blob: fc95f4ac008fab052a9e19fea1a5566a9def2241 [file] [log] [blame]
/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "ac_shader_util.h"
#include "ac_gpu_info.h"
#include "sid.h"
#include "u_math.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
unsigned ac_get_spi_shader_z_format(bool writes_z, bool writes_stencil, bool writes_samplemask,
bool writes_mrt0_alpha)
{
/* If writes_mrt0_alpha is true, one other flag must be true too. */
assert(!writes_mrt0_alpha || writes_z || writes_stencil || writes_samplemask);
if (writes_z || writes_mrt0_alpha) {
/* Z needs 32 bits. */
if (writes_samplemask || writes_mrt0_alpha)
return V_028710_SPI_SHADER_32_ABGR;
else if (writes_stencil)
return V_028710_SPI_SHADER_32_GR;
else
return V_028710_SPI_SHADER_32_R;
} else if (writes_stencil || writes_samplemask) {
/* Both stencil and sample mask need only 16 bits. */
return V_028710_SPI_SHADER_UINT16_ABGR;
} else {
return V_028710_SPI_SHADER_ZERO;
}
}
unsigned ac_get_cb_shader_mask(unsigned spi_shader_col_format)
{
unsigned i, cb_shader_mask = 0;
for (i = 0; i < 8; i++) {
switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
case V_028714_SPI_SHADER_ZERO:
break;
case V_028714_SPI_SHADER_32_R:
cb_shader_mask |= 0x1 << (i * 4);
break;
case V_028714_SPI_SHADER_32_GR:
cb_shader_mask |= 0x3 << (i * 4);
break;
case V_028714_SPI_SHADER_32_AR:
cb_shader_mask |= 0x9u << (i * 4);
break;
case V_028714_SPI_SHADER_FP16_ABGR:
case V_028714_SPI_SHADER_UNORM16_ABGR:
case V_028714_SPI_SHADER_SNORM16_ABGR:
case V_028714_SPI_SHADER_UINT16_ABGR:
case V_028714_SPI_SHADER_SINT16_ABGR:
case V_028714_SPI_SHADER_32_ABGR:
cb_shader_mask |= 0xfu << (i * 4);
break;
default:
assert(0);
}
}
return cb_shader_mask;
}
/**
* Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
* geometry shader.
*/
uint32_t ac_vgt_gs_mode(unsigned gs_max_vert_out, enum amd_gfx_level gfx_level)
{
unsigned cut_mode;
assert (gfx_level < GFX11);
if (gs_max_vert_out <= 128) {
cut_mode = V_028A40_GS_CUT_128;
} else if (gs_max_vert_out <= 256) {
cut_mode = V_028A40_GS_CUT_256;
} else if (gs_max_vert_out <= 512) {
cut_mode = V_028A40_GS_CUT_512;
} else {
assert(gs_max_vert_out <= 1024);
cut_mode = V_028A40_GS_CUT_1024;
}
return S_028A40_MODE(V_028A40_GS_SCENARIO_G) | S_028A40_CUT_MODE(cut_mode) |
S_028A40_ES_WRITE_OPTIMIZE(gfx_level <= GFX8) | S_028A40_GS_WRITE_OPTIMIZE(1) |
S_028A40_ONCHIP(gfx_level >= GFX9 ? 1 : 0);
}
/// Translate a (dfmt, nfmt) pair into a chip-appropriate combined format
/// value for LLVM8+ tbuffer intrinsics.
unsigned ac_get_tbuffer_format(enum amd_gfx_level gfx_level, unsigned dfmt, unsigned nfmt)
{
// Some games try to access vertex buffers without a valid format.
// This is a game bug, but we should still handle it gracefully.
if (dfmt == V_008F0C_GFX10_FORMAT_INVALID)
return V_008F0C_GFX10_FORMAT_INVALID;
if (gfx_level >= GFX11) {
switch (dfmt) {
default:
unreachable("bad dfmt");
case V_008F0C_BUF_DATA_FORMAT_INVALID:
return V_008F0C_GFX11_FORMAT_INVALID;
case V_008F0C_BUF_DATA_FORMAT_8:
switch (nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM:
return V_008F0C_GFX11_FORMAT_8_UNORM;
case V_008F0C_BUF_NUM_FORMAT_SNORM:
return V_008F0C_GFX11_FORMAT_8_SNORM;
case V_008F0C_BUF_NUM_FORMAT_USCALED:
return V_008F0C_GFX11_FORMAT_8_USCALED;
case V_008F0C_BUF_NUM_FORMAT_SSCALED:
return V_008F0C_GFX11_FORMAT_8_SSCALED;
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_8_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_8_SINT;
}
case V_008F0C_BUF_DATA_FORMAT_8_8:
switch (nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM:
return V_008F0C_GFX11_FORMAT_8_8_UNORM;
case V_008F0C_BUF_NUM_FORMAT_SNORM:
return V_008F0C_GFX11_FORMAT_8_8_SNORM;
case V_008F0C_BUF_NUM_FORMAT_USCALED:
return V_008F0C_GFX11_FORMAT_8_8_USCALED;
case V_008F0C_BUF_NUM_FORMAT_SSCALED:
return V_008F0C_GFX11_FORMAT_8_8_SSCALED;
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_8_8_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_8_8_SINT;
}
case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
switch (nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM:
return V_008F0C_GFX11_FORMAT_8_8_8_8_UNORM;
case V_008F0C_BUF_NUM_FORMAT_SNORM:
return V_008F0C_GFX11_FORMAT_8_8_8_8_SNORM;
case V_008F0C_BUF_NUM_FORMAT_USCALED:
return V_008F0C_GFX11_FORMAT_8_8_8_8_USCALED;
case V_008F0C_BUF_NUM_FORMAT_SSCALED:
return V_008F0C_GFX11_FORMAT_8_8_8_8_SSCALED;
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_8_8_8_8_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_8_8_8_8_SINT;
}
case V_008F0C_BUF_DATA_FORMAT_16:
switch (nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM:
return V_008F0C_GFX11_FORMAT_16_UNORM;
case V_008F0C_BUF_NUM_FORMAT_SNORM:
return V_008F0C_GFX11_FORMAT_16_SNORM;
case V_008F0C_BUF_NUM_FORMAT_USCALED:
return V_008F0C_GFX11_FORMAT_16_USCALED;
case V_008F0C_BUF_NUM_FORMAT_SSCALED:
return V_008F0C_GFX11_FORMAT_16_SSCALED;
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_16_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_16_SINT;
case V_008F0C_BUF_NUM_FORMAT_FLOAT:
return V_008F0C_GFX11_FORMAT_16_FLOAT;
}
case V_008F0C_BUF_DATA_FORMAT_16_16:
switch (nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM:
return V_008F0C_GFX11_FORMAT_16_16_UNORM;
case V_008F0C_BUF_NUM_FORMAT_SNORM:
return V_008F0C_GFX11_FORMAT_16_16_SNORM;
case V_008F0C_BUF_NUM_FORMAT_USCALED:
return V_008F0C_GFX11_FORMAT_16_16_USCALED;
case V_008F0C_BUF_NUM_FORMAT_SSCALED:
return V_008F0C_GFX11_FORMAT_16_16_SSCALED;
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_16_16_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_16_16_SINT;
case V_008F0C_BUF_NUM_FORMAT_FLOAT:
return V_008F0C_GFX11_FORMAT_16_16_FLOAT;
}
case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
switch (nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM:
return V_008F0C_GFX11_FORMAT_16_16_16_16_UNORM;
case V_008F0C_BUF_NUM_FORMAT_SNORM:
return V_008F0C_GFX11_FORMAT_16_16_16_16_SNORM;
case V_008F0C_BUF_NUM_FORMAT_USCALED:
return V_008F0C_GFX11_FORMAT_16_16_16_16_USCALED;
case V_008F0C_BUF_NUM_FORMAT_SSCALED:
return V_008F0C_GFX11_FORMAT_16_16_16_16_SSCALED;
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_16_16_16_16_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_16_16_16_16_SINT;
case V_008F0C_BUF_NUM_FORMAT_FLOAT:
return V_008F0C_GFX11_FORMAT_16_16_16_16_FLOAT;
}
case V_008F0C_BUF_DATA_FORMAT_32:
switch (nfmt) {
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_32_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_32_SINT;
case V_008F0C_BUF_NUM_FORMAT_FLOAT:
return V_008F0C_GFX11_FORMAT_32_FLOAT;
}
case V_008F0C_BUF_DATA_FORMAT_32_32:
switch (nfmt) {
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_32_32_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_32_32_SINT;
case V_008F0C_BUF_NUM_FORMAT_FLOAT:
return V_008F0C_GFX11_FORMAT_32_32_FLOAT;
}
case V_008F0C_BUF_DATA_FORMAT_32_32_32:
switch (nfmt) {
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_32_32_32_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_32_32_32_SINT;
case V_008F0C_BUF_NUM_FORMAT_FLOAT:
return V_008F0C_GFX11_FORMAT_32_32_32_FLOAT;
}
case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
switch (nfmt) {
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_32_32_32_32_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_32_32_32_32_SINT;
case V_008F0C_BUF_NUM_FORMAT_FLOAT:
return V_008F0C_GFX11_FORMAT_32_32_32_32_FLOAT;
}
case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
switch (nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM:
return V_008F0C_GFX11_FORMAT_2_10_10_10_UNORM;
case V_008F0C_BUF_NUM_FORMAT_SNORM:
return V_008F0C_GFX11_FORMAT_2_10_10_10_SNORM;
case V_008F0C_BUF_NUM_FORMAT_USCALED:
return V_008F0C_GFX11_FORMAT_2_10_10_10_USCALED;
case V_008F0C_BUF_NUM_FORMAT_SSCALED:
return V_008F0C_GFX11_FORMAT_2_10_10_10_SSCALED;
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
return V_008F0C_GFX11_FORMAT_2_10_10_10_UINT;
case V_008F0C_BUF_NUM_FORMAT_SINT:
return V_008F0C_GFX11_FORMAT_2_10_10_10_SINT;
}
case V_008F0C_BUF_DATA_FORMAT_10_11_11:
switch (nfmt) {
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_FLOAT:
return V_008F0C_GFX11_FORMAT_10_11_11_FLOAT;
}
}
} else if (gfx_level >= GFX10) {
unsigned format;
switch (dfmt) {
default:
unreachable("bad dfmt");
case V_008F0C_BUF_DATA_FORMAT_INVALID:
format = V_008F0C_GFX10_FORMAT_INVALID;
break;
case V_008F0C_BUF_DATA_FORMAT_8:
format = V_008F0C_GFX10_FORMAT_8_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_8_8:
format = V_008F0C_GFX10_FORMAT_8_8_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
format = V_008F0C_GFX10_FORMAT_8_8_8_8_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_16:
format = V_008F0C_GFX10_FORMAT_16_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_16_16:
format = V_008F0C_GFX10_FORMAT_16_16_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
format = V_008F0C_GFX10_FORMAT_16_16_16_16_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_32:
format = V_008F0C_GFX10_FORMAT_32_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_32_32:
format = V_008F0C_GFX10_FORMAT_32_32_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_32_32_32:
format = V_008F0C_GFX10_FORMAT_32_32_32_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
format = V_008F0C_GFX10_FORMAT_32_32_32_32_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
format = V_008F0C_GFX10_FORMAT_2_10_10_10_UINT;
break;
case V_008F0C_BUF_DATA_FORMAT_10_11_11:
format = V_008F0C_GFX10_FORMAT_10_11_11_UINT;
break;
}
// Use the regularity properties of the combined format enum.
//
// Note: float is incompatible with 8-bit data formats,
// [us]{norm,scaled} are incomparible with 32-bit data formats.
// [us]scaled are not writable.
switch (nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM:
format -= 4;
break;
case V_008F0C_BUF_NUM_FORMAT_SNORM:
format -= 3;
break;
case V_008F0C_BUF_NUM_FORMAT_USCALED:
format -= 2;
break;
case V_008F0C_BUF_NUM_FORMAT_SSCALED:
format -= 1;
break;
default:
unreachable("bad nfmt");
case V_008F0C_BUF_NUM_FORMAT_UINT:
break;
case V_008F0C_BUF_NUM_FORMAT_SINT:
format += 1;
break;
case V_008F0C_BUF_NUM_FORMAT_FLOAT:
format += 2;
break;
}
return format;
} else {
return dfmt | (nfmt << 4);
}
}
static const struct ac_data_format_info data_format_table[] = {
[V_008F0C_BUF_DATA_FORMAT_INVALID] = {0, 4, 0, V_008F0C_BUF_DATA_FORMAT_INVALID},
[V_008F0C_BUF_DATA_FORMAT_8] = {1, 1, 1, V_008F0C_BUF_DATA_FORMAT_8},
[V_008F0C_BUF_DATA_FORMAT_16] = {2, 1, 2, V_008F0C_BUF_DATA_FORMAT_16},
[V_008F0C_BUF_DATA_FORMAT_8_8] = {2, 2, 1, V_008F0C_BUF_DATA_FORMAT_8},
[V_008F0C_BUF_DATA_FORMAT_32] = {4, 1, 4, V_008F0C_BUF_DATA_FORMAT_32},
[V_008F0C_BUF_DATA_FORMAT_16_16] = {4, 2, 2, V_008F0C_BUF_DATA_FORMAT_16},
[V_008F0C_BUF_DATA_FORMAT_10_11_11] = {4, 3, 0, V_008F0C_BUF_DATA_FORMAT_10_11_11},
[V_008F0C_BUF_DATA_FORMAT_11_11_10] = {4, 3, 0, V_008F0C_BUF_DATA_FORMAT_11_11_10},
[V_008F0C_BUF_DATA_FORMAT_10_10_10_2] = {4, 4, 0, V_008F0C_BUF_DATA_FORMAT_10_10_10_2},
[V_008F0C_BUF_DATA_FORMAT_2_10_10_10] = {4, 4, 0, V_008F0C_BUF_DATA_FORMAT_2_10_10_10},
[V_008F0C_BUF_DATA_FORMAT_8_8_8_8] = {4, 4, 1, V_008F0C_BUF_DATA_FORMAT_8},
[V_008F0C_BUF_DATA_FORMAT_32_32] = {8, 2, 4, V_008F0C_BUF_DATA_FORMAT_32},
[V_008F0C_BUF_DATA_FORMAT_16_16_16_16] = {8, 4, 2, V_008F0C_BUF_DATA_FORMAT_16},
[V_008F0C_BUF_DATA_FORMAT_32_32_32] = {12, 3, 4, V_008F0C_BUF_DATA_FORMAT_32},
[V_008F0C_BUF_DATA_FORMAT_32_32_32_32] = {16, 4, 4, V_008F0C_BUF_DATA_FORMAT_32},
};
const struct ac_data_format_info *ac_get_data_format_info(unsigned dfmt)
{
assert(dfmt < ARRAY_SIZE(data_format_table));
return &data_format_table[dfmt];
}
#define DUP2(v) v, v
#define DUP3(v) v, v, v
#define DUP4(v) v, v, v, v
#define FMT(dfmt, nfmt) 0xb, {HW_FMT(dfmt, nfmt), HW_FMT(dfmt##_##dfmt, nfmt), HW_FMT_INVALID, HW_FMT(dfmt##_##dfmt##_##dfmt##_##dfmt, nfmt)}
#define FMT_32(nfmt) 0xf, {HW_FMT(32, nfmt), HW_FMT(32_32, nfmt), HW_FMT(32_32_32, nfmt), HW_FMT(32_32_32_32, nfmt)}
#define FMT_64(nfmt) 0x3, {HW_FMT(32_32, nfmt), HW_FMT(32_32_32_32, nfmt), DUP2(HW_FMT_INVALID)}
#define FMTP(dfmt, nfmt) 0xf, {DUP4(HW_FMT(dfmt, nfmt))}
#define DST_SEL(x, y, z, w) \
(S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_##x) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_##y) | \
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_##z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_##w))
#define LIST_NFMT_8_16(nfmt) \
[(int)PIPE_FORMAT_R8_##nfmt] = {DST_SEL(X,0,0,1), 1, 1, 1, FMT(8, nfmt)}, \
[(int)PIPE_FORMAT_R8G8_##nfmt] = {DST_SEL(X,Y,0,1), 2, 2, 1, FMT(8, nfmt)}, \
[(int)PIPE_FORMAT_R8G8B8_##nfmt] = {DST_SEL(X,Y,Z,1), 3, 3, 1, FMT(8, nfmt)}, \
[(int)PIPE_FORMAT_B8G8R8_##nfmt] = {DST_SEL(Z,Y,X,1), 3, 3, 1, FMT(8, nfmt)}, \
[(int)PIPE_FORMAT_R8G8B8A8_##nfmt] = {DST_SEL(X,Y,Z,W), 4, 4, 1, FMT(8, nfmt)}, \
[(int)PIPE_FORMAT_B8G8R8A8_##nfmt] = {DST_SEL(Z,Y,X,W), 4, 4, 1, FMT(8, nfmt)}, \
[(int)PIPE_FORMAT_R16_##nfmt] = {DST_SEL(X,0,0,1), 2, 1, 2, FMT(16, nfmt)}, \
[(int)PIPE_FORMAT_R16G16_##nfmt] = {DST_SEL(X,Y,0,1), 4, 2, 2, FMT(16, nfmt)}, \
[(int)PIPE_FORMAT_R16G16B16_##nfmt] = {DST_SEL(X,Y,Z,1), 6, 3, 2, FMT(16, nfmt)}, \
[(int)PIPE_FORMAT_R16G16B16A16_##nfmt] = {DST_SEL(X,Y,Z,W), 8, 4, 2, FMT(16, nfmt)},
#define LIST_NFMT_32_64(nfmt) \
[(int)PIPE_FORMAT_R32_##nfmt] = {DST_SEL(X,0,0,1), 4, 1, 4, FMT_32(nfmt)}, \
[(int)PIPE_FORMAT_R32G32_##nfmt] = {DST_SEL(X,Y,0,1), 8, 2, 4, FMT_32(nfmt)}, \
[(int)PIPE_FORMAT_R32G32B32_##nfmt] = {DST_SEL(X,Y,Z,1), 12, 3, 4, FMT_32(nfmt)}, \
[(int)PIPE_FORMAT_R32G32B32A32_##nfmt] = {DST_SEL(X,Y,Z,W), 16, 4, 4, FMT_32(nfmt)}, \
[(int)PIPE_FORMAT_R64_##nfmt] = {DST_SEL(X,Y,0,0), 8, 1, 8, FMT_64(nfmt)}, \
[(int)PIPE_FORMAT_R64G64_##nfmt] = {DST_SEL(X,Y,Z,W), 16, 2, 8, FMT_64(nfmt)}, \
[(int)PIPE_FORMAT_R64G64B64_##nfmt] = {DST_SEL(X,Y,Z,W), 24, 3, 8, FMT_64(nfmt)}, \
[(int)PIPE_FORMAT_R64G64B64A64_##nfmt] = {DST_SEL(X,Y,Z,W), 32, 4, 8, FMT_64(nfmt)}, \
#define VB_FORMATS \
[(int)PIPE_FORMAT_NONE] = {DST_SEL(0,0,0,1), 0, 4, 0, 0xf, {DUP4(HW_FMT_INVALID)}}, \
LIST_NFMT_8_16(UNORM) \
LIST_NFMT_8_16(SNORM) \
LIST_NFMT_8_16(USCALED) \
LIST_NFMT_8_16(SSCALED) \
LIST_NFMT_8_16(UINT) \
LIST_NFMT_8_16(SINT) \
LIST_NFMT_32_64(UINT) \
LIST_NFMT_32_64(SINT) \
LIST_NFMT_32_64(FLOAT) \
[(int)PIPE_FORMAT_R16_FLOAT] = {DST_SEL(X,0,0,1), 2, 1, 2, FMT(16, FLOAT)}, \
[(int)PIPE_FORMAT_R16G16_FLOAT] = {DST_SEL(X,Y,0,1), 4, 2, 2, FMT(16, FLOAT)}, \
[(int)PIPE_FORMAT_R16G16B16_FLOAT] = {DST_SEL(X,Y,Z,1), 6, 3, 2, FMT(16, FLOAT)}, \
[(int)PIPE_FORMAT_R16G16B16A16_FLOAT] = {DST_SEL(X,Y,Z,W), 8, 4, 2, FMT(16, FLOAT)}, \
[(int)PIPE_FORMAT_B10G10R10A2_UNORM] = {DST_SEL(Z,Y,X,W), 4, 4, 0, FMTP(2_10_10_10, UNORM)}, \
[(int)PIPE_FORMAT_B10G10R10A2_SNORM] = {DST_SEL(Z,Y,X,W), 4, 4, 0, FMTP(2_10_10_10, SNORM), \
AA(AC_ALPHA_ADJUST_SNORM)}, \
[(int)PIPE_FORMAT_B10G10R10A2_USCALED] = {DST_SEL(Z,Y,X,W), 4, 4, 0, FMTP(2_10_10_10, USCALED)}, \
[(int)PIPE_FORMAT_B10G10R10A2_SSCALED] = {DST_SEL(Z,Y,X,W), 4, 4, 0, FMTP(2_10_10_10, SSCALED), \
AA(AC_ALPHA_ADJUST_SSCALED)}, \
[(int)PIPE_FORMAT_B10G10R10A2_UINT] = {DST_SEL(Z,Y,X,W), 4, 4, 0, FMTP(2_10_10_10, UINT)}, \
[(int)PIPE_FORMAT_B10G10R10A2_SINT] = {DST_SEL(Z,Y,X,W), 4, 4, 0, FMTP(2_10_10_10, SINT), \
AA(AC_ALPHA_ADJUST_SINT)}, \
[(int)PIPE_FORMAT_R10G10B10A2_UNORM] = {DST_SEL(X,Y,Z,W), 4, 4, 0, FMTP(2_10_10_10, UNORM)}, \
[(int)PIPE_FORMAT_R10G10B10A2_SNORM] = {DST_SEL(X,Y,Z,W), 4, 4, 0, FMTP(2_10_10_10, SNORM), \
AA(AC_ALPHA_ADJUST_SNORM)}, \
[(int)PIPE_FORMAT_R10G10B10A2_USCALED] = {DST_SEL(X,Y,Z,W), 4, 4, 0, FMTP(2_10_10_10, USCALED)}, \
[(int)PIPE_FORMAT_R10G10B10A2_SSCALED] = {DST_SEL(X,Y,Z,W), 4, 4, 0, FMTP(2_10_10_10, SSCALED), \
AA(AC_ALPHA_ADJUST_SSCALED)}, \
[(int)PIPE_FORMAT_R10G10B10A2_UINT] = {DST_SEL(X,Y,Z,W), 4, 4, 0, FMTP(2_10_10_10, UINT)}, \
[(int)PIPE_FORMAT_R10G10B10A2_SINT] = {DST_SEL(X,Y,Z,W), 4, 4, 0, FMTP(2_10_10_10, SINT), \
AA(AC_ALPHA_ADJUST_SINT)}, \
[(int)PIPE_FORMAT_R11G11B10_FLOAT] = {DST_SEL(X,Y,Z,W), 4, 3, 0, FMTP(10_11_11, FLOAT)}, \
#define HW_FMT(dfmt, nfmt) (V_008F0C_BUF_DATA_FORMAT_##dfmt | (V_008F0C_BUF_NUM_FORMAT_##nfmt << 4))
#define HW_FMT_INVALID (V_008F0C_BUF_DATA_FORMAT_INVALID | (V_008F0C_BUF_NUM_FORMAT_UNORM << 4))
#define AA(v) v
static const struct ac_vtx_format_info vb_formats_gfx6_alpha_adjust[] = {VB_FORMATS};
#undef AA
#define AA(v) AC_ALPHA_ADJUST_NONE
static const struct ac_vtx_format_info vb_formats_gfx6[] = {VB_FORMATS};
#undef HW_FMT_INVALID
#undef HW_FMT
#define HW_FMT(dfmt, nfmt) V_008F0C_GFX10_FORMAT_##dfmt##_##nfmt
#define HW_FMT_INVALID V_008F0C_GFX10_FORMAT_INVALID
static const struct ac_vtx_format_info vb_formats_gfx10[] = {VB_FORMATS};
#undef HW_FMT_INVALID
#undef HW_FMT
#define HW_FMT(dfmt, nfmt) V_008F0C_GFX11_FORMAT_##dfmt##_##nfmt
#define HW_FMT_INVALID V_008F0C_GFX11_FORMAT_INVALID
static const struct ac_vtx_format_info vb_formats_gfx11[] = {VB_FORMATS};
const struct ac_vtx_format_info *
ac_get_vtx_format_info_table(enum amd_gfx_level level, enum radeon_family family)
{
if (level >= GFX11)
return vb_formats_gfx11;
else if (level >= GFX10)
return vb_formats_gfx10;
bool alpha_adjust = level <= GFX8 && family != CHIP_STONEY;
return alpha_adjust ? vb_formats_gfx6_alpha_adjust : vb_formats_gfx6;
}
const struct ac_vtx_format_info *
ac_get_vtx_format_info(enum amd_gfx_level level, enum radeon_family family, enum pipe_format fmt)
{
return &ac_get_vtx_format_info_table(level, family)[fmt];
}
enum ac_image_dim ac_get_sampler_dim(enum amd_gfx_level gfx_level, enum glsl_sampler_dim dim,
bool is_array)
{
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
if (gfx_level == GFX9)
return is_array ? ac_image_2darray : ac_image_2d;
return is_array ? ac_image_1darray : ac_image_1d;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_EXTERNAL:
return is_array ? ac_image_2darray : ac_image_2d;
case GLSL_SAMPLER_DIM_3D:
return ac_image_3d;
case GLSL_SAMPLER_DIM_CUBE:
return ac_image_cube;
case GLSL_SAMPLER_DIM_MS:
return is_array ? ac_image_2darraymsaa : ac_image_2dmsaa;
case GLSL_SAMPLER_DIM_SUBPASS:
return ac_image_2darray;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return ac_image_2darraymsaa;
default:
unreachable("bad sampler dim");
}
}
enum ac_image_dim ac_get_image_dim(enum amd_gfx_level gfx_level, enum glsl_sampler_dim sdim,
bool is_array)
{
enum ac_image_dim dim = ac_get_sampler_dim(gfx_level, sdim, is_array);
/* Match the resource type set in the descriptor. */
if (dim == ac_image_cube || (gfx_level <= GFX8 && dim == ac_image_3d))
dim = ac_image_2darray;
else if (sdim == GLSL_SAMPLER_DIM_2D && !is_array && gfx_level == GFX9) {
/* When a single layer of a 3D texture is bound, the shader
* will refer to a 2D target, but the descriptor has a 3D type.
* Since the HW ignores BASE_ARRAY in this case, we need to
* send 3 coordinates. This doesn't hurt when the underlying
* texture is non-3D.
*/
dim = ac_image_3d;
}
return dim;
}
unsigned ac_get_fs_input_vgpr_cnt(const struct ac_shader_config *config,
signed char *face_vgpr_index_ptr,
signed char *ancillary_vgpr_index_ptr,
signed char *sample_coverage_vgpr_index_ptr)
{
unsigned num_input_vgprs = 0;
signed char face_vgpr_index = -1;
signed char ancillary_vgpr_index = -1;
signed char sample_coverage_vgpr_index = -1;
if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
num_input_vgprs += 3;
if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr)) {
face_vgpr_index = num_input_vgprs;
num_input_vgprs += 1;
}
if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr)) {
ancillary_vgpr_index = num_input_vgprs;
num_input_vgprs += 1;
}
if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr)) {
sample_coverage_vgpr_index = num_input_vgprs;
num_input_vgprs += 1;
}
if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
num_input_vgprs += 1;
if (face_vgpr_index_ptr)
*face_vgpr_index_ptr = face_vgpr_index;
if (ancillary_vgpr_index_ptr)
*ancillary_vgpr_index_ptr = ancillary_vgpr_index;
if (sample_coverage_vgpr_index_ptr)
*sample_coverage_vgpr_index_ptr = sample_coverage_vgpr_index;
return num_input_vgprs;
}
void ac_choose_spi_color_formats(unsigned format, unsigned swap, unsigned ntype,
bool is_depth, bool use_rbplus,
struct ac_spi_color_formats *formats)
{
/* Alpha is needed for alpha-to-coverage.
* Blending may be with or without alpha.
*/
unsigned normal = 0; /* most optimal, may not support blending or export alpha */
unsigned alpha = 0; /* exports alpha, but may not support blending */
unsigned blend = 0; /* supports blending, but may not export alpha */
unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
/* Choose the SPI color formats. These are required values for RB+.
* Other chips have multiple choices, though they are not necessarily better.
*/
switch (format) {
case V_028C70_COLOR_5_6_5:
case V_028C70_COLOR_1_5_5_5:
case V_028C70_COLOR_5_5_5_1:
case V_028C70_COLOR_4_4_4_4:
case V_028C70_COLOR_10_11_11:
case V_028C70_COLOR_11_11_10:
case V_028C70_COLOR_5_9_9_9:
case V_028C70_COLOR_8:
case V_028C70_COLOR_8_8:
case V_028C70_COLOR_8_8_8_8:
case V_028C70_COLOR_10_10_10_2:
case V_028C70_COLOR_2_10_10_10:
if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
if (!use_rbplus && format == V_028C70_COLOR_8 &&
ntype != V_028C70_NUMBER_SRGB && swap == V_028C70_SWAP_STD) /* R */ {
/* When RB+ is enabled, R8_UNORM should use FP16_ABGR for 2x
* exporting performance. Otherwise, use 32_R to remove useless
* instructions needed for 16-bit compressed exports.
*/
blend = normal = V_028714_SPI_SHADER_32_R;
}
break;
case V_028C70_COLOR_16:
case V_028C70_COLOR_16_16:
case V_028C70_COLOR_16_16_16_16:
if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM) {
/* UNORM16 and SNORM16 don't support blending */
if (ntype == V_028C70_NUMBER_UNORM)
normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
else
normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
/* Use 32 bits per channel for blending. */
if (format == V_028C70_COLOR_16) {
if (swap == V_028C70_SWAP_STD) { /* R */
blend = V_028714_SPI_SHADER_32_R;
blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else if (format == V_028C70_COLOR_16_16) {
if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV) { /* RG or GR */
blend = V_028714_SPI_SHADER_32_GR;
blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else /* 16_16_16_16 */
blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else if (ntype == V_028C70_NUMBER_FLOAT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
else
assert(0);
break;
case V_028C70_COLOR_32:
if (swap == V_028C70_SWAP_STD) { /* R */
blend = normal = V_028714_SPI_SHADER_32_R;
alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32:
if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV) { /* RG or GR */
blend = normal = V_028714_SPI_SHADER_32_GR;
alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32_32_32:
case V_028C70_COLOR_8_24:
case V_028C70_COLOR_24_8:
case V_028C70_COLOR_X24_8_32_FLOAT:
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
break;
default:
assert(0);
return;
}
/* The DB->CB copy needs 32_ABGR. */
if (is_depth)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
formats->normal = normal;
formats->alpha = alpha;
formats->blend = blend;
formats->blend_alpha = blend_alpha;
}
void ac_compute_late_alloc(const struct radeon_info *info, bool ngg, bool ngg_culling,
bool uses_scratch, unsigned *late_alloc_wave64, unsigned *cu_mask)
{
*late_alloc_wave64 = 0; /* The limit is per SA. */
*cu_mask = 0xffff;
/* CU masking can decrease performance and cause a hang with <= 2 CUs per SA. */
if (info->min_good_cu_per_sa <= 2)
return;
/* If scratch is used with late alloc, the GPU could deadlock if PS uses scratch too. A more
* complicated computation is needed to enable late alloc with scratch (see PAL).
*/
if (uses_scratch)
return;
/* Late alloc is not used for NGG on Navi14 due to a hw bug. */
if (ngg && info->family == CHIP_NAVI14)
return;
if (info->gfx_level >= GFX10) {
/* For Wave32, the hw will launch twice the number of late alloc waves, so 1 == 2x wave32.
* These limits are estimated because they are all safe but they vary in performance.
*/
if (ngg_culling)
*late_alloc_wave64 = info->min_good_cu_per_sa * 10;
else
*late_alloc_wave64 = info->min_good_cu_per_sa * 4;
/* Limit LATE_ALLOC_GS to prevent a hang (hw bug) on gfx10. */
if (info->gfx_level == GFX10 && ngg)
*late_alloc_wave64 = MIN2(*late_alloc_wave64, 64);
/* Gfx10: CU2 & CU3 must be disabled to prevent a hw deadlock.
* Others: CU1 must be disabled to prevent a hw deadlock.
*
* The deadlock is caused by late alloc, which usually increases performance.
*/
*cu_mask &= info->gfx_level == GFX10 ? ~BITFIELD_RANGE(2, 2) :
~BITFIELD_RANGE(1, 1);
} else {
if (info->min_good_cu_per_sa <= 4) {
/* Too few available compute units per SA. Disallowing VS to run on one CU could hurt us
* more than late VS allocation would help.
*
* 2 is the highest safe number that allows us to keep all CUs enabled.
*/
*late_alloc_wave64 = 2;
} else {
/* This is a good initial value, allowing 1 late_alloc wave per SIMD on num_cu - 2.
*/
*late_alloc_wave64 = (info->min_good_cu_per_sa - 2) * 4;
}
/* VS can't execute on one CU if the limit is > 2. */
if (*late_alloc_wave64 > 2)
*cu_mask = 0xfffe; /* 1 CU disabled */
}
/* Max number that fits into the register field. */
if (ngg) /* GS */
*late_alloc_wave64 = MIN2(*late_alloc_wave64, G_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(~0u));
else /* VS */
*late_alloc_wave64 = MIN2(*late_alloc_wave64, G_00B11C_LIMIT(~0u));
}
unsigned ac_compute_cs_workgroup_size(const uint16_t sizes[3], bool variable, unsigned max)
{
if (variable)
return max;
return sizes[0] * sizes[1] * sizes[2];
}
unsigned ac_compute_lshs_workgroup_size(enum amd_gfx_level gfx_level, gl_shader_stage stage,
unsigned tess_num_patches,
unsigned tess_patch_in_vtx,
unsigned tess_patch_out_vtx)
{
/* When tessellation is used, API VS runs on HW LS, API TCS runs on HW HS.
* These two HW stages are merged on GFX9+.
*/
bool merged_shaders = gfx_level >= GFX9;
unsigned ls_workgroup_size = tess_num_patches * tess_patch_in_vtx;
unsigned hs_workgroup_size = tess_num_patches * tess_patch_out_vtx;
if (merged_shaders)
return MAX2(ls_workgroup_size, hs_workgroup_size);
else if (stage == MESA_SHADER_VERTEX)
return ls_workgroup_size;
else if (stage == MESA_SHADER_TESS_CTRL)
return hs_workgroup_size;
else
unreachable("invalid LSHS shader stage");
}
unsigned ac_compute_esgs_workgroup_size(enum amd_gfx_level gfx_level, unsigned wave_size,
unsigned es_verts, unsigned gs_inst_prims)
{
/* ESGS may operate in workgroups if on-chip GS (LDS rings) are enabled.
*
* GFX6: Not possible in the HW.
* GFX7-8 (unmerged): possible in the HW, but not implemented in Mesa.
* GFX9+ (merged): implemented in Mesa.
*/
if (gfx_level <= GFX8)
return wave_size;
unsigned workgroup_size = MAX2(es_verts, gs_inst_prims);
return CLAMP(workgroup_size, 1, 256);
}
unsigned ac_compute_ngg_workgroup_size(unsigned es_verts, unsigned gs_inst_prims,
unsigned max_vtx_out, unsigned prim_amp_factor)
{
/* NGG always operates in workgroups.
*
* For API VS/TES/GS:
* - 1 invocation per input vertex
* - 1 invocation per input primitive
*
* The same invocation can process both an input vertex and primitive,
* however 1 invocation can only output up to 1 vertex and 1 primitive.
*/
unsigned max_vtx_in = es_verts < 256 ? es_verts : 3 * gs_inst_prims;
unsigned max_prim_in = gs_inst_prims;
unsigned max_prim_out = gs_inst_prims * prim_amp_factor;
unsigned workgroup_size = MAX4(max_vtx_in, max_vtx_out, max_prim_in, max_prim_out);
return CLAMP(workgroup_size, 1, 256);
}
void ac_set_reg_cu_en(void *cs, unsigned reg_offset, uint32_t value, uint32_t clear_mask,
unsigned value_shift, const struct radeon_info *info,
void set_sh_reg(void*, unsigned, uint32_t))
{
/* Register field position and mask. */
uint32_t cu_en_mask = ~clear_mask;
unsigned cu_en_shift = ffs(cu_en_mask) - 1;
/* The value being set. */
uint32_t cu_en = (value & cu_en_mask) >> cu_en_shift;
/* AND the field by spi_cu_en. */
uint32_t spi_cu_en = info->spi_cu_en >> value_shift;
uint32_t new_value = (value & ~cu_en_mask) |
(((cu_en & spi_cu_en) << cu_en_shift) & cu_en_mask);
set_sh_reg(cs, reg_offset, new_value);
}
/* Return the register value and tune bytes_per_wave to increase scratch performance. */
void ac_get_scratch_tmpring_size(const struct radeon_info *info,
unsigned bytes_per_wave, unsigned *max_seen_bytes_per_wave,
uint32_t *tmpring_size)
{
/* SPI_TMPRING_SIZE and COMPUTE_TMPRING_SIZE are essentially scratch buffer descriptors.
* WAVES means NUM_RECORDS. WAVESIZE is the size of each element, meaning STRIDE.
* Thus, WAVESIZE must be constant while the scratch buffer is being used by the GPU.
*
* If you want to increase WAVESIZE without waiting for idle, you need to allocate a new
* scratch buffer and use it instead. This will result in multiple scratch buffers being
* used at the same time, each with a different WAVESIZE.
*
* If you want to decrease WAVESIZE, you don't have to. There is no advantage in decreasing
* WAVESIZE after it's been increased.
*
* Shaders with SCRATCH_EN=0 don't allocate scratch space.
*/
const unsigned size_shift = info->gfx_level >= GFX11 ? 8 : 10;
const unsigned min_size_per_wave = BITFIELD_BIT(size_shift);
/* The LLVM shader backend should be reporting aligned scratch_sizes. */
assert((bytes_per_wave & BITFIELD_MASK(size_shift)) == 0 &&
"scratch size per wave should be aligned");
/* Add 1 scratch item to make the number of items odd. This should improve scratch
* performance by more randomly distributing scratch waves among memory channels.
*/
if (bytes_per_wave)
bytes_per_wave |= min_size_per_wave;
*max_seen_bytes_per_wave = MAX2(*max_seen_bytes_per_wave, bytes_per_wave);
unsigned max_scratch_waves = info->max_scratch_waves;
if (info->gfx_level >= GFX11)
max_scratch_waves /= info->num_se; /* WAVES is per SE */
/* TODO: We could decrease WAVES to make the whole buffer fit into the infinity cache. */
*tmpring_size = S_0286E8_WAVES(max_scratch_waves) |
S_0286E8_WAVESIZE(*max_seen_bytes_per_wave >> size_shift);
}