| /* |
| * Copyright © 2018 Valve Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "aco_builder.h" |
| #include "aco_ir.h" |
| |
| #include "common/sid.h" |
| |
| #include "util/memstream.h" |
| |
| #include <algorithm> |
| #include <map> |
| #include <vector> |
| |
| namespace aco { |
| |
| struct constaddr_info { |
| unsigned getpc_end; |
| unsigned add_literal; |
| }; |
| |
| struct asm_context { |
| Program* program; |
| enum amd_gfx_level gfx_level; |
| std::vector<std::pair<int, SOPP_instruction*>> branches; |
| std::map<unsigned, constaddr_info> constaddrs; |
| const int16_t* opcode; |
| // TODO: keep track of branch instructions referring blocks |
| // and, when emitting the block, correct the offset in instr |
| asm_context(Program* program_) : program(program_), gfx_level(program->gfx_level) |
| { |
| if (gfx_level <= GFX7) |
| opcode = &instr_info.opcode_gfx7[0]; |
| else if (gfx_level <= GFX9) |
| opcode = &instr_info.opcode_gfx9[0]; |
| else if (gfx_level <= GFX10_3) |
| opcode = &instr_info.opcode_gfx10[0]; |
| else if (gfx_level >= GFX11) |
| opcode = &instr_info.opcode_gfx11[0]; |
| } |
| |
| int subvector_begin_pos = -1; |
| }; |
| |
| unsigned |
| get_mimg_nsa_dwords(const Instruction* instr) |
| { |
| unsigned addr_dwords = instr->operands.size() - 3; |
| for (unsigned i = 1; i < addr_dwords; i++) { |
| if (instr->operands[3 + i].physReg() != instr->operands[3].physReg().advance(i * 4)) |
| return DIV_ROUND_UP(addr_dwords - 1, 4); |
| } |
| return 0; |
| } |
| |
| uint32_t |
| reg(asm_context& ctx, PhysReg reg) |
| { |
| if (ctx.gfx_level >= GFX11) { |
| if (reg == m0) |
| return sgpr_null.reg(); |
| else if (reg == sgpr_null) |
| return m0.reg(); |
| } |
| return reg.reg(); |
| } |
| |
| ALWAYS_INLINE uint32_t |
| reg(asm_context& ctx, Operand op, unsigned width = 32) |
| { |
| return reg(ctx, op.physReg()) & BITFIELD_MASK(width); |
| } |
| |
| ALWAYS_INLINE uint32_t |
| reg(asm_context& ctx, Definition def, unsigned width = 32) |
| { |
| return reg(ctx, def.physReg()) & BITFIELD_MASK(width); |
| } |
| |
| void |
| emit_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr) |
| { |
| /* lower remaining pseudo-instructions */ |
| if (instr->opcode == aco_opcode::p_constaddr_getpc) { |
| ctx.constaddrs[instr->operands[0].constantValue()].getpc_end = out.size() + 1; |
| |
| instr->opcode = aco_opcode::s_getpc_b64; |
| instr->operands.pop_back(); |
| } else if (instr->opcode == aco_opcode::p_constaddr_addlo) { |
| ctx.constaddrs[instr->operands[2].constantValue()].add_literal = out.size() + 1; |
| |
| instr->opcode = aco_opcode::s_add_u32; |
| instr->operands.pop_back(); |
| assert(instr->operands[1].isConstant()); |
| /* in case it's an inline constant, make it a literal */ |
| instr->operands[1] = Operand::literal32(instr->operands[1].constantValue()); |
| } |
| |
| uint32_t opcode = ctx.opcode[(int)instr->opcode]; |
| if (opcode == (uint32_t)-1) { |
| char* outmem; |
| size_t outsize; |
| struct u_memstream mem; |
| u_memstream_open(&mem, &outmem, &outsize); |
| FILE* const memf = u_memstream_get(&mem); |
| |
| fprintf(memf, "Unsupported opcode: "); |
| aco_print_instr(ctx.gfx_level, instr, memf); |
| u_memstream_close(&mem); |
| |
| aco_err(ctx.program, outmem); |
| free(outmem); |
| |
| abort(); |
| } |
| |
| switch (instr->format) { |
| case Format::SOP2: { |
| uint32_t encoding = (0b10 << 30); |
| encoding |= opcode << 23; |
| encoding |= !instr->definitions.empty() ? reg(ctx, instr->definitions[0]) << 16 : 0; |
| encoding |= instr->operands.size() >= 2 ? reg(ctx, instr->operands[1]) << 8 : 0; |
| encoding |= !instr->operands.empty() ? reg(ctx, instr->operands[0]) : 0; |
| out.push_back(encoding); |
| break; |
| } |
| case Format::SOPK: { |
| SOPK_instruction& sopk = instr->sopk(); |
| |
| if (instr->opcode == aco_opcode::s_subvector_loop_begin) { |
| assert(ctx.gfx_level >= GFX10); |
| assert(ctx.subvector_begin_pos == -1); |
| ctx.subvector_begin_pos = out.size(); |
| } else if (instr->opcode == aco_opcode::s_subvector_loop_end) { |
| assert(ctx.gfx_level >= GFX10); |
| assert(ctx.subvector_begin_pos != -1); |
| /* Adjust s_subvector_loop_begin instruction to the address after the end */ |
| out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos); |
| /* Adjust s_subvector_loop_end instruction to the address after the beginning */ |
| sopk.imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size()); |
| ctx.subvector_begin_pos = -1; |
| } |
| |
| uint32_t encoding = (0b1011 << 28); |
| encoding |= opcode << 23; |
| encoding |= !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) |
| ? reg(ctx, instr->definitions[0]) << 16 |
| : !instr->operands.empty() && instr->operands[0].physReg() <= 127 |
| ? reg(ctx, instr->operands[0]) << 16 |
| : 0; |
| encoding |= sopk.imm; |
| out.push_back(encoding); |
| break; |
| } |
| case Format::SOP1: { |
| uint32_t encoding = (0b101111101 << 23); |
| encoding |= !instr->definitions.empty() ? reg(ctx, instr->definitions[0]) << 16 : 0; |
| encoding |= opcode << 8; |
| encoding |= !instr->operands.empty() ? reg(ctx, instr->operands[0]) : 0; |
| out.push_back(encoding); |
| break; |
| } |
| case Format::SOPC: { |
| uint32_t encoding = (0b101111110 << 23); |
| encoding |= opcode << 16; |
| encoding |= instr->operands.size() == 2 ? reg(ctx, instr->operands[1]) << 8 : 0; |
| encoding |= !instr->operands.empty() ? reg(ctx, instr->operands[0]) : 0; |
| out.push_back(encoding); |
| break; |
| } |
| case Format::SOPP: { |
| SOPP_instruction& sopp = instr->sopp(); |
| uint32_t encoding = (0b101111111 << 23); |
| encoding |= opcode << 16; |
| encoding |= (uint16_t)sopp.imm; |
| if (sopp.block != -1) { |
| sopp.pass_flags = 0; |
| ctx.branches.emplace_back(out.size(), &sopp); |
| } |
| out.push_back(encoding); |
| break; |
| } |
| case Format::SMEM: { |
| SMEM_instruction& smem = instr->smem(); |
| bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4); |
| bool is_load = !instr->definitions.empty(); |
| uint32_t encoding = 0; |
| |
| if (ctx.gfx_level <= GFX7) { |
| encoding = (0b11000 << 27); |
| encoding |= opcode << 22; |
| encoding |= instr->definitions.size() ? reg(ctx, instr->definitions[0]) << 15 : 0; |
| encoding |= instr->operands.size() ? (reg(ctx, instr->operands[0]) >> 1) << 9 : 0; |
| if (instr->operands.size() >= 2) { |
| if (!instr->operands[1].isConstant()) { |
| encoding |= reg(ctx, instr->operands[1]); |
| } else if (instr->operands[1].constantValue() >= 1024) { |
| encoding |= 255; /* SQ_SRC_LITERAL */ |
| } else { |
| encoding |= instr->operands[1].constantValue() >> 2; |
| encoding |= 1 << 8; |
| } |
| } |
| out.push_back(encoding); |
| /* SMRD instructions can take a literal on GFX7 */ |
| if (instr->operands.size() >= 2 && instr->operands[1].isConstant() && |
| instr->operands[1].constantValue() >= 1024) |
| out.push_back(instr->operands[1].constantValue() >> 2); |
| return; |
| } |
| |
| if (ctx.gfx_level <= GFX9) { |
| encoding = (0b110000 << 26); |
| assert(!smem.dlc); /* Device-level coherent is not supported on GFX9 and lower */ |
| encoding |= smem.nv ? 1 << 15 : 0; |
| } else { |
| encoding = (0b111101 << 26); |
| assert(!smem.nv); /* Non-volatile is not supported on GFX10 */ |
| encoding |= smem.dlc ? 1 << (ctx.gfx_level >= GFX11 ? 13 : 14) : 0; |
| } |
| |
| encoding |= opcode << 18; |
| encoding |= smem.glc ? 1 << (ctx.gfx_level >= GFX11 ? 14 : 16) : 0; |
| |
| if (ctx.gfx_level <= GFX9) { |
| if (instr->operands.size() >= 2) |
| encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */ |
| } |
| if (ctx.gfx_level == GFX9) { |
| encoding |= soe ? 1 << 14 : 0; |
| } |
| |
| if (is_load || instr->operands.size() >= 3) { /* SDATA */ |
| encoding |= (is_load ? reg(ctx, instr->definitions[0]) : reg(ctx, instr->operands[2])) |
| << 6; |
| } |
| if (instr->operands.size() >= 1) { /* SBASE */ |
| encoding |= reg(ctx, instr->operands[0]) >> 1; |
| } |
| |
| out.push_back(encoding); |
| encoding = 0; |
| |
| int32_t offset = 0; |
| uint32_t soffset = |
| ctx.gfx_level >= GFX10 |
| ? reg(ctx, sgpr_null) /* On GFX10 this is disabled by specifying SGPR_NULL */ |
| : 0; /* On GFX9, it is disabled by the SOE bit (and it's not present on |
| GFX8 and below) */ |
| if (instr->operands.size() >= 2) { |
| const Operand& op_off1 = instr->operands[1]; |
| if (ctx.gfx_level <= GFX9) { |
| offset = op_off1.isConstant() ? op_off1.constantValue() : reg(ctx, op_off1); |
| } else { |
| /* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an |
| * SGPR */ |
| if (op_off1.isConstant()) { |
| offset = op_off1.constantValue(); |
| } else { |
| soffset = reg(ctx, op_off1); |
| assert(!soe); /* There is no place to put the other SGPR offset, if any */ |
| } |
| } |
| |
| if (soe) { |
| const Operand& op_off2 = instr->operands.back(); |
| assert(ctx.gfx_level >= GFX9); /* GFX8 and below don't support specifying a constant |
| and an SGPR at the same time */ |
| assert(!op_off2.isConstant()); |
| soffset = reg(ctx, op_off2); |
| } |
| } |
| encoding |= offset; |
| encoding |= soffset << 25; |
| |
| out.push_back(encoding); |
| return; |
| } |
| case Format::VOP2: { |
| uint32_t encoding = 0; |
| encoding |= opcode << 25; |
| encoding |= reg(ctx, instr->definitions[0], 8) << 17; |
| encoding |= reg(ctx, instr->operands[1], 8) << 9; |
| encoding |= reg(ctx, instr->operands[0]); |
| out.push_back(encoding); |
| break; |
| } |
| case Format::VOP1: { |
| uint32_t encoding = (0b0111111 << 25); |
| if (!instr->definitions.empty()) |
| encoding |= reg(ctx, instr->definitions[0], 8) << 17; |
| encoding |= opcode << 9; |
| if (!instr->operands.empty()) |
| encoding |= reg(ctx, instr->operands[0]); |
| out.push_back(encoding); |
| break; |
| } |
| case Format::VOPC: { |
| uint32_t encoding = (0b0111110 << 25); |
| encoding |= opcode << 17; |
| encoding |= reg(ctx, instr->operands[1], 8) << 9; |
| encoding |= reg(ctx, instr->operands[0]); |
| out.push_back(encoding); |
| break; |
| } |
| case Format::VINTRP: { |
| VINTRP_instruction& interp = instr->vintrp(); |
| uint32_t encoding = 0; |
| |
| if (instr->opcode == aco_opcode::v_interp_p1ll_f16 || |
| instr->opcode == aco_opcode::v_interp_p1lv_f16 || |
| instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || |
| instr->opcode == aco_opcode::v_interp_p2_f16) { |
| if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { |
| encoding = (0b110100 << 26); |
| } else if (ctx.gfx_level >= GFX10) { |
| encoding = (0b110101 << 26); |
| } else { |
| unreachable("Unknown gfx_level."); |
| } |
| |
| encoding |= opcode << 16; |
| encoding |= reg(ctx, instr->definitions[0], 8); |
| out.push_back(encoding); |
| |
| encoding = 0; |
| encoding |= interp.attribute; |
| encoding |= interp.component << 6; |
| encoding |= reg(ctx, instr->operands[0]) << 9; |
| if (instr->opcode == aco_opcode::v_interp_p2_f16 || |
| instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || |
| instr->opcode == aco_opcode::v_interp_p1lv_f16) { |
| encoding |= reg(ctx, instr->operands[2]) << 18; |
| } |
| out.push_back(encoding); |
| } else { |
| if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { |
| encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */ |
| } else { |
| encoding = (0b110010 << 26); |
| } |
| |
| assert(encoding); |
| encoding |= reg(ctx, instr->definitions[0], 8) << 18; |
| encoding |= opcode << 16; |
| encoding |= interp.attribute << 10; |
| encoding |= interp.component << 8; |
| if (instr->opcode == aco_opcode::v_interp_mov_f32) |
| encoding |= (0x3 & instr->operands[0].constantValue()); |
| else |
| encoding |= reg(ctx, instr->operands[0], 8); |
| out.push_back(encoding); |
| } |
| break; |
| } |
| case Format::VINTERP_INREG: { |
| VINTERP_inreg_instruction& interp = instr->vinterp_inreg(); |
| uint32_t encoding = (0b11001101 << 24); |
| encoding |= reg(ctx, instr->definitions[0], 8); |
| encoding |= (uint32_t)interp.wait_exp << 8; |
| encoding |= (uint32_t)interp.opsel << 11; |
| encoding |= (uint32_t)interp.clamp << 15; |
| encoding |= opcode << 16; |
| out.push_back(encoding); |
| |
| encoding = 0; |
| for (unsigned i = 0; i < instr->operands.size(); i++) |
| encoding |= reg(ctx, instr->operands[i]) << (i * 9); |
| for (unsigned i = 0; i < 3; i++) |
| encoding |= interp.neg[i] << (29 + i); |
| out.push_back(encoding); |
| break; |
| } |
| case Format::DS: { |
| DS_instruction& ds = instr->ds(); |
| uint32_t encoding = (0b110110 << 26); |
| if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { |
| encoding |= opcode << 17; |
| encoding |= (ds.gds ? 1 : 0) << 16; |
| } else { |
| encoding |= opcode << 18; |
| encoding |= (ds.gds ? 1 : 0) << 17; |
| } |
| encoding |= ((0xFF & ds.offset1) << 8); |
| encoding |= (0xFFFF & ds.offset0); |
| out.push_back(encoding); |
| encoding = 0; |
| if (!instr->definitions.empty()) |
| encoding |= reg(ctx, instr->definitions[0], 8) << 24; |
| if (instr->operands.size() >= 3 && instr->operands[2].physReg() != m0) |
| encoding |= reg(ctx, instr->operands[2], 8) << 16; |
| if (instr->operands.size() >= 2 && instr->operands[1].physReg() != m0) |
| encoding |= reg(ctx, instr->operands[1], 8) << 8; |
| encoding |= reg(ctx, instr->operands[0], 8); |
| out.push_back(encoding); |
| break; |
| } |
| case Format::LDSDIR: { |
| LDSDIR_instruction& dir = instr->ldsdir(); |
| uint32_t encoding = (0b11001110 << 24); |
| encoding |= opcode << 20; |
| encoding |= (uint32_t)dir.wait_vdst << 16; |
| encoding |= (uint32_t)dir.attr << 10; |
| encoding |= (uint32_t)dir.attr_chan << 8; |
| encoding |= reg(ctx, instr->definitions[0], 8); |
| out.push_back(encoding); |
| break; |
| } |
| case Format::MUBUF: { |
| MUBUF_instruction& mubuf = instr->mubuf(); |
| uint32_t encoding = (0b111000 << 26); |
| if (ctx.gfx_level >= GFX11 && mubuf.lds) /* GFX11 has separate opcodes for LDS loads */ |
| opcode = opcode == 0 ? 0x32 : (opcode + 0x1d); |
| else |
| encoding |= (mubuf.lds ? 1 : 0) << 16; |
| encoding |= opcode << 18; |
| encoding |= (mubuf.glc ? 1 : 0) << 14; |
| if (ctx.gfx_level <= GFX10_3) |
| encoding |= (mubuf.idxen ? 1 : 0) << 13; |
| assert(!mubuf.addr64 || ctx.gfx_level <= GFX7); |
| if (ctx.gfx_level == GFX6 || ctx.gfx_level == GFX7) |
| encoding |= (mubuf.addr64 ? 1 : 0) << 15; |
| if (ctx.gfx_level <= GFX10_3) |
| encoding |= (mubuf.offen ? 1 : 0) << 12; |
| if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { |
| assert(!mubuf.dlc); /* Device-level coherent is not supported on GFX9 and lower */ |
| encoding |= (mubuf.slc ? 1 : 0) << 17; |
| } else if (ctx.gfx_level >= GFX11) { |
| encoding |= (mubuf.slc ? 1 : 0) << 12; |
| encoding |= (mubuf.dlc ? 1 : 0) << 13; |
| } else if (ctx.gfx_level >= GFX10) { |
| encoding |= (mubuf.dlc ? 1 : 0) << 15; |
| } |
| encoding |= 0x0FFF & mubuf.offset; |
| out.push_back(encoding); |
| encoding = 0; |
| if (ctx.gfx_level <= GFX7 || (ctx.gfx_level >= GFX10 && ctx.gfx_level <= GFX10_3)) { |
| encoding |= (mubuf.slc ? 1 : 0) << 22; |
| } |
| encoding |= reg(ctx, instr->operands[2]) << 24; |
| if (ctx.gfx_level >= GFX11) { |
| encoding |= (mubuf.tfe ? 1 : 0) << 21; |
| encoding |= (mubuf.offen ? 1 : 0) << 22; |
| encoding |= (mubuf.idxen ? 1 : 0) << 23; |
| } else { |
| encoding |= (mubuf.tfe ? 1 : 0) << 23; |
| } |
| encoding |= (reg(ctx, instr->operands[0]) >> 2) << 16; |
| if (instr->operands.size() > 3 && !mubuf.lds) |
| encoding |= reg(ctx, instr->operands[3], 8) << 8; |
| else if (!mubuf.lds) |
| encoding |= reg(ctx, instr->definitions[0], 8) << 8; |
| encoding |= reg(ctx, instr->operands[1], 8); |
| out.push_back(encoding); |
| break; |
| } |
| case Format::MTBUF: { |
| MTBUF_instruction& mtbuf = instr->mtbuf(); |
| |
| uint32_t img_format = ac_get_tbuffer_format(ctx.gfx_level, mtbuf.dfmt, mtbuf.nfmt); |
| uint32_t encoding = (0b111010 << 26); |
| assert(img_format <= 0x7F); |
| assert(!mtbuf.dlc || ctx.gfx_level >= GFX10); |
| if (ctx.gfx_level >= GFX11) { |
| encoding |= (mtbuf.slc ? 1 : 0) << 12; |
| encoding |= (mtbuf.dlc ? 1 : 0) << 13; |
| } else { |
| /* DLC bit replaces one bit of the OPCODE on GFX10 */ |
| encoding |= (mtbuf.dlc ? 1 : 0) << 15; |
| } |
| if (ctx.gfx_level <= GFX10_3) { |
| encoding |= (mtbuf.idxen ? 1 : 0) << 13; |
| encoding |= (mtbuf.offen ? 1 : 0) << 12; |
| } |
| encoding |= (mtbuf.glc ? 1 : 0) << 14; |
| encoding |= 0x0FFF & mtbuf.offset; |
| encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */ |
| |
| if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9 || ctx.gfx_level >= GFX11) { |
| encoding |= opcode << 15; |
| } else { |
| encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */ |
| } |
| |
| out.push_back(encoding); |
| encoding = 0; |
| |
| encoding |= reg(ctx, instr->operands[2]) << 24; |
| if (ctx.gfx_level >= GFX11) { |
| encoding |= (mtbuf.tfe ? 1 : 0) << 21; |
| encoding |= (mtbuf.offen ? 1 : 0) << 22; |
| encoding |= (mtbuf.idxen ? 1 : 0) << 23; |
| } else { |
| encoding |= (mtbuf.tfe ? 1 : 0) << 23; |
| encoding |= (mtbuf.slc ? 1 : 0) << 22; |
| } |
| encoding |= (reg(ctx, instr->operands[0]) >> 2) << 16; |
| if (instr->operands.size() > 3) |
| encoding |= reg(ctx, instr->operands[3], 8) << 8; |
| else |
| encoding |= reg(ctx, instr->definitions[0], 8) << 8; |
| encoding |= reg(ctx, instr->operands[1], 8); |
| |
| if (ctx.gfx_level >= GFX10) { |
| encoding |= (((opcode & 0x08) >> 3) << 21); /* MSB of 4-bit OPCODE */ |
| } |
| |
| out.push_back(encoding); |
| break; |
| } |
| case Format::MIMG: { |
| unsigned nsa_dwords = get_mimg_nsa_dwords(instr); |
| assert(!nsa_dwords || ctx.gfx_level >= GFX10); |
| |
| MIMG_instruction& mimg = instr->mimg(); |
| uint32_t encoding = (0b111100 << 26); |
| if (ctx.gfx_level >= GFX11) { /* GFX11: rearranges most fields */ |
| assert(nsa_dwords <= 1); |
| encoding |= nsa_dwords; |
| encoding |= mimg.dim << 2; |
| encoding |= mimg.unrm ? 1 << 7 : 0; |
| encoding |= (0xF & mimg.dmask) << 8; |
| encoding |= mimg.slc ? 1 << 12 : 0; |
| encoding |= mimg.dlc ? 1 << 13 : 0; |
| encoding |= mimg.glc ? 1 << 14 : 0; |
| encoding |= mimg.r128 ? 1 << 15 : 0; |
| encoding |= mimg.a16 ? 1 << 16 : 0; |
| encoding |= mimg.d16 ? 1 << 17 : 0; |
| encoding |= (opcode & 0xFF) << 18; |
| } else { |
| encoding |= mimg.slc ? 1 << 25 : 0; |
| encoding |= (opcode & 0x7f) << 18; |
| encoding |= (opcode >> 7) & 1; |
| encoding |= mimg.lwe ? 1 << 17 : 0; |
| encoding |= mimg.tfe ? 1 << 16 : 0; |
| encoding |= mimg.glc ? 1 << 13 : 0; |
| encoding |= mimg.unrm ? 1 << 12 : 0; |
| if (ctx.gfx_level <= GFX9) { |
| assert(!mimg.dlc); /* Device-level coherent is not supported on GFX9 and lower */ |
| assert(!mimg.r128); |
| encoding |= mimg.a16 ? 1 << 15 : 0; |
| encoding |= mimg.da ? 1 << 14 : 0; |
| } else { |
| encoding |= mimg.r128 |
| ? 1 << 15 |
| : 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */ |
| encoding |= nsa_dwords << 1; |
| encoding |= mimg.dim << 3; /* GFX10: dimensionality instead of declare array */ |
| encoding |= mimg.dlc ? 1 << 7 : 0; |
| } |
| encoding |= (0xF & mimg.dmask) << 8; |
| } |
| out.push_back(encoding); |
| |
| encoding = reg(ctx, instr->operands[3], 8); /* VADDR */ |
| if (!instr->definitions.empty()) { |
| encoding |= reg(ctx, instr->definitions[0], 8) << 8; /* VDATA */ |
| } else if (!instr->operands[2].isUndefined()) { |
| encoding |= reg(ctx, instr->operands[2], 8) << 8; /* VDATA */ |
| } |
| encoding |= (0x1F & (reg(ctx, instr->operands[0]) >> 2)) << 16; /* T# (resource) */ |
| |
| assert(!mimg.d16 || ctx.gfx_level >= GFX9); |
| if (ctx.gfx_level >= GFX11) { |
| if (!instr->operands[1].isUndefined()) |
| encoding |= (0x1F & (reg(ctx, instr->operands[1]) >> 2)) << 26; /* sampler */ |
| |
| encoding |= mimg.tfe ? 1 << 21 : 0; |
| encoding |= mimg.lwe ? 1 << 22 : 0; |
| } else { |
| if (!instr->operands[1].isUndefined()) |
| encoding |= (0x1F & (reg(ctx, instr->operands[1]) >> 2)) << 21; /* sampler */ |
| |
| encoding |= mimg.d16 ? 1 << 31 : 0; |
| if (ctx.gfx_level >= GFX10) { |
| /* GFX10: A16 still exists, but is in a different place */ |
| encoding |= mimg.a16 ? 1 << 30 : 0; |
| } |
| } |
| |
| out.push_back(encoding); |
| |
| if (nsa_dwords) { |
| out.resize(out.size() + nsa_dwords); |
| std::vector<uint32_t>::iterator nsa = std::prev(out.end(), nsa_dwords); |
| for (unsigned i = 0; i < instr->operands.size() - 4u; i++) |
| nsa[i / 4] |= reg(ctx, instr->operands[4 + i], 8) << (i % 4 * 8); |
| } |
| break; |
| } |
| case Format::FLAT: |
| case Format::SCRATCH: |
| case Format::GLOBAL: { |
| FLAT_instruction& flat = instr->flatlike(); |
| uint32_t encoding = (0b110111 << 26); |
| encoding |= opcode << 18; |
| if (ctx.gfx_level == GFX9 || ctx.gfx_level >= GFX11) { |
| if (instr->isFlat()) |
| assert(flat.offset <= 0xfff); |
| else |
| assert(flat.offset >= -4096 && flat.offset < 4096); |
| encoding |= flat.offset & 0x1fff; |
| } else if (ctx.gfx_level <= GFX8 || instr->isFlat()) { |
| /* GFX10 has a 12-bit immediate OFFSET field, |
| * but it has a hw bug: it ignores the offset, called FlatSegmentOffsetBug |
| */ |
| assert(flat.offset == 0); |
| } else { |
| assert(flat.offset >= -2048 && flat.offset <= 2047); |
| encoding |= flat.offset & 0xfff; |
| } |
| if (instr->isScratch()) |
| encoding |= 1 << (ctx.gfx_level >= GFX11 ? 16 : 14); |
| else if (instr->isGlobal()) |
| encoding |= 2 << (ctx.gfx_level >= GFX11 ? 16 : 14); |
| encoding |= flat.lds ? 1 << 13 : 0; |
| encoding |= flat.glc ? 1 << (ctx.gfx_level >= GFX11 ? 14 : 16) : 0; |
| encoding |= flat.slc ? 1 << (ctx.gfx_level >= GFX11 ? 15 : 17) : 0; |
| if (ctx.gfx_level >= GFX10) { |
| assert(!flat.nv); |
| encoding |= flat.dlc ? 1 << (ctx.gfx_level >= GFX11 ? 13 : 12) : 0; |
| } else { |
| assert(!flat.dlc); |
| } |
| out.push_back(encoding); |
| encoding = reg(ctx, instr->operands[0], 8); |
| if (!instr->definitions.empty()) |
| encoding |= reg(ctx, instr->definitions[0], 8) << 24; |
| if (instr->operands.size() >= 3) |
| encoding |= reg(ctx, instr->operands[2], 8) << 8; |
| if (!instr->operands[1].isUndefined()) { |
| assert(ctx.gfx_level >= GFX10 || instr->operands[1].physReg() != 0x7F); |
| assert(instr->format != Format::FLAT); |
| encoding |= reg(ctx, instr->operands[1], 8) << 16; |
| } else if (instr->format != Format::FLAT || |
| ctx.gfx_level >= GFX10) { /* SADDR is actually used with FLAT on GFX10 */ |
| /* For GFX10.3 scratch, 0x7F disables both ADDR and SADDR, unlike sgpr_null, which only |
| * disables SADDR. |
| */ |
| if (ctx.gfx_level <= GFX9 || |
| (instr->format == Format::SCRATCH && instr->operands[0].isUndefined())) |
| encoding |= 0x7F << 16; |
| else |
| encoding |= reg(ctx, sgpr_null) << 16; |
| } |
| if (ctx.gfx_level >= GFX11 && instr->isScratch()) |
| encoding |= !instr->operands[0].isUndefined() ? 1 << 23 : 0; |
| else |
| encoding |= flat.nv ? 1 << 23 : 0; |
| out.push_back(encoding); |
| break; |
| } |
| case Format::EXP: { |
| Export_instruction& exp = instr->exp(); |
| uint32_t encoding; |
| if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { |
| encoding = (0b110001 << 26); |
| } else { |
| encoding = (0b111110 << 26); |
| } |
| |
| if (ctx.gfx_level >= GFX11) { |
| encoding |= exp.row_en ? 0b1 << 13 : 0; |
| } else { |
| encoding |= exp.valid_mask ? 0b1 << 12 : 0; |
| encoding |= exp.compressed ? 0b1 << 10 : 0; |
| } |
| encoding |= exp.done ? 0b1 << 11 : 0; |
| encoding |= exp.dest << 4; |
| encoding |= exp.enabled_mask; |
| out.push_back(encoding); |
| encoding = reg(ctx, exp.operands[0], 8); |
| encoding |= reg(ctx, exp.operands[1], 8) << 8; |
| encoding |= reg(ctx, exp.operands[2], 8) << 16; |
| encoding |= reg(ctx, exp.operands[3], 8) << 24; |
| out.push_back(encoding); |
| break; |
| } |
| case Format::PSEUDO: |
| case Format::PSEUDO_BARRIER: |
| if (instr->opcode != aco_opcode::p_unit_test) |
| unreachable("Pseudo instructions should be lowered before assembly."); |
| break; |
| default: |
| /* TODO: VOP3/VOP3P can use DPP8/16 on GFX11 (encoding of src0 and DPP8/16 word seems same |
| * except abs/neg is ignored). src2 cannot be literal and src0/src1 must be VGPR. |
| */ |
| if (instr->isVOP3()) { |
| VOP3_instruction& vop3 = instr->vop3(); |
| |
| if (instr->isVOP2()) { |
| opcode = opcode + 0x100; |
| } else if (instr->isVOP1()) { |
| if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) |
| opcode = opcode + 0x140; |
| else |
| opcode = opcode + 0x180; |
| } else if (instr->isVOPC()) { |
| opcode = opcode + 0x0; |
| } else if (instr->isVINTRP()) { |
| opcode = opcode + 0x270; |
| } |
| |
| uint32_t encoding; |
| if (ctx.gfx_level <= GFX9) { |
| encoding = (0b110100 << 26); |
| } else if (ctx.gfx_level >= GFX10) { |
| encoding = (0b110101 << 26); |
| } else { |
| unreachable("Unknown gfx_level."); |
| } |
| |
| if (ctx.gfx_level <= GFX7) { |
| encoding |= opcode << 17; |
| encoding |= (vop3.clamp ? 1 : 0) << 11; |
| } else { |
| encoding |= opcode << 16; |
| encoding |= (vop3.clamp ? 1 : 0) << 15; |
| } |
| encoding |= vop3.opsel << 11; |
| for (unsigned i = 0; i < 3; i++) |
| encoding |= vop3.abs[i] << (8 + i); |
| /* On GFX9 and older, v_cmpx implicitly writes exec besides writing an SGPR pair. |
| * On GFX10 and newer, v_cmpx always writes just exec. |
| */ |
| if (instr->definitions.size() == 2 && instr->isVOPC()) |
| assert(ctx.gfx_level <= GFX9 && instr->definitions[1].physReg() == exec); |
| else if (instr->definitions.size() == 2) |
| encoding |= reg(ctx, instr->definitions[1]) << 8; |
| encoding |= reg(ctx, instr->definitions[0], 8); |
| out.push_back(encoding); |
| encoding = 0; |
| if (instr->opcode == aco_opcode::v_interp_mov_f32) { |
| encoding = 0x3 & instr->operands[0].constantValue(); |
| } else if (instr->opcode == aco_opcode::v_writelane_b32_e64) { |
| encoding |= reg(ctx, instr->operands[0]) << 0; |
| encoding |= reg(ctx, instr->operands[1]) << 9; |
| /* Encoding src2 works fine with hardware but breaks some disassemblers. */ |
| } else { |
| for (unsigned i = 0; i < instr->operands.size(); i++) |
| encoding |= reg(ctx, instr->operands[i]) << (i * 9); |
| } |
| encoding |= vop3.omod << 27; |
| for (unsigned i = 0; i < 3; i++) |
| encoding |= vop3.neg[i] << (29 + i); |
| out.push_back(encoding); |
| |
| } else if (instr->isVOP3P()) { |
| VOP3P_instruction& vop3 = instr->vop3p(); |
| |
| uint32_t encoding; |
| if (ctx.gfx_level == GFX9) { |
| encoding = (0b110100111 << 23); |
| } else if (ctx.gfx_level >= GFX10) { |
| encoding = (0b110011 << 26); |
| } else { |
| unreachable("Unknown gfx_level."); |
| } |
| |
| encoding |= opcode << 16; |
| encoding |= (vop3.clamp ? 1 : 0) << 15; |
| encoding |= vop3.opsel_lo << 11; |
| encoding |= ((vop3.opsel_hi & 0x4) ? 1 : 0) << 14; |
| for (unsigned i = 0; i < 3; i++) |
| encoding |= vop3.neg_hi[i] << (8 + i); |
| encoding |= reg(ctx, instr->definitions[0], 8); |
| out.push_back(encoding); |
| encoding = 0; |
| for (unsigned i = 0; i < instr->operands.size(); i++) |
| encoding |= reg(ctx, instr->operands[i]) << (i * 9); |
| encoding |= (vop3.opsel_hi & 0x3) << 27; |
| for (unsigned i = 0; i < 3; i++) |
| encoding |= vop3.neg_lo[i] << (29 + i); |
| out.push_back(encoding); |
| |
| } else if (instr->isDPP16()) { |
| assert(ctx.gfx_level >= GFX8); |
| DPP16_instruction& dpp = instr->dpp16(); |
| |
| /* first emit the instruction without the DPP operand */ |
| Operand dpp_op = instr->operands[0]; |
| instr->operands[0] = Operand(PhysReg{250}, v1); |
| instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::DPP16); |
| emit_instruction(ctx, out, instr); |
| uint32_t encoding = (0xF & dpp.row_mask) << 28; |
| encoding |= (0xF & dpp.bank_mask) << 24; |
| encoding |= dpp.abs[1] << 23; |
| encoding |= dpp.neg[1] << 22; |
| encoding |= dpp.abs[0] << 21; |
| encoding |= dpp.neg[0] << 20; |
| if (ctx.gfx_level >= GFX10) |
| encoding |= 1 << 18; /* set Fetch Inactive to match GFX9 behaviour */ |
| encoding |= dpp.bound_ctrl << 19; |
| encoding |= dpp.dpp_ctrl << 8; |
| encoding |= reg(ctx, dpp_op, 8); |
| out.push_back(encoding); |
| return; |
| } else if (instr->isDPP8()) { |
| assert(ctx.gfx_level >= GFX10); |
| DPP8_instruction& dpp = instr->dpp8(); |
| |
| /* first emit the instruction without the DPP operand */ |
| Operand dpp_op = instr->operands[0]; |
| instr->operands[0] = Operand(PhysReg{234}, v1); |
| instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::DPP8); |
| emit_instruction(ctx, out, instr); |
| uint32_t encoding = reg(ctx, dpp_op, 8); |
| for (unsigned i = 0; i < 8; ++i) |
| encoding |= dpp.lane_sel[i] << (8 + i * 3); |
| out.push_back(encoding); |
| return; |
| } else if (instr->isSDWA()) { |
| assert(ctx.gfx_level >= GFX8 && ctx.gfx_level < GFX11); |
| SDWA_instruction& sdwa = instr->sdwa(); |
| |
| /* first emit the instruction without the SDWA operand */ |
| Operand sdwa_op = instr->operands[0]; |
| instr->operands[0] = Operand(PhysReg{249}, v1); |
| instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::SDWA); |
| emit_instruction(ctx, out, instr); |
| |
| uint32_t encoding = 0; |
| |
| if (instr->isVOPC()) { |
| if (instr->definitions[0].physReg() != |
| (ctx.gfx_level >= GFX10 && is_cmpx(instr->opcode) ? exec : vcc)) { |
| encoding |= reg(ctx, instr->definitions[0]) << 8; |
| encoding |= 1 << 15; |
| } |
| encoding |= (sdwa.clamp ? 1 : 0) << 13; |
| } else { |
| encoding |= sdwa.dst_sel.to_sdwa_sel(instr->definitions[0].physReg().byte()) << 8; |
| uint32_t dst_u = sdwa.dst_sel.sign_extend() ? 1 : 0; |
| if (instr->definitions[0].bytes() < 4) /* dst_preserve */ |
| dst_u = 2; |
| encoding |= dst_u << 11; |
| encoding |= (sdwa.clamp ? 1 : 0) << 13; |
| encoding |= sdwa.omod << 14; |
| } |
| |
| encoding |= sdwa.sel[0].to_sdwa_sel(sdwa_op.physReg().byte()) << 16; |
| encoding |= sdwa.sel[0].sign_extend() ? 1 << 19 : 0; |
| encoding |= sdwa.abs[0] << 21; |
| encoding |= sdwa.neg[0] << 20; |
| |
| if (instr->operands.size() >= 2) { |
| encoding |= sdwa.sel[1].to_sdwa_sel(instr->operands[1].physReg().byte()) << 24; |
| encoding |= sdwa.sel[1].sign_extend() ? 1 << 27 : 0; |
| encoding |= sdwa.abs[1] << 29; |
| encoding |= sdwa.neg[1] << 28; |
| } |
| |
| encoding |= reg(ctx, sdwa_op, 8); |
| encoding |= (sdwa_op.physReg() < 256) << 23; |
| if (instr->operands.size() >= 2) |
| encoding |= (instr->operands[1].physReg() < 256) << 31; |
| out.push_back(encoding); |
| } else { |
| unreachable("unimplemented instruction format"); |
| } |
| break; |
| } |
| |
| /* append literal dword */ |
| for (const Operand& op : instr->operands) { |
| if (op.isLiteral()) { |
| out.push_back(op.constantValue()); |
| break; |
| } |
| } |
| } |
| |
| void |
| emit_block(asm_context& ctx, std::vector<uint32_t>& out, Block& block) |
| { |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| #if 0 |
| int start_idx = out.size(); |
| std::cerr << "Encoding:\t" << std::endl; |
| aco_print_instr(&*instr, stderr); |
| std::cerr << std::endl; |
| #endif |
| emit_instruction(ctx, out, instr.get()); |
| #if 0 |
| for (int i = start_idx; i < out.size(); i++) |
| std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl; |
| #endif |
| } |
| } |
| |
| void |
| fix_exports(asm_context& ctx, std::vector<uint32_t>& out, Program* program) |
| { |
| bool exported = false; |
| for (Block& block : program->blocks) { |
| if (!(block.kind & block_kind_export_end)) |
| continue; |
| std::vector<aco_ptr<Instruction>>::reverse_iterator it = block.instructions.rbegin(); |
| while (it != block.instructions.rend()) { |
| if ((*it)->isEXP()) { |
| Export_instruction& exp = (*it)->exp(); |
| if (program->stage.hw == HWStage::VS || program->stage.hw == HWStage::NGG) { |
| if (exp.dest >= V_008DFC_SQ_EXP_POS && exp.dest <= (V_008DFC_SQ_EXP_POS + 3)) { |
| exp.done = true; |
| exported = true; |
| break; |
| } |
| } else { |
| if (!program->info.ps.has_epilog) { |
| exp.done = true; |
| exp.valid_mask = true; |
| } |
| exported = true; |
| break; |
| } |
| } else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec) { |
| break; |
| } else if ((*it)->opcode == aco_opcode::s_setpc_b64) { |
| /* Do not abort if the main FS has an epilog because it only |
| * exports MRTZ (if present) and the epilog exports colors. |
| */ |
| exported |= program->stage.hw == HWStage::FS && program->info.ps.has_epilog; |
| } |
| ++it; |
| } |
| } |
| |
| if (!exported) { |
| /* Abort in order to avoid a GPU hang. */ |
| bool is_vertex_or_ngg = |
| (program->stage.hw == HWStage::VS || program->stage.hw == HWStage::NGG); |
| aco_err(program, |
| "Missing export in %s shader:", is_vertex_or_ngg ? "vertex or NGG" : "fragment"); |
| aco_print_program(program, stderr); |
| abort(); |
| } |
| } |
| |
| static void |
| insert_code(asm_context& ctx, std::vector<uint32_t>& out, unsigned insert_before, |
| unsigned insert_count, const uint32_t* insert_data) |
| { |
| out.insert(out.begin() + insert_before, insert_data, insert_data + insert_count); |
| |
| /* Update the offset of each affected block */ |
| for (Block& block : ctx.program->blocks) { |
| if (block.offset >= insert_before) |
| block.offset += insert_count; |
| } |
| |
| /* Find first branch after the inserted code */ |
| auto branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(), |
| [insert_before](const auto& branch) -> bool |
| { return (unsigned)branch.first >= insert_before; }); |
| |
| /* Update the locations of branches */ |
| for (; branch_it != ctx.branches.end(); ++branch_it) |
| branch_it->first += insert_count; |
| |
| /* Update the locations of p_constaddr instructions */ |
| for (auto& constaddr : ctx.constaddrs) { |
| constaddr_info& info = constaddr.second; |
| if (info.getpc_end >= insert_before) |
| info.getpc_end += insert_count; |
| if (info.add_literal >= insert_before) |
| info.add_literal += insert_count; |
| } |
| } |
| |
| static void |
| fix_branches_gfx10(asm_context& ctx, std::vector<uint32_t>& out) |
| { |
| /* Branches with an offset of 0x3f are buggy on GFX10, |
| * we workaround by inserting NOPs if needed. |
| */ |
| bool gfx10_3f_bug = false; |
| |
| do { |
| auto buggy_branch_it = std::find_if( |
| ctx.branches.begin(), ctx.branches.end(), |
| [&ctx](const auto& branch) -> bool { |
| return ((int)ctx.program->blocks[branch.second->block].offset - branch.first - 1) == |
| 0x3f; |
| }); |
| |
| gfx10_3f_bug = buggy_branch_it != ctx.branches.end(); |
| |
| if (gfx10_3f_bug) { |
| /* Insert an s_nop after the branch */ |
| constexpr uint32_t s_nop_0 = 0xbf800000u; |
| insert_code(ctx, out, buggy_branch_it->first + 1, 1, &s_nop_0); |
| } |
| } while (gfx10_3f_bug); |
| } |
| |
| void |
| emit_long_jump(asm_context& ctx, SOPP_instruction* branch, bool backwards, |
| std::vector<uint32_t>& out) |
| { |
| Builder bld(ctx.program); |
| |
| Definition def; |
| if (branch->definitions.empty()) { |
| assert(ctx.program->blocks[branch->block].kind & block_kind_discard_early_exit); |
| def = Definition(PhysReg(0), s2); /* The discard early exit block doesn't use SGPRs. */ |
| } else { |
| def = branch->definitions[0]; |
| } |
| |
| Definition def_tmp_lo(def.physReg(), s1); |
| Operand op_tmp_lo(def.physReg(), s1); |
| Definition def_tmp_hi(def.physReg().advance(4), s1); |
| Operand op_tmp_hi(def.physReg().advance(4), s1); |
| |
| aco_ptr<Instruction> instr; |
| |
| if (branch->opcode != aco_opcode::s_branch) { |
| /* for conditional branches, skip the long jump if the condition is false */ |
| aco_opcode inv; |
| switch (branch->opcode) { |
| case aco_opcode::s_cbranch_scc0: inv = aco_opcode::s_cbranch_scc1; break; |
| case aco_opcode::s_cbranch_scc1: inv = aco_opcode::s_cbranch_scc0; break; |
| case aco_opcode::s_cbranch_vccz: inv = aco_opcode::s_cbranch_vccnz; break; |
| case aco_opcode::s_cbranch_vccnz: inv = aco_opcode::s_cbranch_vccz; break; |
| case aco_opcode::s_cbranch_execz: inv = aco_opcode::s_cbranch_execnz; break; |
| case aco_opcode::s_cbranch_execnz: inv = aco_opcode::s_cbranch_execz; break; |
| default: unreachable("Unhandled long jump."); |
| } |
| instr.reset(bld.sopp(inv, -1, 6)); |
| emit_instruction(ctx, out, instr.get()); |
| } |
| |
| /* create the new PC and stash SCC in the LSB */ |
| instr.reset(bld.sop1(aco_opcode::s_getpc_b64, def).instr); |
| emit_instruction(ctx, out, instr.get()); |
| |
| instr.reset( |
| bld.sop2(aco_opcode::s_addc_u32, def_tmp_lo, op_tmp_lo, Operand::literal32(0)).instr); |
| emit_instruction(ctx, out, instr.get()); |
| branch->pass_flags = out.size(); |
| |
| /* s_addc_u32 for high 32 bits not needed because the program is in a 32-bit VA range */ |
| |
| /* restore SCC and clear the LSB of the new PC */ |
| instr.reset(bld.sopc(aco_opcode::s_bitcmp1_b32, def_tmp_lo, op_tmp_lo, Operand::zero()).instr); |
| emit_instruction(ctx, out, instr.get()); |
| instr.reset(bld.sop1(aco_opcode::s_bitset0_b32, def_tmp_lo, Operand::zero()).instr); |
| emit_instruction(ctx, out, instr.get()); |
| |
| /* create the s_setpc_b64 to jump */ |
| instr.reset( |
| bld.sop1(aco_opcode::s_setpc_b64, Operand(def.physReg(), s2)).instr); |
| emit_instruction(ctx, out, instr.get()); |
| } |
| |
| void |
| fix_branches(asm_context& ctx, std::vector<uint32_t>& out) |
| { |
| bool repeat = false; |
| do { |
| repeat = false; |
| |
| if (ctx.gfx_level == GFX10) |
| fix_branches_gfx10(ctx, out); |
| |
| for (std::pair<int, SOPP_instruction*>& branch : ctx.branches) { |
| int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1; |
| if ((offset < INT16_MIN || offset > INT16_MAX) && !branch.second->pass_flags) { |
| std::vector<uint32_t> long_jump; |
| bool backwards = |
| ctx.program->blocks[branch.second->block].offset < (unsigned)branch.first; |
| emit_long_jump(ctx, branch.second, backwards, long_jump); |
| |
| out[branch.first] = long_jump[0]; |
| insert_code(ctx, out, branch.first + 1, long_jump.size() - 1, long_jump.data() + 1); |
| |
| repeat = true; |
| break; |
| } |
| |
| if (branch.second->pass_flags) { |
| int after_getpc = branch.first + branch.second->pass_flags - 2; |
| offset = (int)ctx.program->blocks[branch.second->block].offset - after_getpc; |
| out[branch.first + branch.second->pass_flags - 1] = offset * 4; |
| } else { |
| out[branch.first] &= 0xffff0000u; |
| out[branch.first] |= (uint16_t)offset; |
| } |
| } |
| } while (repeat); |
| } |
| |
| void |
| fix_constaddrs(asm_context& ctx, std::vector<uint32_t>& out) |
| { |
| for (auto& constaddr : ctx.constaddrs) { |
| constaddr_info& info = constaddr.second; |
| out[info.add_literal] += (out.size() - info.getpc_end) * 4u; |
| } |
| } |
| |
| unsigned |
| emit_program(Program* program, std::vector<uint32_t>& code) |
| { |
| asm_context ctx(program); |
| |
| if (program->stage.hw == HWStage::VS || program->stage.hw == HWStage::FS || |
| program->stage.hw == HWStage::NGG) |
| fix_exports(ctx, code, program); |
| |
| for (Block& block : program->blocks) { |
| block.offset = code.size(); |
| emit_block(ctx, code, block); |
| } |
| |
| fix_branches(ctx, code); |
| |
| unsigned exec_size = code.size() * sizeof(uint32_t); |
| |
| if (program->gfx_level >= GFX10) { |
| /* Pad output with s_code_end so instruction prefetching doesn't cause |
| * page faults */ |
| unsigned final_size = align(code.size() + 3 * 16, program->gfx_level >= GFX11 ? 32 : 16); |
| while (code.size() < final_size) |
| code.push_back(0xbf9f0000u); |
| } |
| |
| fix_constaddrs(ctx, code); |
| |
| while (program->constant_data.size() % 4u) |
| program->constant_data.push_back(0); |
| /* Copy constant data */ |
| code.insert(code.end(), (uint32_t*)program->constant_data.data(), |
| (uint32_t*)(program->constant_data.data() + program->constant_data.size())); |
| |
| return exec_size; |
| } |
| |
| } // namespace aco |