blob: 61064622988f5dd3d7c0183d74af91a538a60fe8 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_instruction_selection.h"
#include "common/ac_nir.h"
#include "common/sid.h"
#include "vulkan/radv_descriptor_set.h"
#include "nir_control_flow.h"
#include <vector>
namespace aco {
namespace {
bool
is_loop_header_block(nir_block* block)
{
return block->cf_node.parent->type == nir_cf_node_loop &&
block == nir_loop_first_block(nir_cf_node_as_loop(block->cf_node.parent));
}
/* similar to nir_block_is_unreachable(), but does not require dominance information */
bool
is_block_reachable(nir_function_impl* impl, nir_block* known_reachable, nir_block* block)
{
if (block == nir_start_block(impl) || block == known_reachable)
return true;
/* skip loop back-edges */
if (is_loop_header_block(block)) {
nir_loop* loop = nir_cf_node_as_loop(block->cf_node.parent);
nir_block* preheader = nir_block_cf_tree_prev(nir_loop_first_block(loop));
return is_block_reachable(impl, known_reachable, preheader);
}
set_foreach (block->predecessors, entry) {
if (is_block_reachable(impl, known_reachable, (nir_block*)entry->key))
return true;
}
return false;
}
/* Check whether the given SSA def is only used by cross-lane instructions. */
bool
only_used_by_cross_lane_instrs(nir_ssa_def* ssa, bool follow_phis = true)
{
nir_foreach_use (src, ssa) {
switch (src->parent_instr->type) {
case nir_instr_type_alu: {
nir_alu_instr* alu = nir_instr_as_alu(src->parent_instr);
if (alu->op != nir_op_unpack_64_2x32_split_x && alu->op != nir_op_unpack_64_2x32_split_y)
return false;
if (!only_used_by_cross_lane_instrs(&alu->dest.dest.ssa, follow_phis))
return false;
continue;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(src->parent_instr);
if (intrin->intrinsic != nir_intrinsic_read_invocation &&
intrin->intrinsic != nir_intrinsic_read_first_invocation &&
intrin->intrinsic != nir_intrinsic_lane_permute_16_amd)
return false;
continue;
}
case nir_instr_type_phi: {
/* Don't follow more than 1 phis, this avoids infinite loops. */
if (!follow_phis)
return false;
nir_phi_instr* phi = nir_instr_as_phi(src->parent_instr);
if (!only_used_by_cross_lane_instrs(&phi->dest.ssa, false))
return false;
continue;
}
default: return false;
}
}
return true;
}
/* If one side of a divergent IF ends in a branch and the other doesn't, we
* might have to emit the contents of the side without the branch at the merge
* block instead. This is so that we can use any SGPR live-out of the side
* without the branch without creating a linear phi in the invert or merge block. */
bool
sanitize_if(nir_function_impl* impl, nir_if* nif)
{
// TODO: skip this if the condition is uniform and there are no divergent breaks/continues?
nir_block* then_block = nir_if_last_then_block(nif);
nir_block* else_block = nir_if_last_else_block(nif);
bool then_jump = nir_block_ends_in_jump(then_block) ||
!is_block_reachable(impl, nir_if_first_then_block(nif), then_block);
bool else_jump = nir_block_ends_in_jump(else_block) ||
!is_block_reachable(impl, nir_if_first_else_block(nif), else_block);
if (then_jump == else_jump)
return false;
/* If the continue from block is empty then return as there is nothing to
* move.
*/
if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list))
return false;
/* Even though this if statement has a jump on one side, we may still have
* phis afterwards. Single-source phis can be produced by loop unrolling
* or dead control-flow passes and are perfectly legal. Run a quick phi
* removal on the block after the if to clean up any such phis.
*/
nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
/* Finally, move the continue from branch after the if-statement. */
nir_block* last_continue_from_blk = else_jump ? then_block : else_block;
nir_block* first_continue_from_blk =
else_jump ? nir_if_first_then_block(nif) : nir_if_first_else_block(nif);
nir_cf_list tmp;
nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
nir_after_block(last_continue_from_blk));
nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
return true;
}
bool
sanitize_cf_list(nir_function_impl* impl, struct exec_list* cf_list)
{
bool progress = false;
foreach_list_typed (nir_cf_node, cf_node, node, cf_list) {
switch (cf_node->type) {
case nir_cf_node_block: break;
case nir_cf_node_if: {
nir_if* nif = nir_cf_node_as_if(cf_node);
progress |= sanitize_cf_list(impl, &nif->then_list);
progress |= sanitize_cf_list(impl, &nif->else_list);
progress |= sanitize_if(impl, nif);
break;
}
case nir_cf_node_loop: {
nir_loop* loop = nir_cf_node_as_loop(cf_node);
progress |= sanitize_cf_list(impl, &loop->body);
break;
}
case nir_cf_node_function: unreachable("Invalid cf type");
}
}
return progress;
}
void
apply_nuw_to_ssa(isel_context* ctx, nir_ssa_def* ssa)
{
nir_ssa_scalar scalar;
scalar.def = ssa;
scalar.comp = 0;
if (!nir_ssa_scalar_is_alu(scalar) || nir_ssa_scalar_alu_op(scalar) != nir_op_iadd)
return;
nir_alu_instr* add = nir_instr_as_alu(ssa->parent_instr);
if (add->no_unsigned_wrap)
return;
nir_ssa_scalar src0 = nir_ssa_scalar_chase_alu_src(scalar, 0);
nir_ssa_scalar src1 = nir_ssa_scalar_chase_alu_src(scalar, 1);
if (nir_ssa_scalar_is_const(src0)) {
nir_ssa_scalar tmp = src0;
src0 = src1;
src1 = tmp;
}
uint32_t src1_ub = nir_unsigned_upper_bound(ctx->shader, ctx->range_ht, src1, &ctx->ub_config);
add->no_unsigned_wrap =
!nir_addition_might_overflow(ctx->shader, ctx->range_ht, src0, src1_ub, &ctx->ub_config);
}
void
apply_nuw_to_offsets(isel_context* ctx, nir_function_impl* impl)
{
nir_foreach_block (block, impl) {
nir_foreach_instr (instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_constant:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_push_constant:
if (!nir_src_is_divergent(intrin->src[0]))
apply_nuw_to_ssa(ctx, intrin->src[0].ssa);
break;
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
if (!nir_src_is_divergent(intrin->src[1]))
apply_nuw_to_ssa(ctx, intrin->src[1].ssa);
break;
case nir_intrinsic_store_ssbo:
if (!nir_src_is_divergent(intrin->src[2]))
apply_nuw_to_ssa(ctx, intrin->src[2].ssa);
break;
default: break;
}
}
}
}
RegClass
get_reg_class(isel_context* ctx, RegType type, unsigned components, unsigned bitsize)
{
if (bitsize == 1)
return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components);
else
return RegClass::get(type, components * bitsize / 8u);
}
void
setup_vs_output_info(isel_context* ctx, nir_shader* nir)
{
const aco_vp_output_info* outinfo = &ctx->program->info.outinfo;
ctx->export_clip_dists = outinfo->export_clip_dists;
ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);
/* GFX10+ early rasterization:
* When there are no param exports in an NGG (or legacy VS) shader,
* RADV sets NO_PC_EXPORT=1, which means the HW will start clipping and rasterization
* as soon as it encounters a DONE pos export. When this happens, PS waves can launch
* before the NGG (or VS) waves finish.
*/
ctx->program->early_rast = ctx->program->gfx_level >= GFX10 && outinfo->param_exports == 0;
}
void
setup_vs_variables(isel_context* ctx, nir_shader* nir)
{
if (ctx->stage == vertex_vs || ctx->stage == vertex_ngg) {
setup_vs_output_info(ctx, nir);
}
if (ctx->stage == vertex_ngg) {
ctx->program->config->lds_size =
DIV_ROUND_UP(nir->info.shared_size, ctx->program->dev.lds_encoding_granule);
assert((ctx->program->config->lds_size * ctx->program->dev.lds_encoding_granule) <
(32 * 1024));
}
}
void
setup_gs_variables(isel_context* ctx, nir_shader* nir)
{
if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
ctx->program->config->lds_size =
ctx->program->info.gfx9_gs_ring_lds_size; /* Already in units of the alloc granularity */
} else if (ctx->stage == vertex_geometry_ngg || ctx->stage == tess_eval_geometry_ngg) {
setup_vs_output_info(ctx, nir);
ctx->program->config->lds_size =
DIV_ROUND_UP(nir->info.shared_size, ctx->program->dev.lds_encoding_granule);
}
}
void
setup_tcs_info(isel_context* ctx, nir_shader* nir, nir_shader* vs)
{
ctx->tcs_in_out_eq = ctx->program->info.vs.tcs_in_out_eq;
ctx->tcs_temp_only_inputs = ctx->program->info.vs.tcs_temp_only_input_mask;
ctx->program->config->lds_size = ctx->program->info.tcs.num_lds_blocks;
}
void
setup_tes_variables(isel_context* ctx, nir_shader* nir)
{
if (ctx->stage == tess_eval_vs || ctx->stage == tess_eval_ngg) {
setup_vs_output_info(ctx, nir);
}
if (ctx->stage == tess_eval_ngg) {
ctx->program->config->lds_size =
DIV_ROUND_UP(nir->info.shared_size, ctx->program->dev.lds_encoding_granule);
assert((ctx->program->config->lds_size * ctx->program->dev.lds_encoding_granule) <
(32 * 1024));
}
}
void
setup_ms_variables(isel_context* ctx, nir_shader* nir)
{
setup_vs_output_info(ctx, nir);
ctx->program->config->lds_size =
DIV_ROUND_UP(nir->info.shared_size, ctx->program->dev.lds_encoding_granule);
assert((ctx->program->config->lds_size * ctx->program->dev.lds_encoding_granule) < (32 * 1024));
}
void
setup_variables(isel_context* ctx, nir_shader* nir)
{
switch (nir->info.stage) {
case MESA_SHADER_FRAGMENT: {
break;
}
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TASK: {
ctx->program->config->lds_size =
DIV_ROUND_UP(nir->info.shared_size, ctx->program->dev.lds_encoding_granule);
break;
}
case MESA_SHADER_VERTEX: {
setup_vs_variables(ctx, nir);
break;
}
case MESA_SHADER_GEOMETRY: {
setup_gs_variables(ctx, nir);
break;
}
case MESA_SHADER_TESS_CTRL: {
break;
}
case MESA_SHADER_TESS_EVAL: {
setup_tes_variables(ctx, nir);
break;
}
case MESA_SHADER_MESH: {
setup_ms_variables(ctx, nir);
break;
}
default: unreachable("Unhandled shader stage.");
}
/* Make sure we fit the available LDS space. */
assert((ctx->program->config->lds_size * ctx->program->dev.lds_encoding_granule) <=
ctx->program->dev.lds_limit);
}
void
setup_nir(isel_context* ctx, nir_shader* nir)
{
/* the variable setup has to be done before lower_io / CSE */
setup_variables(ctx, nir);
nir_convert_to_lcssa(nir, true, false);
nir_lower_phis_to_scalar(nir, true);
nir_function_impl* func = nir_shader_get_entrypoint(nir);
nir_index_ssa_defs(func);
}
} /* end namespace */
void
init_context(isel_context* ctx, nir_shader* shader)
{
nir_function_impl* impl = nir_shader_get_entrypoint(shader);
ctx->shader = shader;
/* Init NIR range analysis. */
ctx->range_ht = _mesa_pointer_hash_table_create(NULL);
ctx->ub_config.min_subgroup_size = 64;
ctx->ub_config.max_subgroup_size = 64;
if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && ctx->program->info.cs.subgroup_size) {
ctx->ub_config.min_subgroup_size = ctx->program->info.cs.subgroup_size;
ctx->ub_config.max_subgroup_size = ctx->program->info.cs.subgroup_size;
}
ctx->ub_config.max_workgroup_invocations = 2048;
ctx->ub_config.max_workgroup_count[0] = 65535;
ctx->ub_config.max_workgroup_count[1] = 65535;
ctx->ub_config.max_workgroup_count[2] = 65535;
ctx->ub_config.max_workgroup_size[0] = 2048;
ctx->ub_config.max_workgroup_size[1] = 2048;
ctx->ub_config.max_workgroup_size[2] = 2048;
for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; i++) {
pipe_format format = (pipe_format)ctx->options->key.vs.vertex_attribute_formats[i];
const struct util_format_description* desc = util_format_description(format);
uint32_t max;
if (desc->channel[0].type != UTIL_FORMAT_TYPE_UNSIGNED) {
max = UINT32_MAX;
} else if (desc->channel[0].normalized) {
max = 0x3f800000u;
} else {
max = 0;
for (unsigned j = 0; j < desc->nr_channels; j++) {
uint32_t chan_max = u_uintN_max(desc->channel[0].size);
max = MAX2(max, desc->channel[j].pure_integer ? chan_max : fui(chan_max));
}
}
ctx->ub_config.vertex_attrib_max[i] = max;
}
nir_divergence_analysis(shader);
nir_opt_uniform_atomics(shader);
apply_nuw_to_offsets(ctx, impl);
/* sanitize control flow */
sanitize_cf_list(impl, &impl->body);
nir_metadata_preserve(impl, nir_metadata_none);
/* we'll need these for isel */
nir_metadata_require(impl, nir_metadata_block_index);
if (!ctx->stage.has(SWStage::GSCopy) && ctx->options->dump_preoptir) {
fprintf(stderr, "NIR shader before instruction selection:\n");
nir_print_shader(shader, stderr);
}
ctx->first_temp_id = ctx->program->peekAllocationId();
ctx->program->allocateRange(impl->ssa_alloc);
RegClass* regclasses = ctx->program->temp_rc.data() + ctx->first_temp_id;
std::unique_ptr<unsigned[]> nir_to_aco{new unsigned[impl->num_blocks]()};
/* TODO: make this recursive to improve compile times */
bool done = false;
while (!done) {
done = true;
nir_foreach_block (block, impl) {
nir_foreach_instr (instr, block) {
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr* alu_instr = nir_instr_as_alu(instr);
RegType type =
nir_dest_is_divergent(alu_instr->dest.dest) ? RegType::vgpr : RegType::sgpr;
switch (alu_instr->op) {
case nir_op_fmul:
case nir_op_fmulz:
case nir_op_fadd:
case nir_op_fsub:
case nir_op_ffma:
case nir_op_ffmaz:
case nir_op_fmax:
case nir_op_fmin:
case nir_op_fneg:
case nir_op_fabs:
case nir_op_fsat:
case nir_op_fsign:
case nir_op_frcp:
case nir_op_frsq:
case nir_op_fsqrt:
case nir_op_fexp2:
case nir_op_flog2:
case nir_op_ffract:
case nir_op_ffloor:
case nir_op_fceil:
case nir_op_ftrunc:
case nir_op_fround_even:
case nir_op_fsin_amd:
case nir_op_fcos_amd:
case nir_op_f2f16:
case nir_op_f2f16_rtz:
case nir_op_f2f16_rtne:
case nir_op_f2f32:
case nir_op_f2f64:
case nir_op_u2f16:
case nir_op_u2f32:
case nir_op_u2f64:
case nir_op_i2f16:
case nir_op_i2f32:
case nir_op_i2f64:
case nir_op_pack_half_2x16_split:
case nir_op_pack_unorm_2x16:
case nir_op_pack_snorm_2x16:
case nir_op_pack_uint_2x16:
case nir_op_pack_sint_2x16:
case nir_op_unpack_half_2x16_split_x:
case nir_op_unpack_half_2x16_split_y:
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
case nir_op_fquantize2f16:
case nir_op_ldexp:
case nir_op_frexp_sig:
case nir_op_frexp_exp:
case nir_op_cube_face_index_amd:
case nir_op_cube_face_coord_amd:
case nir_op_sad_u8x4:
case nir_op_udot_4x8_uadd:
case nir_op_sdot_4x8_iadd:
case nir_op_sudot_4x8_iadd:
case nir_op_udot_4x8_uadd_sat:
case nir_op_sdot_4x8_iadd_sat:
case nir_op_sudot_4x8_iadd_sat:
case nir_op_udot_2x16_uadd:
case nir_op_sdot_2x16_iadd:
case nir_op_udot_2x16_uadd_sat:
case nir_op_sdot_2x16_iadd_sat: type = RegType::vgpr; break;
case nir_op_f2i16:
case nir_op_f2u16:
case nir_op_f2i32:
case nir_op_f2u32:
case nir_op_f2i64:
case nir_op_f2u64:
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
case nir_op_b2i64:
case nir_op_b2b32:
case nir_op_b2f16:
case nir_op_b2f32:
case nir_op_mov: break;
case nir_op_iabs:
case nir_op_iadd:
case nir_op_iadd_sat:
case nir_op_uadd_sat:
case nir_op_isub:
case nir_op_isub_sat:
case nir_op_usub_sat:
case nir_op_imul:
case nir_op_imin:
case nir_op_imax:
case nir_op_umin:
case nir_op_umax:
case nir_op_ishl:
case nir_op_ishr:
case nir_op_ushr:
/* packed 16bit instructions have to be VGPR */
type = alu_instr->dest.dest.ssa.num_components == 2 ? RegType::vgpr : type;
FALLTHROUGH;
default:
for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
if (regclasses[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
}
break;
}
RegClass rc = get_reg_class(ctx, type, alu_instr->dest.dest.ssa.num_components,
alu_instr->dest.dest.ssa.bit_size);
regclasses[alu_instr->dest.dest.ssa.index] = rc;
break;
}
case nir_instr_type_load_const: {
unsigned num_components = nir_instr_as_load_const(instr)->def.num_components;
unsigned bit_size = nir_instr_as_load_const(instr)->def.bit_size;
RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
regclasses[nir_instr_as_load_const(instr)->def.index] = rc;
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr* intrinsic = nir_instr_as_intrinsic(instr);
if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
break;
RegType type = RegType::sgpr;
switch (intrinsic->intrinsic) {
case nir_intrinsic_load_push_constant:
case nir_intrinsic_load_workgroup_id:
case nir_intrinsic_load_num_workgroups:
case nir_intrinsic_load_ray_launch_size_addr_amd:
case nir_intrinsic_load_sbt_base_amd:
case nir_intrinsic_load_subgroup_id:
case nir_intrinsic_load_num_subgroups:
case nir_intrinsic_load_first_vertex:
case nir_intrinsic_load_base_instance:
case nir_intrinsic_vote_all:
case nir_intrinsic_vote_any:
case nir_intrinsic_read_first_invocation:
case nir_intrinsic_read_invocation:
case nir_intrinsic_first_invocation:
case nir_intrinsic_ballot:
case nir_intrinsic_bindless_image_samples:
case nir_intrinsic_load_force_vrs_rates_amd:
case nir_intrinsic_load_scalar_arg_amd:
case nir_intrinsic_load_smem_amd: type = RegType::sgpr; break;
case nir_intrinsic_load_sample_id:
case nir_intrinsic_load_input:
case nir_intrinsic_load_output:
case nir_intrinsic_load_input_vertex:
case nir_intrinsic_load_per_vertex_input:
case nir_intrinsic_load_per_vertex_output:
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_model:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_at_sample:
case nir_intrinsic_load_barycentric_at_offset:
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_load_frag_coord:
case nir_intrinsic_load_frag_shading_rate:
case nir_intrinsic_load_sample_pos:
case nir_intrinsic_load_local_invocation_id:
case nir_intrinsic_load_local_invocation_index:
case nir_intrinsic_load_subgroup_invocation:
case nir_intrinsic_load_tess_coord:
case nir_intrinsic_write_invocation_amd:
case nir_intrinsic_mbcnt_amd:
case nir_intrinsic_byte_permute_amd:
case nir_intrinsic_lane_permute_16_amd:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_ssbo_atomic_fmin:
case nir_intrinsic_ssbo_atomic_fmax:
case nir_intrinsic_global_atomic_add_amd:
case nir_intrinsic_global_atomic_imin_amd:
case nir_intrinsic_global_atomic_umin_amd:
case nir_intrinsic_global_atomic_imax_amd:
case nir_intrinsic_global_atomic_umax_amd:
case nir_intrinsic_global_atomic_and_amd:
case nir_intrinsic_global_atomic_or_amd:
case nir_intrinsic_global_atomic_xor_amd:
case nir_intrinsic_global_atomic_exchange_amd:
case nir_intrinsic_global_atomic_comp_swap_amd:
case nir_intrinsic_global_atomic_fmin_amd:
case nir_intrinsic_global_atomic_fmax_amd:
case nir_intrinsic_bindless_image_atomic_add:
case nir_intrinsic_bindless_image_atomic_umin:
case nir_intrinsic_bindless_image_atomic_imin:
case nir_intrinsic_bindless_image_atomic_umax:
case nir_intrinsic_bindless_image_atomic_imax:
case nir_intrinsic_bindless_image_atomic_and:
case nir_intrinsic_bindless_image_atomic_or:
case nir_intrinsic_bindless_image_atomic_xor:
case nir_intrinsic_bindless_image_atomic_exchange:
case nir_intrinsic_bindless_image_atomic_comp_swap:
case nir_intrinsic_bindless_image_atomic_fmin:
case nir_intrinsic_bindless_image_atomic_fmax:
case nir_intrinsic_bindless_image_size:
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_shared_atomic_fadd:
case nir_intrinsic_shared_atomic_fmin:
case nir_intrinsic_shared_atomic_fmax:
case nir_intrinsic_load_scratch:
case nir_intrinsic_load_invocation_id:
case nir_intrinsic_load_primitive_id:
case nir_intrinsic_load_buffer_amd:
case nir_intrinsic_load_initial_edgeflags_amd:
case nir_intrinsic_gds_atomic_add_amd:
case nir_intrinsic_bvh64_intersect_ray_amd:
case nir_intrinsic_load_vector_arg_amd:
case nir_intrinsic_ordered_xfb_counter_add_amd: type = RegType::vgpr; break;
case nir_intrinsic_load_shared:
case nir_intrinsic_load_shared2_amd:
/* When the result of these loads is only used by cross-lane instructions,
* it is beneficial to use a VGPR destination. This is because this allows
* to put the s_waitcnt further down, which decreases latency.
*/
if (only_used_by_cross_lane_instrs(&intrinsic->dest.ssa)) {
type = RegType::vgpr;
break;
}
FALLTHROUGH;
case nir_intrinsic_shuffle:
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
case nir_intrinsic_quad_swizzle_amd:
case nir_intrinsic_masked_swizzle_amd:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan:
case nir_intrinsic_reduce:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_global_amd:
type = nir_dest_is_divergent(intrinsic->dest) ? RegType::vgpr : RegType::sgpr;
break;
case nir_intrinsic_load_view_index:
type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
break;
default:
for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs;
i++) {
if (regclasses[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
}
break;
}
RegClass rc = get_reg_class(ctx, type, intrinsic->dest.ssa.num_components,
intrinsic->dest.ssa.bit_size);
regclasses[intrinsic->dest.ssa.index] = rc;
break;
}
case nir_instr_type_tex: {
nir_tex_instr* tex = nir_instr_as_tex(instr);
RegType type = nir_dest_is_divergent(tex->dest) ? RegType::vgpr : RegType::sgpr;
if (tex->op == nir_texop_texture_samples) {
assert(!tex->dest.ssa.divergent);
}
RegClass rc =
get_reg_class(ctx, type, tex->dest.ssa.num_components, tex->dest.ssa.bit_size);
regclasses[tex->dest.ssa.index] = rc;
break;
}
case nir_instr_type_parallel_copy: {
nir_foreach_parallel_copy_entry (entry, nir_instr_as_parallel_copy(instr)) {
regclasses[entry->dest.ssa.index] = regclasses[entry->src.ssa->index];
}
break;
}
case nir_instr_type_ssa_undef: {
unsigned num_components = nir_instr_as_ssa_undef(instr)->def.num_components;
unsigned bit_size = nir_instr_as_ssa_undef(instr)->def.bit_size;
RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
regclasses[nir_instr_as_ssa_undef(instr)->def.index] = rc;
break;
}
case nir_instr_type_phi: {
nir_phi_instr* phi = nir_instr_as_phi(instr);
RegType type = RegType::sgpr;
unsigned num_components = phi->dest.ssa.num_components;
assert((phi->dest.ssa.bit_size != 1 || num_components == 1) &&
"Multiple components not supported on boolean phis.");
if (nir_dest_is_divergent(phi->dest)) {
type = RegType::vgpr;
} else {
nir_foreach_phi_src (src, phi) {
if (regclasses[src->src.ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
}
}
RegClass rc = get_reg_class(ctx, type, num_components, phi->dest.ssa.bit_size);
if (rc != regclasses[phi->dest.ssa.index])
done = false;
regclasses[phi->dest.ssa.index] = rc;
break;
}
default: break;
}
}
}
}
ctx->program->config->spi_ps_input_ena = ctx->program->info.ps.spi_ps_input;
ctx->program->config->spi_ps_input_addr = ctx->program->info.ps.spi_ps_input;
ctx->cf_info.nir_to_aco = std::move(nir_to_aco);
/* align and copy constant data */
while (ctx->program->constant_data.size() % 4u)
ctx->program->constant_data.push_back(0);
ctx->constant_data_offset = ctx->program->constant_data.size();
ctx->program->constant_data.insert(ctx->program->constant_data.end(),
(uint8_t*)shader->constant_data,
(uint8_t*)shader->constant_data + shader->constant_data_size);
}
void
cleanup_context(isel_context* ctx)
{
_mesa_hash_table_destroy(ctx->range_ht, NULL);
}
isel_context
setup_isel_context(Program* program, unsigned shader_count, struct nir_shader* const* shaders,
ac_shader_config* config, const struct aco_compiler_options* options,
const struct aco_shader_info* info,
const struct radv_shader_args* args, bool is_gs_copy_shader,
bool is_ps_epilog)
{
SWStage sw_stage = SWStage::None;
for (unsigned i = 0; i < shader_count; i++) {
switch (shaders[i]->info.stage) {
case MESA_SHADER_VERTEX: sw_stage = sw_stage | SWStage::VS; break;
case MESA_SHADER_TESS_CTRL: sw_stage = sw_stage | SWStage::TCS; break;
case MESA_SHADER_TESS_EVAL: sw_stage = sw_stage | SWStage::TES; break;
case MESA_SHADER_GEOMETRY:
sw_stage = sw_stage | (is_gs_copy_shader ? SWStage::GSCopy : SWStage::GS);
break;
case MESA_SHADER_FRAGMENT: sw_stage = sw_stage | SWStage::FS; break;
case MESA_SHADER_COMPUTE: sw_stage = sw_stage | SWStage::CS; break;
case MESA_SHADER_TASK: sw_stage = sw_stage | SWStage::TS; break;
case MESA_SHADER_MESH: sw_stage = sw_stage | SWStage::MS; break;
default: unreachable("Shader stage not implemented");
}
}
if (is_ps_epilog) {
assert(shader_count == 0 && !shaders);
sw_stage = SWStage::FS;
}
bool gfx9_plus = options->gfx_level >= GFX9;
bool ngg = info->is_ngg && options->gfx_level >= GFX10;
HWStage hw_stage{};
if (sw_stage == SWStage::VS && info->vs.as_es && !ngg)
hw_stage = HWStage::ES;
else if (sw_stage == SWStage::VS && !info->vs.as_ls && !ngg)
hw_stage = HWStage::VS;
else if (sw_stage == SWStage::VS && ngg)
hw_stage = HWStage::NGG; /* GFX10/NGG: VS without GS uses the HW GS stage */
else if (sw_stage == SWStage::GS)
hw_stage = HWStage::GS;
else if (sw_stage == SWStage::FS)
hw_stage = HWStage::FS;
else if (sw_stage == SWStage::CS)
hw_stage = HWStage::CS;
else if (sw_stage == SWStage::GSCopy)
hw_stage = HWStage::VS;
else if (sw_stage == SWStage::TS)
hw_stage = HWStage::CS; /* Task shaders are implemented with compute shaders. */
else if (sw_stage == SWStage::MS)
hw_stage = HWStage::NGG; /* Mesh shaders only work on NGG and on GFX10.3+. */
else if (sw_stage == SWStage::VS_GS && gfx9_plus && !ngg)
hw_stage = HWStage::GS; /* GFX6-9: VS+GS merged into a GS (and GFX10/legacy) */
else if (sw_stage == SWStage::VS_GS && ngg)
hw_stage = HWStage::NGG; /* GFX10+: VS+GS merged into an NGG GS */
else if (sw_stage == SWStage::VS && info->vs.as_ls)
hw_stage = HWStage::LS; /* GFX6-8: VS is a Local Shader, when tessellation is used */
else if (sw_stage == SWStage::TCS)
hw_stage = HWStage::HS; /* GFX6-8: TCS is a Hull Shader */
else if (sw_stage == SWStage::VS_TCS)
hw_stage = HWStage::HS; /* GFX9-10: VS+TCS merged into a Hull Shader */
else if (sw_stage == SWStage::TES && !info->tes.as_es && !ngg)
hw_stage = HWStage::VS; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */
else if (sw_stage == SWStage::TES && !info->tes.as_es && ngg)
hw_stage = HWStage::NGG; /* GFX10/NGG: TES without GS */
else if (sw_stage == SWStage::TES && info->tes.as_es && !ngg)
hw_stage = HWStage::ES; /* GFX6-8: TES is an Export Shader */
else if (sw_stage == SWStage::TES_GS && gfx9_plus && !ngg)
hw_stage = HWStage::GS; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */
else if (sw_stage == SWStage::TES_GS && ngg)
hw_stage = HWStage::NGG; /* GFX10+: TES+GS merged into an NGG GS */
else
unreachable("Shader stage not implemented");
init_program(program, Stage{hw_stage, sw_stage}, info, options->gfx_level, options->family,
options->wgp_mode, config);
isel_context ctx = {};
ctx.program = program;
ctx.args = args;
ctx.options = options;
ctx.stage = program->stage;
program->workgroup_size = program->info.workgroup_size;
assert(program->workgroup_size);
/* Mesh shading only works on GFX10.3+. */
ASSERTED bool mesh_shading = ctx.stage.has(SWStage::TS) || ctx.stage.has(SWStage::MS);
assert(!mesh_shading || ctx.program->gfx_level >= GFX10_3);
if (ctx.stage == tess_control_hs)
setup_tcs_info(&ctx, shaders[0], NULL);
else if (ctx.stage == vertex_tess_control_hs)
setup_tcs_info(&ctx, shaders[1], shaders[0]);
calc_min_waves(program);
unsigned scratch_size = 0;
if (program->stage == gs_copy_vs) {
assert(shader_count == 1);
setup_vs_output_info(&ctx, shaders[0]);
} else {
for (unsigned i = 0; i < shader_count; i++) {
nir_shader* nir = shaders[i];
setup_nir(&ctx, nir);
}
for (unsigned i = 0; i < shader_count; i++)
scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
}
ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024);
unsigned nir_num_blocks = 0;
for (unsigned i = 0; i < shader_count; i++)
nir_num_blocks += nir_shader_get_entrypoint(shaders[i])->num_blocks;
ctx.program->blocks.reserve(nir_num_blocks * 2);
ctx.block = ctx.program->create_and_insert_block();
ctx.block->kind = block_kind_top_level;
return ctx;
}
} // namespace aco