (uint16_t i = 0; i < copy.second.bytes; i++) { |
| /* distance might underflow */ |
| unsigned distance = copy.first.reg_b + i - it->second.op.physReg().reg_b; |
| if (distance < it->second.bytes && copy.second.uses[i] == 1 && |
| !it->second.uses[distance]) |
| partial_copy = true; |
| } |
| } |
| |
| if (!partial_copy) { |
| ++it; |
| continue; |
| } |
| } else { |
| /* full target reg is used: register swapping needed */ |
| ++it; |
| continue; |
| } |
| } |
| |
| bool did_copy = do_copy(ctx, bld, it->second, &preserve_scc, pi->scratch_sgpr); |
| skip_partial_copies = did_copy; |
| std::pair<PhysReg, copy_operation> copy = *it; |
| |
| if (it->second.is_used == 0) { |
| /* the target reg is not used as operand for any other copy, so we |
| * copied to all of it */ |
| copy_map.erase(it); |
| it = copy_map.begin(); |
| } else { |
| /* we only performed some portions of this copy, so split it to only |
| * leave the portions that still need to be done */ |
| copy_operation original = it->second; /* the map insertion below can overwrite this */ |
| copy_map.erase(it); |
| for (unsigned offset = 0; offset < original.bytes;) { |
| if (original.uses[offset] == 0) { |
| offset++; |
| continue; |
| } |
| Definition def; |
| Operand op; |
| split_copy(ctx, offset, &def, &op, original, false, 8); |
| |
| copy_operation new_copy = {op, def, def.bytes()}; |
| for (unsigned i = 0; i < new_copy.bytes; i++) |
| new_copy.uses[i] = original.uses[i + offset]; |
| copy_map[def.physReg()] = new_copy; |
| |
| offset += def.bytes(); |
| } |
| |
| it = copy_map.begin(); |
| } |
| |
| /* Reduce the number of uses of the operand reg by one. Do this after |
| * splitting the copy or removing it in case the copy writes to it's own |
| * operand (for example, v[7:8] = v[8:9]) */ |
| if (did_copy && !copy.second.op.isConstant()) { |
| for (std::pair<const PhysReg, copy_operation>& other : copy_map) { |
| for (uint16_t i = 0; i < other.second.bytes; i++) { |
| /* distance might underflow */ |
| unsigned distance = other.first.reg_b + i - copy.second.op.physReg().reg_b; |
| if (distance < copy.second.bytes && !copy.second.uses[distance]) |
| other.second.uses[i] -= 1; |
| } |
| } |
| } |
| } |
| |
| /* all target regs are needed as operand somewhere which means, all entries are part of a cycle */ |
| unsigned largest = 0; |
| for (const std::pair<const PhysReg, copy_operation>& op : copy_map) |
| largest = MAX2(largest, op.second.bytes); |
| |
| while (!copy_map.empty()) { |
| |
| /* Perform larger swaps first, because larger swaps swaps can make other |
| * swaps unnecessary. */ |
| auto it = copy_map.begin(); |
| for (auto it2 = copy_map.begin(); it2 != copy_map.end(); ++it2) { |
| if (it2->second.bytes > it->second.bytes) { |
| it = it2; |
| if (it->second.bytes == largest) |
| break; |
| } |
| } |
| |
| /* should already be done */ |
| assert(!it->second.op.isConstant()); |
| |
| assert(it->second.op.isFixed()); |
| assert(it->second.def.regClass() == it->second.op.regClass()); |
| |
| if (it->first == it->second.op.physReg()) { |
| copy_map.erase(it); |
| continue; |
| } |
| |
| if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr) |
| assert(!(it->second.def.physReg() == pi->scratch_sgpr)); |
| |
| /* to resolve the cycle, we have to swap the src reg with the dst reg */ |
| copy_operation swap = it->second; |
| |
| /* if this is self-intersecting, we have to split it because |
| * self-intersecting swaps don't make sense */ |
| PhysReg src = swap.op.physReg(), dst = swap.def.physReg(); |
| if (abs((int)src.reg_b - (int)dst.reg_b) < (int)swap.bytes) { |
| unsigned offset = abs((int)src.reg_b - (int)dst.reg_b); |
| |
| copy_operation remaining; |
| src.reg_b += offset; |
| dst.reg_b += offset; |
| remaining.bytes = swap.bytes - offset; |
| memcpy(remaining.uses, swap.uses + offset, remaining.bytes); |
| remaining.op = Operand(src, swap.def.regClass().resize(remaining.bytes)); |
| remaining.def = Definition(dst, swap.def.regClass().resize(remaining.bytes)); |
| copy_map[dst] = remaining; |
| |
| memset(swap.uses + offset, 0, swap.bytes - offset); |
| swap.bytes = offset; |
| } |
| |
| /* GFX6-7 can only swap full registers */ |
| if (ctx->program->gfx_level <= GFX7) |
| swap.bytes = align(swap.bytes, 4); |
| |
| do_swap(ctx, bld, swap, preserve_scc, pi); |
| |
| /* remove from map */ |
| copy_map.erase(it); |
| |
| /* change the operand reg of the target's uses and split uses if needed */ |
| uint32_t bytes_left = u_bit_consecutive(0, swap.bytes); |
| for (auto target = copy_map.begin(); target != copy_map.end(); ++target) { |
| if (target->second.op.physReg() == swap.def.physReg() && |
| swap.bytes == target->second.bytes) { |
| target->second.op.setFixed(swap.op.physReg()); |
| break; |
| } |
| |
| uint32_t imask = |
| get_intersection_mask(swap.def.physReg().reg_b, swap.bytes, |
| target->second.op.physReg().reg_b, target->second.bytes); |
| |
| if (!imask) |
| continue; |
| |
| int offset = (int)target->second.op.physReg().reg_b - (int)swap.def.physReg().reg_b; |
| |
| /* split and update the middle (the portion that reads the swap's |
| * definition) to read the swap's operand instead */ |
| int target_op_end = target->second.op.physReg().reg_b + target->second.bytes; |
| int swap_def_end = swap.def.physReg().reg_b + swap.bytes; |
| int before_bytes = MAX2(-offset, 0); |
| int after_bytes = MAX2(target_op_end - swap_def_end, 0); |
| int middle_bytes = target->second.bytes - before_bytes - after_bytes; |
| |
| if (after_bytes) { |
| unsigned after_offset = before_bytes + middle_bytes; |
| assert(after_offset > 0); |
| copy_operation copy; |
| copy.bytes = after_bytes; |
| memcpy(copy.uses, target->second.uses + after_offset, copy.bytes); |
| RegClass rc = target->second.op.regClass().resize(after_bytes); |
| copy.op = Operand(target->second.op.physReg().advance(after_offset), rc); |
| copy.def = Definition(target->second.def.physReg().advance(after_offset), rc); |
| copy_map[copy.def.physReg()] = copy; |
| } |
| |
| if (middle_bytes) { |
| copy_operation copy; |
| copy.bytes = middle_bytes; |
| memcpy(copy.uses, target->second.uses + before_bytes, copy.bytes); |
| RegClass rc = target->second.op.regClass().resize(middle_bytes); |
| copy.op = Operand(swap.op.physReg().advance(MAX2(offset, 0)), rc); |
| copy.def = Definition(target->second.def.physReg().advance(before_bytes), rc); |
| copy_map[copy.def.physReg()] = copy; |
| } |
| |
| if (before_bytes) { |
| copy_operation copy; |
| target->second.bytes = before_bytes; |
| RegClass rc = target->second.op.regClass().resize(before_bytes); |
| target->second.op = Operand(target->second.op.physReg(), rc); |
| target->second.def = Definition(target->second.def.physReg(), rc); |
| memset(target->second.uses + target->second.bytes, 0, 8 - target->second.bytes); |
| } |
| |
| /* break early since we know each byte of the swap's definition is used |
| * at most once */ |
| bytes_left &= ~imask; |
| if (!bytes_left) |
| break; |
| } |
| } |
| ctx->program->statistics[statistic_copies] += ctx->instructions.size() - num_instructions_before; |
| } |
| |
| void |
| emit_set_mode(Builder& bld, float_mode new_mode, bool set_round, bool set_denorm) |
| { |
| if (bld.program->gfx_level >= GFX10) { |
| if (set_round) |
| bld.sopp(aco_opcode::s_round_mode, -1, new_mode.round); |
| if (set_denorm) |
| bld.sopp(aco_opcode::s_denorm_mode, -1, new_mode.denorm); |
| } else if (set_round || set_denorm) { |
| /* "((size - 1) << 11) | register" (MODE is encoded as register 1) */ |
| bld.sopk(aco_opcode::s_setreg_imm32_b32, Operand::literal32(new_mode.val), (7 << 11) | 1); |
| } |
| } |
| |
| void |
| emit_set_mode_from_block(Builder& bld, Program& program, Block* block, bool always_set) |
| { |
| float_mode config_mode; |
| config_mode.val = program.config->float_mode; |
| |
| bool set_round = always_set && block->fp_mode.round != config_mode.round; |
| bool set_denorm = always_set && block->fp_mode.denorm != config_mode.denorm; |
| if (block->kind & block_kind_top_level) { |
| for (unsigned pred : block->linear_preds) { |
| if (program.blocks[pred].fp_mode.round != block->fp_mode.round) |
| set_round = true; |
| if (program.blocks[pred].fp_mode.denorm != block->fp_mode.denorm) |
| set_denorm = true; |
| } |
| } |
| /* only allow changing modes at top-level blocks so this doesn't break |
| * the "jump over empty blocks" optimization */ |
| assert((!set_round && !set_denorm) || (block->kind & block_kind_top_level)); |
| emit_set_mode(bld, block->fp_mode, set_round, set_denorm); |
| } |
| |
| void |
| lower_to_hw_instr(Program* program) |
| { |
| Block* discard_block = NULL; |
| |
| bool should_dealloc_vgprs = dealloc_vgprs(program); |
| |
| for (int block_idx = program->blocks.size() - 1; block_idx >= 0; block_idx--) { |
| Block* block = &program->blocks[block_idx]; |
| lower_context ctx; |
| ctx.program = program; |
| ctx.block = block; |
| ctx.instructions.reserve(block->instructions.size()); |
| Builder bld(program, &ctx.instructions); |
| |
| emit_set_mode_from_block(bld, *program, block, (block_idx == 0)); |
| |
| for (size_t instr_idx = 0; instr_idx < block->instructions.size(); instr_idx++) { |
| aco_ptr<Instruction>& instr = block->instructions[instr_idx]; |
| aco_ptr<Instruction> mov; |
| if (instr->isPseudo() && instr->opcode != aco_opcode::p_unit_test) { |
| Pseudo_instruction* pi = &instr->pseudo(); |
| |
| switch (instr->opcode) { |
| case aco_opcode::p_extract_vector: { |
| PhysReg reg = instr->operands[0].physReg(); |
| Definition& def = instr->definitions[0]; |
| reg.reg_b += instr->operands[1].constantValue() * def.bytes(); |
| |
| if (reg == def.physReg()) |
| break; |
| |
| RegClass op_rc = def.regClass().is_subdword() |
| ? def.regClass() |
| : RegClass(instr->operands[0].getTemp().type(), def.size()); |
| std::map<PhysReg, copy_operation> copy_operations; |
| copy_operations[def.physReg()] = {Operand(reg, op_rc), def, def.bytes()}; |
| handle_operands(copy_operations, &ctx, program->gfx_level, pi); |
| break; |
| } |
| case aco_opcode::p_create_vector: { |
| std::map<PhysReg, copy_operation> copy_operations; |
| PhysReg reg = instr->definitions[0].physReg(); |
| |
| for (const Operand& op : instr->operands) { |
| if (op.isConstant()) { |
| const Definition def = Definition( |
| reg, instr->definitions[0].getTemp().regClass().resize(op.bytes())); |
| copy_operations[reg] = {op, def, op.bytes()}; |
| reg.reg_b += op.bytes(); |
| continue; |
| } |
| if (op.isUndefined()) { |
| // TODO: coalesce subdword copies if dst byte is 0 |
| reg.reg_b += op.bytes(); |
| continue; |
| } |
| |
| RegClass rc_def = |
| op.regClass().is_subdword() |
| ? op.regClass() |
| : instr->definitions[0].getTemp().regClass().resize(op.bytes()); |
| const Definition def = Definition(reg, rc_def); |
| copy_operations[def.physReg()] = {op, def, op.bytes()}; |
| reg.reg_b += op.bytes(); |
| } |
| handle_operands(copy_operations, &ctx, program->gfx_level, pi); |
| break; |
| } |
| case aco_opcode::p_split_vector: { |
| std::map<PhysReg, copy_operation> copy_operations; |
| PhysReg reg = instr->operands[0].physReg(); |
| |
| for (const Definition& def : instr->definitions) { |
| RegClass rc_op = def.regClass().is_subdword() |
| ? def.regClass() |
| : instr->operands[0].getTemp().regClass().resize(def.bytes()); |
| const Operand op = Operand(reg, rc_op); |
| copy_operations[def.physReg()] = {op, def, def.bytes()}; |
| reg.reg_b += def.bytes(); |
| } |
| handle_operands(copy_operations, &ctx, program->gfx_level, pi); |
| break; |
| } |
| case aco_opcode::p_parallelcopy: |
| case aco_opcode::p_wqm: { |
| std::map<PhysReg, copy_operation> copy_operations; |
| for (unsigned j = 0; j < instr->operands.size(); j++) { |
| assert(instr->definitions[j].bytes() == instr->operands[j].bytes()); |
| copy_operations[instr->definitions[j].physReg()] = { |
| instr->operands[j], instr->definitions[j], instr->operands[j].bytes()}; |
| } |
| handle_operands(copy_operations, &ctx, program->gfx_level, pi); |
| break; |
| } |
| case aco_opcode::p_exit_early_if: { |
| /* don't bother with an early exit near the end of the program */ |
| if ((block->instructions.size() - 1 - instr_idx) <= 4 && |
| block->instructions.back()->opcode == aco_opcode::s_endpgm) { |
|