blob: 397130f181bbd4a09d691691f2d16e6581d58a52 [file] [log] [blame]
/*
* Copyright © 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
* AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*/
#include "ac_gpu_info.h"
#include "ac_shader_util.h"
#include "ac_debug.h"
#include "addrlib/src/amdgpu_asic_addr.h"
#include "sid.h"
#include "util/macros.h"
#include "util/u_cpu_detect.h"
#include "util/u_math.h"
#include "util/os_misc.h"
#include "util/bitset.h"
#include <stdio.h>
#include <ctype.h>
#define AMDGPU_ARCTURUS_RANGE 0x32, 0x3C
#define AMDGPU_ALDEBARAN_RANGE 0x3C, 0xFF
#define ASICREV_IS_ARCTURUS(r) ASICREV_IS(r, ARCTURUS)
#define ASICREV_IS_ALDEBARAN(r) ASICREV_IS(r, ALDEBARAN)
#ifdef _WIN32
#define DRM_CAP_ADDFB2_MODIFIERS 0x10
#define DRM_CAP_SYNCOBJ 0x13
#define DRM_CAP_SYNCOBJ_TIMELINE 0x14
#define AMDGPU_GEM_DOMAIN_GTT 0x2
#define AMDGPU_GEM_DOMAIN_VRAM 0x4
#define AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED (1 << 0)
#define AMDGPU_GEM_CREATE_ENCRYPTED (1 << 10)
#define AMDGPU_HW_IP_GFX 0
#define AMDGPU_HW_IP_COMPUTE 1
#define AMDGPU_HW_IP_DMA 2
#define AMDGPU_HW_IP_UVD 3
#define AMDGPU_HW_IP_VCE 4
#define AMDGPU_HW_IP_UVD_ENC 5
#define AMDGPU_HW_IP_VCN_DEC 6
#define AMDGPU_HW_IP_VCN_ENC 7
#define AMDGPU_HW_IP_VCN_JPEG 8
#define AMDGPU_IDS_FLAGS_FUSION 0x1
#define AMDGPU_IDS_FLAGS_PREEMPTION 0x2
#define AMDGPU_IDS_FLAGS_TMZ 0x4
#define AMDGPU_INFO_FW_VCE 0x1
#define AMDGPU_INFO_FW_UVD 0x2
#define AMDGPU_INFO_FW_GFX_ME 0x04
#define AMDGPU_INFO_FW_GFX_PFP 0x05
#define AMDGPU_INFO_FW_GFX_CE 0x06
#define AMDGPU_INFO_DEV_INFO 0x16
#define AMDGPU_INFO_MEMORY 0x19
#define AMDGPU_INFO_VIDEO_CAPS_DECODE 0
#define AMDGPU_INFO_VIDEO_CAPS_ENCODE 1
#define AMDGPU_INFO_FW_GFX_MEC 0x08
#define AMDGPU_VRAM_TYPE_UNKNOWN 0
#define AMDGPU_VRAM_TYPE_GDDR1 1
#define AMDGPU_VRAM_TYPE_DDR2 2
#define AMDGPU_VRAM_TYPE_GDDR3 3
#define AMDGPU_VRAM_TYPE_GDDR4 4
#define AMDGPU_VRAM_TYPE_GDDR5 5
#define AMDGPU_VRAM_TYPE_HBM 6
#define AMDGPU_VRAM_TYPE_DDR3 7
#define AMDGPU_VRAM_TYPE_DDR4 8
#define AMDGPU_VRAM_TYPE_GDDR6 9
#define AMDGPU_VRAM_TYPE_DDR5 10
#define AMDGPU_VRAM_TYPE_LPDDR4 11
#define AMDGPU_VRAM_TYPE_LPDDR5 12
struct drm_amdgpu_heap_info {
uint64_t total_heap_size;
};
struct drm_amdgpu_memory_info {
struct drm_amdgpu_heap_info vram;
struct drm_amdgpu_heap_info cpu_accessible_vram;
struct drm_amdgpu_heap_info gtt;
};
struct drm_amdgpu_info_device {
/** PCI Device ID */
uint32_t device_id;
/** Internal chip revision: A0, A1, etc.) */
uint32_t chip_rev;
uint32_t external_rev;
/** Revision id in PCI Config space */
uint32_t pci_rev;
uint32_t family;
uint32_t num_shader_engines;
uint32_t num_shader_arrays_per_engine;
/* in KHz */
uint32_t gpu_counter_freq;
uint64_t max_engine_clock;
uint64_t max_memory_clock;
/* cu information */
uint32_t cu_active_number;
/* NOTE: cu_ao_mask is INVALID, DON'T use it */
uint32_t cu_ao_mask;
uint32_t cu_bitmap[4][4];
/** Render backend pipe mask. One render backend is CB+DB. */
uint32_t enabled_rb_pipes_mask;
uint32_t num_rb_pipes;
uint32_t num_hw_gfx_contexts;
uint32_t _pad;
uint64_t ids_flags;
/** Starting virtual address for UMDs. */
uint64_t virtual_address_offset;
/** The maximum virtual address */
uint64_t virtual_address_max;
/** Required alignment of virtual addresses. */
uint32_t virtual_address_alignment;
/** Page table entry - fragment size */
uint32_t pte_fragment_size;
uint32_t gart_page_size;
/** constant engine ram size*/
uint32_t ce_ram_size;
/** video memory type info*/
uint32_t vram_type;
/** video memory bit width*/
uint32_t vram_bit_width;
/* vce harvesting instance */
uint32_t vce_harvest_config;
/* gfx double offchip LDS buffers */
uint32_t gc_double_offchip_lds_buf;
/* NGG Primitive Buffer */
uint64_t prim_buf_gpu_addr;
/* NGG Position Buffer */
uint64_t pos_buf_gpu_addr;
/* NGG Control Sideband */
uint64_t cntl_sb_buf_gpu_addr;
/* NGG Parameter Cache */
uint64_t param_buf_gpu_addr;
uint32_t prim_buf_size;
uint32_t pos_buf_size;
uint32_t cntl_sb_buf_size;
uint32_t param_buf_size;
/* wavefront size*/
uint32_t wave_front_size;
/* shader visible vgprs*/
uint32_t num_shader_visible_vgprs;
/* CU per shader array*/
uint32_t num_cu_per_sh;
/* number of tcc blocks*/
uint32_t num_tcc_blocks;
/* gs vgt table depth*/
uint32_t gs_vgt_table_depth;
/* gs primitive buffer depth*/
uint32_t gs_prim_buffer_depth;
/* max gs wavefront per vgt*/
uint32_t max_gs_waves_per_vgt;
uint32_t _pad1;
/* always on cu bitmap */
uint32_t cu_ao_bitmap[4][4];
/** Starting high virtual address for UMDs. */
uint64_t high_va_offset;
/** The maximum high virtual address */
uint64_t high_va_max;
/* gfx10 pa_sc_tile_steering_override */
uint32_t pa_sc_tile_steering_override;
/* disabled TCCs */
uint64_t tcc_disabled_mask;
};
struct drm_amdgpu_info_hw_ip {
uint32_t hw_ip_version_major;
uint32_t hw_ip_version_minor;
uint32_t ib_start_alignment;
uint32_t ib_size_alignment;
uint32_t available_rings;
uint32_t ip_discovery_version;
};
typedef struct _drmPciBusInfo {
uint16_t domain;
uint8_t bus;
uint8_t dev;
uint8_t func;
} drmPciBusInfo, *drmPciBusInfoPtr;
typedef struct _drmDevice {
union {
drmPciBusInfoPtr pci;
} businfo;
} drmDevice, *drmDevicePtr;
enum amdgpu_sw_info {
amdgpu_sw_info_address32_hi = 0,
};
typedef struct amdgpu_device *amdgpu_device_handle;
typedef struct amdgpu_bo *amdgpu_bo_handle;
struct amdgpu_bo_alloc_request {
uint64_t alloc_size;
uint64_t phys_alignment;
uint32_t preferred_heap;
uint64_t flags;
};
struct amdgpu_gds_resource_info {
uint32_t gds_gfx_partition_size;
uint32_t gds_total_size;
};
struct amdgpu_buffer_size_alignments {
uint64_t size_local;
uint64_t size_remote;
};
struct amdgpu_heap_info {
uint64_t heap_size;
};
struct amdgpu_gpu_info {
uint32_t asic_id;
uint32_t chip_external_rev;
uint32_t family_id;
uint64_t ids_flags;
uint64_t max_engine_clk;
uint64_t max_memory_clk;
uint32_t num_shader_engines;
uint32_t num_shader_arrays_per_engine;
uint32_t rb_pipes;
uint32_t enabled_rb_pipes_mask;
uint32_t gpu_counter_freq;
uint32_t mc_arb_ramcfg;
uint32_t gb_addr_cfg;
uint32_t gb_tile_mode[32];
uint32_t gb_macro_tile_mode[16];
uint32_t cu_bitmap[4][4];
uint32_t vram_type;
uint32_t vram_bit_width;
uint32_t ce_ram_size;
uint32_t vce_harvest_config;
uint32_t pci_rev_id;
};
static int drmGetCap(int fd, uint64_t capability, uint64_t *value)
{
return -EINVAL;
}
static void drmFreeDevice(drmDevicePtr *device)
{
}
static int drmGetDevice2(int fd, uint32_t flags, drmDevicePtr *device)
{
return -ENODEV;
}
static int amdgpu_bo_alloc(amdgpu_device_handle dev,
struct amdgpu_bo_alloc_request *alloc_buffer,
amdgpu_bo_handle *buf_handle)
{
return -EINVAL;
}
static int amdgpu_bo_free(amdgpu_bo_handle buf_handle)
{
return -EINVAL;
}
static int amdgpu_query_buffer_size_alignment(amdgpu_device_handle dev,
struct amdgpu_buffer_size_alignments
*info)
{
return -EINVAL;
}
static int amdgpu_query_firmware_version(amdgpu_device_handle dev, unsigned fw_type,
unsigned ip_instance, unsigned index,
uint32_t *version, uint32_t *feature)
{
return -EINVAL;
}
static int amdgpu_query_hw_ip_info(amdgpu_device_handle dev, unsigned type,
unsigned ip_instance,
struct drm_amdgpu_info_hw_ip *info)
{
return -EINVAL;
}
static int amdgpu_query_heap_info(amdgpu_device_handle dev, uint32_t heap,
uint32_t flags, struct amdgpu_heap_info *info)
{
return -EINVAL;
}
static int amdgpu_query_gpu_info(amdgpu_device_handle dev,
struct amdgpu_gpu_info *info)
{
return -EINVAL;
}
static int amdgpu_query_info(amdgpu_device_handle dev, unsigned info_id,
unsigned size, void *value)
{
return -EINVAL;
}
static int amdgpu_query_sw_info(amdgpu_device_handle dev, enum amdgpu_sw_info info,
void *value)
{
return -EINVAL;
}
static int amdgpu_query_gds_info(amdgpu_device_handle dev,
struct amdgpu_gds_resource_info *gds_info)
{
return -EINVAL;
}
static int amdgpu_query_video_caps_info(amdgpu_device_handle dev, unsigned cap_type,
unsigned size, void *value)
{
return -EINVAL;
}
static const char *amdgpu_get_marketing_name(amdgpu_device_handle dev)
{
return NULL;
}
#else
#include "drm-uapi/amdgpu_drm.h"
#include <amdgpu.h>
#include <xf86drm.h>
#endif
#define CIK_TILE_MODE_COLOR_2D 14
#define CIK__GB_TILE_MODE__PIPE_CONFIG(x) (((x) >> 6) & 0x1f)
#define CIK__PIPE_CONFIG__ADDR_SURF_P2 0
#define CIK__PIPE_CONFIG__ADDR_SURF_P4_8x16 4
#define CIK__PIPE_CONFIG__ADDR_SURF_P4_16x16 5
#define CIK__PIPE_CONFIG__ADDR_SURF_P4_16x32 6
#define CIK__PIPE_CONFIG__ADDR_SURF_P4_32x32 7
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_16x16_8x16 8
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_16x32_8x16 9
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_8x16 10
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_16x32_16x16 11
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_16x16 12
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_16x32 13
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_32x64_32x32 14
#define CIK__PIPE_CONFIG__ADDR_SURF_P16_32X32_8X16 16
#define CIK__PIPE_CONFIG__ADDR_SURF_P16_32X32_16X16 17
static unsigned cik_get_num_tile_pipes(struct amdgpu_gpu_info *info)
{
unsigned mode2d = info->gb_tile_mode[CIK_TILE_MODE_COLOR_2D];
switch (CIK__GB_TILE_MODE__PIPE_CONFIG(mode2d)) {
case CIK__PIPE_CONFIG__ADDR_SURF_P2:
return 2;
case CIK__PIPE_CONFIG__ADDR_SURF_P4_8x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P4_16x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P4_16x32:
case CIK__PIPE_CONFIG__ADDR_SURF_P4_32x32:
return 4;
case CIK__PIPE_CONFIG__ADDR_SURF_P8_16x16_8x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_16x32_8x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_8x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_16x32_16x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_16x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_16x32:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_32x64_32x32:
return 8;
case CIK__PIPE_CONFIG__ADDR_SURF_P16_32X32_8X16:
case CIK__PIPE_CONFIG__ADDR_SURF_P16_32X32_16X16:
return 16;
default:
fprintf(stderr, "Invalid GFX7 pipe configuration, assuming P2\n");
assert(!"this should never occur");
return 2;
}
}
static bool has_syncobj(int fd)
{
uint64_t value;
if (drmGetCap(fd, DRM_CAP_SYNCOBJ, &value))
return false;
return value ? true : false;
}
static bool has_timeline_syncobj(int fd)
{
uint64_t value;
if (drmGetCap(fd, DRM_CAP_SYNCOBJ_TIMELINE, &value))
return false;
return value ? true : false;
}
static bool has_modifiers(int fd)
{
uint64_t value;
if (drmGetCap(fd, DRM_CAP_ADDFB2_MODIFIERS, &value))
return false;
return value ? true : false;
}
static uint64_t fix_vram_size(uint64_t size)
{
/* The VRAM size is underreported, so we need to fix it, because
* it's used to compute the number of memory modules for harvesting.
*/
return align64(size, 256 * 1024 * 1024);
}
static bool
has_tmz_support(amdgpu_device_handle dev, struct radeon_info *info, uint32_t ids_flags)
{
struct amdgpu_bo_alloc_request request = {0};
int r;
amdgpu_bo_handle bo;
if (ids_flags & AMDGPU_IDS_FLAGS_TMZ)
return true;
/* AMDGPU_IDS_FLAGS_TMZ is supported starting from drm_minor 40 */
if (info->drm_minor >= 40)
return false;
/* Find out ourselves if TMZ is enabled */
if (info->gfx_level < GFX9)
return false;
if (info->drm_minor < 36)
return false;
request.alloc_size = 256;
request.phys_alignment = 1024;
request.preferred_heap = AMDGPU_GEM_DOMAIN_VRAM;
request.flags = AMDGPU_GEM_CREATE_ENCRYPTED;
r = amdgpu_bo_alloc(dev, &request, &bo);
if (r)
return false;
amdgpu_bo_free(bo);
return true;
}
static void set_custom_cu_en_mask(struct radeon_info *info)
{
info->spi_cu_en = ~0;
const char *cu_env_var = os_get_option("AMD_CU_MASK");
if (!cu_env_var)
return;
int size = strlen(cu_env_var);
char *str = alloca(size + 1);
memset(str, 0, size + 1);
size = 0;
/* Strip whitespace. */
for (unsigned src = 0; cu_env_var[src]; src++) {
if (cu_env_var[src] != ' ' && cu_env_var[src] != '\t' &&
cu_env_var[src] != '\n' && cu_env_var[src] != '\r') {
str[size++] = cu_env_var[src];
}
}
/* The following syntax is used, all whitespace is ignored:
* ID = [0-9][0-9]* ex. base 10 numbers
* ID_list = (ID | ID-ID)[, (ID | ID-ID)]* ex. 0,2-4,7
* CU_list = 0x[0-F]* | ID_list ex. 0x337F OR 0,2-4,7
* AMD_CU_MASK = CU_list
*
* It's a CU mask within a shader array. It's applied to all shader arrays.
*/
bool is_good_form = true;
uint32_t spi_cu_en = 0;
if (size > 2 && str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) {
str += 2;
size -= 2;
for (unsigned i = 0; i < size; i++)
is_good_form &= isxdigit(str[i]) != 0;
if (!is_good_form) {
fprintf(stderr, "amd: invalid AMD_CU_MASK: ill-formed hex value\n");
} else {
spi_cu_en = strtol(str, NULL, 16);
}
} else {
/* Parse ID_list. */
long first = 0, last = -1;
if (!isdigit(*str)) {
is_good_form = false;
} else {
while (*str) {
bool comma = false;
if (isdigit(*str)) {
first = last = strtol(str, &str, 10);
} else if (*str == '-') {
str++;
/* Parse a digit after a dash. */
if (isdigit(*str)) {
last = strtol(str, &str, 10);
} else {
fprintf(stderr, "amd: invalid AMD_CU_MASK: expected a digit after -\n");
is_good_form = false;
break;
}
} else if (*str == ',') {
comma = true;
str++;
if (!isdigit(*str)) {
fprintf(stderr, "amd: invalid AMD_CU_MASK: expected a digit after ,\n");
is_good_form = false;
break;
}
}
if (comma || !*str) {
if (first > last) {
fprintf(stderr, "amd: invalid AMD_CU_MASK: range not increasing (%li, %li)\n", first, last);
is_good_form = false;
break;
}
if (last > 31) {
fprintf(stderr, "amd: invalid AMD_CU_MASK: index too large (%li)\n", last);
is_good_form = false;
break;
}
spi_cu_en |= BITFIELD_RANGE(first, last - first + 1);
last = -1;
}
}
}
}
/* The mask is parsed. Now assign bits to CUs. */
if (is_good_form) {
bool error = false;
/* Clear bits that have no effect. */
spi_cu_en &= BITFIELD_MASK(info->max_good_cu_per_sa);
if (!spi_cu_en) {
fprintf(stderr, "amd: invalid AMD_CU_MASK: at least 1 CU in each SA must be enabled\n");
error = true;
}
if (info->has_graphics) {
uint32_t min_full_cu_mask = BITFIELD_MASK(info->min_good_cu_per_sa);
/* The hw ignores all non-compute CU masks if any of them is 0. Disallow that. */
if ((spi_cu_en & min_full_cu_mask) == 0) {
fprintf(stderr, "amd: invalid AMD_CU_MASK: at least 1 CU from 0x%x per SA must be "
"enabled (SPI limitation)\n", min_full_cu_mask);
error = true;
}
/* We usually disable 1 or 2 CUs for VS and GS, which means at last 1 other CU
* must be enabled.
*/
uint32_t cu_mask_ge, unused;
ac_compute_late_alloc(info, false, false, false, &unused, &cu_mask_ge);
cu_mask_ge &= min_full_cu_mask;
if ((spi_cu_en & cu_mask_ge) == 0) {
fprintf(stderr, "amd: invalid AMD_CU_MASK: at least 1 CU from 0x%x per SA must be "
"enabled (late alloc constraint for GE)\n", cu_mask_ge);
error = true;
}
if ((min_full_cu_mask & spi_cu_en & ~cu_mask_ge) == 0) {
fprintf(stderr, "amd: invalid AMD_CU_MASK: at least 1 CU from 0x%x per SA must be "
"enabled (late alloc constraint for PS)\n",
min_full_cu_mask & ~cu_mask_ge);
error = true;
}
}
if (!error) {
info->spi_cu_en = spi_cu_en;
info->spi_cu_en_has_effect = spi_cu_en & BITFIELD_MASK(info->max_good_cu_per_sa);
}
}
}
bool ac_query_gpu_info(int fd, void *dev_p, struct radeon_info *info)
{
struct amdgpu_gpu_info amdinfo;
struct drm_amdgpu_info_device device_info = {0};
struct amdgpu_buffer_size_alignments alignment_info = {0};
uint32_t vce_version = 0, vce_feature = 0, uvd_version = 0, uvd_feature = 0;
int r, i, j;
amdgpu_device_handle dev = dev_p;
drmDevicePtr devinfo;
STATIC_ASSERT(AMDGPU_HW_IP_GFX == AMD_IP_GFX);
STATIC_ASSERT(AMDGPU_HW_IP_COMPUTE == AMD_IP_COMPUTE);
STATIC_ASSERT(AMDGPU_HW_IP_DMA == AMD_IP_SDMA);
STATIC_ASSERT(AMDGPU_HW_IP_UVD == AMD_IP_UVD);
STATIC_ASSERT(AMDGPU_HW_IP_VCE == AMD_IP_VCE);
STATIC_ASSERT(AMDGPU_HW_IP_UVD_ENC == AMD_IP_UVD_ENC);
STATIC_ASSERT(AMDGPU_HW_IP_VCN_DEC == AMD_IP_VCN_DEC);
STATIC_ASSERT(AMDGPU_HW_IP_VCN_ENC == AMD_IP_VCN_ENC);
STATIC_ASSERT(AMDGPU_HW_IP_VCN_JPEG == AMD_IP_VCN_JPEG);
/* Get PCI info. */
r = drmGetDevice2(fd, 0, &devinfo);
if (r) {
fprintf(stderr, "amdgpu: drmGetDevice2 failed.\n");
return false;
}
info->pci_domain = devinfo->businfo.pci->domain;
info->pci_bus = devinfo->businfo.pci->bus;
info->pci_dev = devinfo->businfo.pci->dev;
info->pci_func = devinfo->businfo.pci->func;
drmFreeDevice(&devinfo);
assert(info->drm_major == 3);
info->is_amdgpu = true;
if (info->drm_minor < 15) {
fprintf(stderr, "amdgpu: DRM version is %u.%u.%u, but this driver is "
"only compatible with 3.15.0 (kernel 4.12) or later.\n",
info->drm_major, info->drm_minor, info->drm_patchlevel);
return false;
}
/* Query hardware and driver information. */
r = amdgpu_query_gpu_info(dev, &amdinfo);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_gpu_info failed.\n");
return false;
}
r = amdgpu_query_info(dev, AMDGPU_INFO_DEV_INFO, sizeof(device_info), &device_info);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_info(dev_info) failed.\n");
return false;
}
r = amdgpu_query_buffer_size_alignment(dev, &alignment_info);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_buffer_size_alignment failed.\n");
return false;
}
for (unsigned ip_type = 0; ip_type < AMD_NUM_IP_TYPES; ip_type++) {
struct drm_amdgpu_info_hw_ip ip_info = {0};
r = amdgpu_query_hw_ip_info(dev, ip_type, 0, &ip_info);
if (r || !ip_info.available_rings)
continue;
/* Gfx6-8 don't set ip_discovery_version. */
if (info->drm_minor >= 48 && ip_info.ip_discovery_version) {
info->ip[ip_type].ver_major = (ip_info.ip_discovery_version >> 16) & 0xff;
info->ip[ip_type].ver_minor = (ip_info.ip_discovery_version >> 8) & 0xff;
} else {
info->ip[ip_type].ver_major = ip_info.hw_ip_version_major;
info->ip[ip_type].ver_minor = ip_info.hw_ip_version_minor;
/* Fix incorrect IP versions reported by the kernel. */
if (device_info.family == FAMILY_NV &&
(ASICREV_IS(device_info.external_rev, NAVI10) ||
ASICREV_IS(device_info.external_rev, NAVI12) ||
ASICREV_IS(device_info.external_rev, NAVI14)))
info->ip[AMD_IP_GFX].ver_minor = info->ip[AMD_IP_COMPUTE].ver_minor = 1;
else if (device_info.family == FAMILY_NV ||
device_info.family == FAMILY_VGH ||
device_info.family == FAMILY_RMB ||
device_info.family == FAMILY_GC_10_3_6 ||
device_info.family == FAMILY_GC_10_3_7)
info->ip[AMD_IP_GFX].ver_minor = info->ip[AMD_IP_COMPUTE].ver_minor = 3;
}
info->ip[ip_type].num_queues = util_bitcount(ip_info.available_rings);
info->ib_alignment = MAX3(info->ib_alignment, ip_info.ib_start_alignment,
ip_info.ib_size_alignment);
}
/* Only require gfx or compute. */
if (!info->ip[AMD_IP_GFX].num_queues && !info->ip[AMD_IP_COMPUTE].num_queues) {
fprintf(stderr, "amdgpu: failed to find gfx or compute.\n");
return false;
}
assert(util_is_power_of_two_or_zero(info->ip[AMD_IP_COMPUTE].num_queues));
assert(util_is_power_of_two_or_zero(info->ip[AMD_IP_SDMA].num_queues));
/* The kernel pads gfx and compute IBs to 256 dwords since:
* 66f3b2d527154bd258a57c8815004b5964aa1cf5
* Do the same.
*/
info->ib_alignment = MAX2(info->ib_alignment, 1024);
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_GFX_ME, 0, 0, &info->me_fw_version,
&info->me_fw_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(me) failed.\n");
return false;
}
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_GFX_MEC, 0, 0, &info->mec_fw_version,
&info->mec_fw_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(mec) failed.\n");
return false;
}
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_GFX_PFP, 0, 0, &info->pfp_fw_version,
&info->pfp_fw_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(pfp) failed.\n");
return false;
}
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_UVD, 0, 0, &uvd_version, &uvd_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(uvd) failed.\n");
return false;
}
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_VCE, 0, 0, &vce_version, &vce_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(vce) failed.\n");
return false;
}
r = amdgpu_query_sw_info(dev, amdgpu_sw_info_address32_hi, &info->address32_hi);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_sw_info(address32_hi) failed.\n");
return false;
}
struct drm_amdgpu_memory_info meminfo = {0};
r = amdgpu_query_info(dev, AMDGPU_INFO_MEMORY, sizeof(meminfo), &meminfo);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_info(memory) failed.\n");
return false;
}
/* Note: usable_heap_size values can be random and can't be relied on. */
info->gart_size_kb = DIV_ROUND_UP(meminfo.gtt.total_heap_size, 1024);
info->vram_size_kb = DIV_ROUND_UP(fix_vram_size(meminfo.vram.total_heap_size), 1024);
info->vram_vis_size_kb = DIV_ROUND_UP(meminfo.cpu_accessible_vram.total_heap_size, 1024);
if (info->drm_minor >= 41) {
amdgpu_query_video_caps_info(dev, AMDGPU_INFO_VIDEO_CAPS_DECODE,
sizeof(info->dec_caps), &(info->dec_caps));
amdgpu_query_video_caps_info(dev, AMDGPU_INFO_VIDEO_CAPS_ENCODE,
sizeof(info->enc_caps), &(info->enc_caps));
}
/* Add some margin of error, though this shouldn't be needed in theory. */
info->all_vram_visible = info->vram_size_kb * 0.9 < info->vram_vis_size_kb;
/* Set chip identification. */
info->pci_id = device_info.device_id;
info->pci_rev_id = device_info.pci_rev;
info->vce_harvest_config = device_info.vce_harvest_config;
#define identify_chip2(asic, chipname) \
if (ASICREV_IS(device_info.external_rev, asic)) { \
info->family = CHIP_##chipname; \
info->name = #chipname; \
}
#define identify_chip(chipname) identify_chip2(chipname, chipname)
switch (device_info.family) {
case FAMILY_SI:
identify_chip(TAHITI);
identify_chip(PITCAIRN);
identify_chip2(CAPEVERDE, VERDE);
identify_chip(OLAND);
identify_chip(HAINAN);
break;
case FAMILY_CI:
identify_chip(BONAIRE);
identify_chip(HAWAII);
break;
case FAMILY_KV:
identify_chip2(SPECTRE, KAVERI);
identify_chip2(SPOOKY, KAVERI);
identify_chip2(KALINDI, KABINI);
identify_chip2(GODAVARI, KABINI);
break;
case FAMILY_VI:
identify_chip(ICELAND);
identify_chip(TONGA);
identify_chip(FIJI);
identify_chip(POLARIS10);
identify_chip(POLARIS11);
identify_chip(POLARIS12);
identify_chip(VEGAM);
break;
case FAMILY_CZ:
identify_chip(CARRIZO);
identify_chip(STONEY);
break;
case FAMILY_AI:
identify_chip(VEGA10);
identify_chip(VEGA12);
identify_chip(VEGA20);
identify_chip(ARCTURUS);
identify_chip(ALDEBARAN);
break;
case FAMILY_RV:
identify_chip(RAVEN);
identify_chip(RAVEN2);
identify_chip(RENOIR);
break;
case FAMILY_NV:
identify_chip(NAVI10);
identify_chip(NAVI12);
identify_chip(NAVI14);
identify_chip(NAVI21);
identify_chip(NAVI22);
identify_chip(NAVI23);
identify_chip(NAVI24);
break;
case FAMILY_VGH:
identify_chip(VANGOGH);
break;
case FAMILY_RMB:
identify_chip(REMBRANDT);
break;
case FAMILY_GC_10_3_6:
identify_chip(GFX1036);
break;
case FAMILY_GC_10_3_7:
identify_chip2(GFX1037, GFX1036);
break;
case FAMILY_GFX1100:
identify_chip(GFX1100);
identify_chip(GFX1101);
identify_chip(GFX1102);
break;
case FAMILY_GFX1103:
identify_chip(GFX1103_R1);
identify_chip(GFX1103_R2);
break;
}
if (!info->name) {
fprintf(stderr, "amdgpu: unknown (family_id, chip_external_rev): (%u, %u)\n",
device_info.family, device_info.external_rev);
return false;
}
memset(info->lowercase_name, 0, sizeof(info->lowercase_name));
for (unsigned i = 0; info->name[i] && i < ARRAY_SIZE(info->lowercase_name) - 1; i++)
info->lowercase_name[i] = tolower(info->name[i]);
if (info->ip[AMD_IP_GFX].ver_major == 11)
info->gfx_level = GFX11;
else if (info->ip[AMD_IP_GFX].ver_major == 10 && info->ip[AMD_IP_GFX].ver_minor == 3)
info->gfx_level = GFX10_3;
else if (info->ip[AMD_IP_GFX].ver_major == 10 && info->ip[AMD_IP_GFX].ver_minor == 1)
info->gfx_level = GFX10;
else if (info->ip[AMD_IP_GFX].ver_major == 9 || info->ip[AMD_IP_COMPUTE].ver_major == 9)
info->gfx_level = GFX9;
else if (info->ip[AMD_IP_GFX].ver_major == 8)
info->gfx_level = GFX8;
else if (info->ip[AMD_IP_GFX].ver_major == 7)
info->gfx_level = GFX7;
else if (info->ip[AMD_IP_GFX].ver_major == 6)
info->gfx_level = GFX6;
else {
fprintf(stderr, "amdgpu: Unknown gfx version: %u.%u\n",
info->ip[AMD_IP_GFX].ver_major, info->ip[AMD_IP_GFX].ver_minor);
return false;
}
info->smart_access_memory = info->all_vram_visible &&
info->gfx_level >= GFX10_3 &&
util_get_cpu_caps()->family >= CPU_AMD_ZEN3 &&
util_get_cpu_caps()->family < CPU_AMD_LAST;
info->family_id = device_info.family;
info->chip_external_rev = device_info.external_rev;
info->chip_rev = device_info.chip_rev;
info->marketing_name = amdgpu_get_marketing_name(dev);
info->is_pro_graphics = info->marketing_name && (strstr(info->marketing_name, "Pro") ||
strstr(info->marketing_name, "PRO") ||
strstr(info->marketing_name, "Frontier"));
/* Set which chips have dedicated VRAM. */
info->has_dedicated_vram = !(device_info.ids_flags & AMDGPU_IDS_FLAGS_FUSION);
/* The kernel can split large buffers in VRAM but not in GTT, so large
* allocations can fail or cause buffer movement failures in the kernel.
*/
if (info->has_dedicated_vram)
info->max_heap_size_kb = info->vram_size_kb;
else
info->max_heap_size_kb = info->gart_size_kb;
info->vram_type = device_info.vram_type;
info->memory_bus_width = device_info.vram_bit_width;
/* Set which chips have uncached device memory. */
info->has_l2_uncached = info->gfx_level >= GFX9;
/* Set hardware information. */
/* convert the shader/memory clocks from KHz to MHz */
info->max_gpu_freq_mhz = device_info.max_engine_clock / 1000;
info->memory_freq_mhz_effective = info->memory_freq_mhz = device_info.max_memory_clock / 1000;
info->max_tcc_blocks = device_info.num_tcc_blocks;
info->max_se = device_info.num_shader_engines;
info->max_sa_per_se = device_info.num_shader_arrays_per_engine;
info->uvd_fw_version = info->ip[AMD_IP_UVD].num_queues ? uvd_version : 0;
info->vce_fw_version = info->ip[AMD_IP_VCE].num_queues ? vce_version : 0;
info->memory_freq_mhz_effective *= ac_memory_ops_per_clock(info->vram_type);
/* unified ring */
info->has_video_hw.vcn_decode
= info->family >= CHIP_GFX1100
? info->ip[AMD_IP_VCN_UNIFIED].num_queues != 0
: info->ip[AMD_IP_VCN_DEC].num_queues != 0;
info->has_userptr = true;
info->has_syncobj = has_syncobj(fd);
info->has_timeline_syncobj = has_timeline_syncobj(fd);
info->has_fence_to_handle = info->has_syncobj && info->drm_minor >= 21;
info->has_local_buffers = info->drm_minor >= 20;
info->has_bo_metadata = true;
info->has_eqaa_surface_allocator = info->gfx_level < GFX11;
/* Disable sparse mappings on GFX6 due to VM faults in CP DMA. Enable them once
* these faults are mitigated in software.
*/
info->has_sparse_vm_mappings = info->gfx_level >= GFX7;
info->has_scheduled_fence_dependency = info->drm_minor >= 28;
info->mid_command_buffer_preemption_enabled = device_info.ids_flags & AMDGPU_IDS_FLAGS_PREEMPTION;
info->has_tmz_support = has_tmz_support(dev, info, device_info.ids_flags);
info->kernel_has_modifiers = has_modifiers(fd);
info->has_graphics = info->ip[AMD_IP_GFX].num_queues > 0;
info->pa_sc_tile_steering_override = device_info.pa_sc_tile_steering_override;
info->max_render_backends = device_info.num_rb_pipes;
/* The value returned by the kernel driver was wrong. */
if (info->family == CHIP_KAVERI)
info->max_render_backends = 2;
info->clock_crystal_freq = device_info.gpu_counter_freq;
if (!info->clock_crystal_freq) {
fprintf(stderr, "amdgpu: clock crystal frequency is 0, timestamps will be wrong\n");
info->clock_crystal_freq = 1;
}
if (info->gfx_level >= GFX10) {
info->tcc_cache_line_size = 128;
if (info->drm_minor >= 35) {
info->num_tcc_blocks = info->max_tcc_blocks - util_bitcount64(device_info.tcc_disabled_mask);
} else {
/* This is a hack, but it's all we can do without a kernel upgrade. */
info->num_tcc_blocks = info->vram_size_kb / (512 * 1024);
if (info->num_tcc_blocks > info->max_tcc_blocks)
info->num_tcc_blocks /= 2;
}
} else {
if (!info->has_graphics && info->family >= CHIP_ALDEBARAN)
info->tcc_cache_line_size = 128;
else
info->tcc_cache_line_size = 64;
info->num_tcc_blocks = info->max_tcc_blocks;
}
info->tcc_rb_non_coherent = !util_is_power_of_two_or_zero(info->num_tcc_blocks);
switch (info->family) {
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_OLAND:
case CHIP_HAWAII:
case CHIP_KABINI:
case CHIP_TONGA:
case CHIP_STONEY:
case CHIP_RAVEN2:
info->l2_cache_size = info->num_tcc_blocks * 64 * 1024;
break;
case CHIP_VERDE:
case CHIP_HAINAN:
case CHIP_BONAIRE:
case CHIP_KAVERI:
case CHIP_ICELAND:
case CHIP_CARRIZO:
case CHIP_FIJI:
case CHIP_POLARIS12:
case CHIP_VEGAM:
info->l2_cache_size = info->num_tcc_blocks * 128 * 1024;
break;
default:
info->l2_cache_size = info->num_tcc_blocks * 256 * 1024;
break;
case CHIP_REMBRANDT:
info->l2_cache_size = info->num_tcc_blocks * 512 * 1024;
break;
}
info->l1_cache_size = 16384;
info->mc_arb_ramcfg = amdinfo.mc_arb_ramcfg;
info->gb_addr_config = amdinfo.gb_addr_cfg;
if (info->gfx_level >= GFX9) {
info->num_tile_pipes = 1 << G_0098F8_NUM_PIPES(info->gb_addr_config);
info->pipe_interleave_bytes = 256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX9(info->gb_addr_config);
} else {
info->num_tile_pipes = cik_get_num_tile_pipes(&amdinfo);
info->pipe_interleave_bytes = 256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX6(info->gb_addr_config);
}
info->r600_has_virtual_memory = true;
/* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
* 16KB makes some SIMDs unoccupied).
*
* LDS is 128KB in WGP mode and 64KB in CU mode. Assume the WGP mode is used.
*/
info->lds_size_per_workgroup = info->gfx_level >= GFX10 ? 128 * 1024 : 64 * 1024;
/* lds_encode_granularity is the block size used for encoding registers.
* lds_alloc_granularity is what the hardware will align the LDS size to.
*/
info->lds_encode_granularity = info->gfx_level >= GFX7 ? 128 * 4 : 64 * 4;
info->lds_alloc_granularity = info->gfx_level >= GFX10_3 ? 256 * 4 : info->lds_encode_granularity;
/* This is "align_mask" copied from the kernel, maximums of all IP versions. */
info->ib_pad_dw_mask[AMD_IP_GFX] = 0xff;
info->ib_pad_dw_mask[AMD_IP_COMPUTE] = 0xff;
info->ib_pad_dw_mask[AMD_IP_SDMA] = 0xf;
info->ib_pad_dw_mask[AMD_IP_UVD] = 0xf;
info->ib_pad_dw_mask[AMD_IP_VCE] = 0x3f;
info->ib_pad_dw_mask[AMD_IP_UVD_ENC] = 0x3f;
info->ib_pad_dw_mask[AMD_IP_VCN_DEC] = 0xf;
info->ib_pad_dw_mask[AMD_IP_VCN_ENC] = 0x3f;
info->ib_pad_dw_mask[AMD_IP_VCN_JPEG] = 0xf;
/* The mere presence of CLEAR_STATE in the IB causes random GPU hangs
* on GFX6. Some CLEAR_STATE cause asic hang on radeon kernel, etc.
* SPI_VS_OUT_CONFIG. So only enable GFX7 CLEAR_STATE on amdgpu kernel.
*/
info->has_clear_state = info->gfx_level >= GFX7;
info->has_distributed_tess =
info->gfx_level >= GFX10 || (info->gfx_level >= GFX8 && info->max_se >= 2);
info->has_dcc_constant_encode =
info->family == CHIP_RAVEN2 || info->family == CHIP_RENOIR || info->gfx_level >= GFX10;
info->has_rbplus = info->family == CHIP_STONEY || info->gfx_level >= GFX9;
/* Some chips have RB+ registers, but don't support RB+. Those must
* always disable it.
*/
info->rbplus_allowed =
info->has_rbplus &&
(info->family == CHIP_STONEY || info->family == CHIP_VEGA12 || info->family == CHIP_RAVEN ||
info->family == CHIP_RAVEN2 || info->family == CHIP_RENOIR || info->gfx_level >= GFX10_3);
info->has_out_of_order_rast =
info->gfx_level >= GFX8 && info->gfx_level <= GFX9 && info->max_se >= 2;
/* Whether chips support double rate packed math instructions. */
info->has_packed_math_16bit = info->gfx_level >= GFX9;
/* Whether chips support dot product instructions. A subset of these support a smaller
* instruction encoding which accumulates with the destination.
*/
info->has_accelerated_dot_product =
info->family == CHIP_ARCTURUS || info->family == CHIP_ALDEBARAN ||
info->family == CHIP_VEGA20 || info->family >= CHIP_NAVI12;
/* TODO: Figure out how to use LOAD_CONTEXT_REG on GFX6-GFX7. */
info->has_load_ctx_reg_pkt =
info->gfx_level >= GFX9 || (info->gfx_level >= GFX8 && info->me_fw_feature >= 41);
info->cpdma_prefetch_writes_memory = info->gfx_level <= GFX8;
info->has_gfx9_scissor_bug = info->family == CHIP_VEGA10 || info->family == CHIP_RAVEN;
info->has_tc_compat_zrange_bug = info->gfx_level >= GFX8 && info->gfx_level <= GFX9;
info->has_msaa_sample_loc_bug =
(info->family >= CHIP_POLARIS10 && info->family <= CHIP_POLARIS12) ||
info->family == CHIP_VEGA10 || info->family == CHIP_RAVEN;
info->has_ls_vgpr_init_bug = info->family == CHIP_VEGA10 || info->family == CHIP_RAVEN;
/* Drawing from 0-sized index buffers causes hangs on gfx10. */
info->has_zero_index_buffer_bug = info->gfx_level == GFX10;
/* Whether chips are affected by the image load/sample/gather hw bug when
* DCC is enabled (ie. WRITE_COMPRESS_ENABLE should be 0).
*/
info->has_image_load_dcc_bug = info->family == CHIP_NAVI23 ||
info->family == CHIP_VANGOGH ||
info->family == CHIP_REMBRANDT;
/* DB has a bug when ITERATE_256 is set to 1 that can cause a hang. The
* workaround is to set DECOMPRESS_ON_Z_PLANES to 2 for 4X MSAA D/S images.
*/
info->has_two_planes_iterate256_bug = info->gfx_level == GFX10;
/* GFX10+Navi21: NGG->legacy transitions require VGT_FLUSH. */
info->has_vgt_flush_ngg_legacy_bug = info->gfx_level == GFX10 ||
info->family == CHIP_NAVI21;
/* First Navi2x chips have a hw bug that doesn't allow to write
* depth/stencil from a FS for multi-pixel fragments.
*/
info->has_vrs_ds_export_bug = info->family == CHIP_NAVI21 ||
info->family == CHIP_NAVI22 ||
info->family == CHIP_VANGOGH;
/* HW bug workaround when CS threadgroups > 256 threads and async compute
* isn't used, i.e. only one compute job can run at a time. If async
* compute is possible, the threadgroup size must be limited to 256 threads
* on all queues to avoid the bug.
* Only GFX6 and certain GFX7 chips are affected.
*
* FIXME: RADV doesn't limit the number of threads for async compute.
*/
info->has_cs_regalloc_hang_bug = info->gfx_level == GFX6 ||
info->family == CHIP_BONAIRE ||
info->family == CHIP_KABINI;
/* Support for GFX10.3 was added with F32_ME_FEATURE_VERSION_31 but the
* feature version wasn't bumped.
*/
info->has_32bit_predication = (info->gfx_level >= GFX10 &&
info->me_fw_feature >= 32) ||
(info->gfx_level == GFX9 &&
info->me_fw_feature >= 52);
info->has_export_conflict_bug = info->gfx_level == GFX11;
/* Get the number of good compute units. */
info->num_cu = 0;
for (i = 0; i < info->max_se; i++) {
for (j = 0; j < info->max_sa_per_se; j++) {
if (info->gfx_level >= GFX11) {
assert(info->max_sa_per_se <= 2);
info->cu_mask[i][j] = device_info.cu_bitmap[i % 4][(i / 4) * 2 + j];
} else if (info->family == CHIP_ARCTURUS) {
/* The CU bitmap in amd gpu info structure is
* 4x4 size array, and it's usually suitable for Vega
* ASICs which has 4*2 SE/SA layout.
* But for Arcturus, SE/SA layout is changed to 8*1.
* To mostly reduce the impact, we make it compatible
* with current bitmap array as below:
* SE4 --> cu_bitmap[0][1]
* SE5 --> cu_bitmap[1][1]
* SE6 --> cu_bitmap[2][1]
* SE7 --> cu_bitmap[3][1]
*/
assert(info->max_sa_per_se == 1);
info->cu_mask[i][0] = device_info.cu_bitmap[i % 4][i / 4];
} else {
info->cu_mask[i][j] = device_info.cu_bitmap[i][j];
}
info->num_cu += util_bitcount(info->cu_mask[i][j]);
}
}
/* Derive the number of enabled SEs from the CU mask. */
if (info->gfx_level >= GFX10_3 && info->max_se > 1) {
info->num_se = 0;
for (unsigned se = 0; se < info->max_se; se++) {
for (unsigned sa = 0; sa < info->max_sa_per_se; sa++) {
if (info->cu_mask[se][sa]) {
info->num_se++;
break;
}
}
}
} else {
/* GFX10 and older always enable all SEs because they don't support SE harvesting. */
info->num_se = info->max_se;
}
/* On GFX10, only whole WGPs (in units of 2 CUs) can be disabled,
* and max - min <= 2.
*/
unsigned cu_group = info->gfx_level >= GFX10 ? 2 : 1;
info->max_good_cu_per_sa =
DIV_ROUND_UP(info->num_cu, (info->num_se * info->max_sa_per_se * cu_group)) *
cu_group;
info->min_good_cu_per_sa =
(info->num_cu / (info->num_se * info->max_sa_per_se * cu_group)) * cu_group;
memcpy(info->si_tile_mode_array, amdinfo.gb_tile_mode, sizeof(amdinfo.gb_tile_mode));
info->enabled_rb_mask = amdinfo.enabled_rb_pipes_mask;
memcpy(info->cik_macrotile_mode_array, amdinfo.gb_macro_tile_mode,
sizeof(amdinfo.gb_macro_tile_mode));
info->pte_fragment_size = alignment_info.size_local;
info->gart_page_size = alignment_info.size_remote;
if (info->gfx_level == GFX6)
info->gfx_ib_pad_with_type2 = true;
/* GFX10 and maybe GFX9 need this alignment for cache coherency. */
if (info->gfx_level >= GFX9)
info->ib_alignment = MAX2(info->ib_alignment, info->tcc_cache_line_size);
if ((info->drm_minor >= 31 && (info->family == CHIP_RAVEN || info->family == CHIP_RAVEN2 ||
info->family == CHIP_RENOIR)) ||
info->gfx_level >= GFX10_3) {
/* GFX10+ requires retiling in all cases. */
if (info->max_render_backends == 1 && info->gfx_level == GFX9)
info->use_display_dcc_unaligned = true;
else
info->use_display_dcc_with_retile_blit = true;
}
info->has_stable_pstate = info->drm_minor >= 45;
if (info->gfx_level >= GFX11) {
info->pc_lines = 1024;
info->pbb_max_alloc_count = 255; /* minimum is 2, maximum is 256 */
} else if (info->gfx_level >= GFX9 && info->has_graphics) {
unsigned pc_lines = 0;
switch (info->family) {
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
pc_lines = 2048;
break;
case CHIP_RAVEN:
case CHIP_RAVEN2:
case CHIP_RENOIR:
case CHIP_NAVI10:
case CHIP_NAVI12:
case CHIP_NAVI21:
case CHIP_NAVI22:
case CHIP_NAVI23:
pc_lines = 1024;
break;
case CHIP_NAVI14:
case CHIP_NAVI24:
pc_lines = 512;
break;
case CHIP_VANGOGH:
case CHIP_REMBRANDT:
case CHIP_GFX1036:
pc_lines = 256;
break;
default:
assert(0);
}
info->pc_lines = pc_lines;
if (info->gfx_level >= GFX10) {
info->pbb_max_alloc_count = pc_lines / 3;
} else {
info->pbb_max_alloc_count = MIN2(128, pc_lines / (4 * info->max_se));
}
}
if (info->gfx_level >= GFX10_3)
info->max_wave64_per_simd = 16;
else if (info->gfx_level == GFX10)
info->max_wave64_per_simd = 20;
else if (info->family >= CHIP_POLARIS10 && info->family <= CHIP_VEGAM)
info->max_wave64_per_simd = 8;
else
info->max_wave64_per_simd = 10;
if (info->gfx_level >= GFX10) {
info->num_physical_sgprs_per_simd = 128 * info->max_wave64_per_simd;
info->min_sgpr_alloc = 128;
info->sgpr_alloc_granularity = 128;
} else if (info->gfx_level >= GFX8) {
info->num_physical_sgprs_per_simd = 800;
info->min_sgpr_alloc = 16;
info->sgpr_alloc_granularity = 16;
} else {
info->num_physical_sgprs_per_simd = 512;
info->min_sgpr_alloc = 8;
info->sgpr_alloc_granularity = 8;
}
info->has_3d_cube_border_color_mipmap = info->has_graphics || info->family == CHIP_ARCTURUS;
info->never_stop_sq_perf_counters = info->gfx_level == GFX10 ||
info->gfx_level == GFX10_3;
info->never_send_perfcounter_stop = info->gfx_level == GFX11;
info->has_sqtt_rb_harvest_bug = (info->family == CHIP_NAVI23 ||
info->family == CHIP_NAVI24 ||
info->family == CHIP_REMBRANDT ||
info->family == CHIP_VANGOGH) &&
util_bitcount(info->enabled_rb_mask) !=
info->max_render_backends;
/* On GFX10.3, the polarity of AUTO_FLUSH_MODE is inverted. */
info->has_sqtt_auto_flush_mode_bug = info->gfx_level == GFX10_3;
info->max_sgpr_alloc = info->family == CHIP_TONGA || info->family == CHIP_ICELAND ? 96 : 104;
if (!info->has_graphics && info->family >= CHIP_ALDEBARAN) {
info->min_wave64_vgpr_alloc = 8;
info->max_vgpr_alloc = 512;
info->wave64_vgpr_alloc_granularity = 8;
} else {
info->min_wave64_vgpr_alloc = 4;
info->max_vgpr_alloc = 256;
info->wave64_vgpr_alloc_granularity = 4;
}
if (info->family == CHIP_GFX1100 || info->family == CHIP_GFX1101)
info->num_physical_wave64_vgprs_per_simd = 768;
else if (info->gfx_level >= GFX10)
info->num_physical_wave64_vgprs_per_simd = 512;
else
info->num_physical_wave64_vgprs_per_simd = 256;
info->num_simd_per_compute_unit = info->gfx_level >= GFX10 ? 2 : 4;
/* BIG_PAGE is supported since gfx10.3 and requires VRAM. VRAM is only guaranteed
* with AMDGPU_GEM_CREATE_DISCARDABLE. DISCARDABLE was added in DRM 3.47.0.
*/
info->discardable_allows_big_page = info->gfx_level >= GFX10_3 &&
info->has_dedicated_vram &&
info->drm_minor >= 47;
/* The maximum number of scratch waves. The number is only a function of the number of CUs.
* It should be large enough to hold at least 1 threadgroup. Use the minimum per-SA CU count.
*
* We can decrease the number to make it fit into the infinity cache.
*/
const unsigned max_waves_per_tg = 32; /* 1024 threads in Wave32 */
info->max_scratch_waves = MAX2(32 * info->min_good_cu_per_sa * info->max_sa_per_se * info->num_se,
max_waves_per_tg);
info->num_rb = util_bitcount(info->enabled_rb_mask);
info->max_gflops = info->num_cu * 128 * info->max_gpu_freq_mhz / 1000;
info->memory_bandwidth_gbps = DIV_ROUND_UP(info->memory_freq_mhz_effective * info->memory_bus_width / 8, 1000);
if (info->gfx_level >= GFX10_3 && info->has_dedicated_vram) {
info->l3_cache_size_mb = info->num_tcc_blocks *
(info->family == CHIP_NAVI21 ||
info->family == CHIP_NAVI22 ? 8 : 4);
}
set_custom_cu_en_mask(info);
const char *ib_filename = debug_get_option("AMD_PARSE_IB", NULL);
if (ib_filename) {
FILE *f = fopen(ib_filename, "r");
if (f) {
fseek(f, 0, SEEK_END);
size_t size = ftell(f);
uint32_t *ib = (uint32_t *)malloc(size);
fseek(f, 0, SEEK_SET);
size_t n_read = fread(ib, 1, size, f);
fclose(f);
if (n_read != size) {
fprintf(stderr, "failed to read %zu bytes from '%s'\n", size, ib_filename);
exit(1);
}
ac_parse_ib(stdout, ib, size / 4, NULL, 0, "IB", info->gfx_level, NULL, NULL);
free(ib);
exit(0);
}
}
return true;
}
void ac_compute_driver_uuid(char *uuid, size_t size)
{
char amd_uuid[] = "AMD-MESA-DRV";
assert(size >= sizeof(amd_uuid));
memset(uuid, 0, size);
strncpy(uuid, amd_uuid, size);
}
void ac_compute_device_uuid(struct radeon_info *info, char *uuid, size_t size)
{
uint32_t *uint_uuid = (uint32_t *)uuid;
assert(size >= sizeof(uint32_t) * 4);
/**
* Use the device info directly instead of using a sha1. GL/VK UUIDs
* are 16 byte vs 20 byte for sha1, and the truncation that would be
* required would get rid of part of the little entropy we have.
* */
memset(uuid, 0, size);
uint_uuid[0] = info->pci_domain;
uint_uuid[1] = info->pci_bus;
uint_uuid[2] = info->pci_dev;
uint_uuid[3] = info->pci_func;
}
void ac_print_gpu_info(struct radeon_info *info, FILE *f)
{
fprintf(f, "Device info:\n");
fprintf(f, " name = %s\n", info->name);
fprintf(f, " marketing_name = %s\n", info->marketing_name);
fprintf(f, " num_se = %i\n", info->num_se);
fprintf(f, " num_rb = %i\n", info->num_rb);
fprintf(f, " num_cu = %i\n", info->num_cu);
fprintf(f, " max_gpu_freq = %i MHz\n", info->max_gpu_freq_mhz);
fprintf(f, " max_gflops = %u GFLOPS\n", info->max_gflops);
if (info->gfx_level >= GFX10) {
fprintf(f, " l0_cache_size = %i KB\n", DIV_ROUND_UP(info->l1_cache_size, 1024));
fprintf(f, " l1_cache_size = %i KB\n", 128);
} else {
fprintf(f, " l1_cache_size = %i KB\n", DIV_ROUND_UP(info->l1_cache_size, 1024));
}
fprintf(f, " l2_cache_size = %i KB\n", DIV_ROUND_UP(info->l2_cache_size, 1024));
if (info->l3_cache_size_mb)
fprintf(f, " l3_cache_size = %i MB\n", info->l3_cache_size_mb);
fprintf(f, " memory_channels = %u (TCC blocks)\n", info->num_tcc_blocks);
fprintf(f, " memory_size = %u GB (%u MB)\n",
DIV_ROUND_UP(info->vram_size_kb, (1024 * 1024)),
DIV_ROUND_UP(info->vram_size_kb, 1024));
fprintf(f, " memory_freq = %u GHz\n", DIV_ROUND_UP(info->memory_freq_mhz_effective, 1000));
fprintf(f, " memory_bus_width = %u bits\n", info->memory_bus_width);
fprintf(f, " memory_bandwidth = %u GB/s\n", info->memory_bandwidth_gbps);
fprintf(f, " clock_crystal_freq = %i KHz\n", info->clock_crystal_freq);
const char *ip_string[] = {
[AMD_IP_GFX] = "GFX",
[AMD_IP_COMPUTE] = "COMP",
[AMD_IP_SDMA] = "SDMA",
[AMD_IP_UVD] = "UVD",
[AMD_IP_VCE] = "VCE",
[AMD_IP_UVD_ENC] = "UVD_ENC",
[AMD_IP_VCN_DEC] = "VCN_DEC",
[AMD_IP_VCN_ENC] = info->family >= CHIP_GFX1100 ? "VCN" : "VCN_ENC",
[AMD_IP_VCN_JPEG] = "VCN_JPG",
};
for (unsigned i = 0; i < AMD_NUM_IP_TYPES; i++) {
if (info->ip[i].num_queues) {
fprintf(f, " IP %-7s %2u.%u \tqueues:%u\n", ip_string[i],
info->ip[i].ver_major, info->ip[i].ver_minor, info->ip[i].num_queues);
}
}
fprintf(f, "Identification:\n");
fprintf(f, " pci (domain:bus:dev.func): %04x:%02x:%02x.%x\n", info->pci_domain, info->pci_bus,
info->pci_dev, info->pci_func);
fprintf(f, " pci_id = 0x%x\n", info->pci_id);
fprintf(f, " pci_rev_id = 0x%x\n", info->pci_rev_id);
fprintf(f, " family = %i\n", info->family);
fprintf(f, " gfx_level = %i\n", info->gfx_level);
fprintf(f, " family_id = %i\n", info->family_id);
fprintf(f, " chip_external_rev = %i\n", info->chip_external_rev);
fprintf(f, " chip_rev = %i\n", info->chip_rev);
fprintf(f, "Flags:\n");
fprintf(f, " is_pro_graphics = %u\n", info->is_pro_graphics);
fprintf(f, " has_graphics = %i\n", info->has_graphics);
fprintf(f, " has_clear_state = %u\n", info->has_clear_state);
fprintf(f, " has_distributed_tess = %u\n", info->has_distributed_tess);
fprintf(f, " has_dcc_constant_encode = %u\n", info->has_dcc_constant_encode);
fprintf(f, " has_rbplus = %u\n", info->has_rbplus);
fprintf(f, " rbplus_allowed = %u\n", info->rbplus_allowed);
fprintf(f, " has_load_ctx_reg_pkt = %u\n", info->has_load_ctx_reg_pkt);
fprintf(f, " has_out_of_order_rast = %u\n", info->has_out_of_order_rast);
fprintf(f, " cpdma_prefetch_writes_memory = %u\n", info->cpdma_prefetch_writes_memory);
fprintf(f, " has_gfx9_scissor_bug = %i\n", info->has_gfx9_scissor_bug);
fprintf(f, " has_tc_compat_zrange_bug = %i\n", info->has_tc_compat_zrange_bug);
fprintf(f, " has_msaa_sample_loc_bug = %i\n", info->has_msaa_sample_loc_bug);
fprintf(f, " has_ls_vgpr_init_bug = %i\n", info->has_ls_vgpr_init_bug);
fprintf(f, " has_32bit_predication = %i\n", info->has_32bit_predication);
fprintf(f, " has_3d_cube_border_color_mipmap = %i\n", info->has_3d_cube_border_color_mipmap);
fprintf(f, " never_stop_sq_perf_counters = %i\n", info->never_stop_sq_perf_counters);
fprintf(f, " has_sqtt_rb_harvest_bug = %i\n", info->has_sqtt_rb_harvest_bug);
fprintf(f, " has_sqtt_auto_flush_mode_bug = %i\n", info->has_sqtt_auto_flush_mode_bug);
fprintf(f, " never_send_perfcounter_stop = %i\n", info->never_send_perfcounter_stop);
fprintf(f, " discardable_allows_big_page = %i\n", info->discardable_allows_big_page);
fprintf(f, "Display features:\n");
fprintf(f, " use_display_dcc_unaligned = %u\n", info->use_display_dcc_unaligned);
fprintf(f, " use_display_dcc_with_retile_blit = %u\n", info->use_display_dcc_with_retile_blit);
fprintf(f, "Memory info:\n");
fprintf(f, " pte_fragment_size = %u\n", info->pte_fragment_size);
fprintf(f, " gart_page_size = %u\n", info->gart_page_size);
fprintf(f, " gart_size = %i MB\n", (int)DIV_ROUND_UP(info->gart_size_kb, 1024));
fprintf(f, " vram_size = %i MB\n", (int)DIV_ROUND_UP(info->vram_size_kb, 1024));
fprintf(f, " vram_vis_size = %i MB\n", (int)DIV_ROUND_UP(info->vram_vis_size_kb, 1024));
fprintf(f, " vram_type = %i\n", info->vram_type);
fprintf(f, " max_heap_size_kb = %i MB\n", (int)DIV_ROUND_UP(info->max_heap_size_kb, 1024));
fprintf(f, " min_alloc_size = %u\n", info->min_alloc_size);
fprintf(f, " address32_hi = 0x%x\n", info->address32_hi);
fprintf(f, " has_dedicated_vram = %u\n", info->has_dedicated_vram);
fprintf(f, " all_vram_visible = %u\n", info->all_vram_visible);
fprintf(f, " smart_access_memory = %u\n", info->smart_access_memory);
fprintf(f, " max_tcc_blocks = %i\n", info->max_tcc_blocks);
fprintf(f, " tcc_cache_line_size = %u\n", info->tcc_cache_line_size);
fprintf(f, " tcc_rb_non_coherent = %u\n", info->tcc_rb_non_coherent);
fprintf(f, " pc_lines = %u\n", info->pc_lines);
fprintf(f, " lds_size_per_workgroup = %u\n", info->lds_size_per_workgroup);
fprintf(f, " lds_alloc_granularity = %i\n", info->lds_alloc_granularity);
fprintf(f, " lds_encode_granularity = %i\n", info->lds_encode_granularity);
fprintf(f, " max_memory_clock = %i MHz\n", info->memory_freq_mhz);
fprintf(f, "CP info:\n");
fprintf(f, " gfx_ib_pad_with_type2 = %i\n", info->gfx_ib_pad_with_type2);
fprintf(f, " ib_alignment = %u\n", info->ib_alignment);
fprintf(f, " me_fw_version = %i\n", info->me_fw_version);
fprintf(f, " me_fw_feature = %i\n", info->me_fw_feature);
fprintf(f, " mec_fw_version = %i\n", info->mec_fw_version);
fprintf(f, " mec_fw_feature = %i\n", info->mec_fw_feature);
fprintf(f, " pfp_fw_version = %i\n", info->pfp_fw_version);
fprintf(f, " pfp_fw_feature = %i\n", info->pfp_fw_feature);
fprintf(f, "Multimedia info:\n");
fprintf(f, " vce_encode = %u\n", info->ip[AMD_IP_VCE].num_queues);
if (info->family >= CHIP_GFX1100)
fprintf(f, " vcn_unified = %u\n", info->has_video_hw.vcn_decode);
else {
fprintf(f, " vcn_decode = %u\n", info->has_video_hw.vcn_decode);
fprintf(f, " vcn_encode = %u\n", info->ip[AMD_IP_VCN_ENC].num_queues);
}
fprintf(f, " uvd_fw_version = %u\n", info->uvd_fw_version);
fprintf(f, " vce_fw_version = %u\n", info->vce_fw_version);
fprintf(f, " vce_harvest_config = %i\n", info->vce_harvest_config);
fprintf(f, "Kernel & winsys capabilities:\n");
fprintf(f, " drm = %i.%i.%i\n", info->drm_major, info->drm_minor, info->drm_patchlevel);
fprintf(f, " has_userptr = %i\n", info->has_userptr);
fprintf(f, " has_syncobj = %u\n", info->has_syncobj);
fprintf(f, " has_timeline_syncobj = %u\n", info->has_timeline_syncobj);
fprintf(f, " has_fence_to_handle = %u\n", info->has_fence_to_handle);
fprintf(f, " has_local_buffers = %u\n", info->has_local_buffers);
fprintf(f, " has_bo_metadata = %u\n", info->has_bo_metadata);
fprintf(f, " has_eqaa_surface_allocator = %u\n", info->has_eqaa_surface_allocator);
fprintf(f, " has_sparse_vm_mappings = %u\n", info->has_sparse_vm_mappings);
fprintf(f, " has_stable_pstate = %u\n", info->has_stable_pstate);
fprintf(f, " has_scheduled_fence_dependency = %u\n", info->has_scheduled_fence_dependency);
fprintf(f, " mid_command_buffer_preemption_enabled = %u\n",
info->mid_command_buffer_preemption_enabled);
fprintf(f, " has_tmz_support = %u\n", info->has_tmz_support);
fprintf(f, "Shader core info:\n");
for (unsigned i = 0; i < info->max_se; i++) {
for (unsigned j = 0; j < info->max_sa_per_se; j++) {
fprintf(f, " cu_mask[SE%u][SA%u] = 0x%x \t(%u)\tCU_EN = 0x%x\n", i, j,
info->cu_mask[i][j], util_bitcount(info->cu_mask[i][j]),
info->spi_cu_en & BITFIELD_MASK(util_bitcount(info->cu_mask[i][j])));
}
}
fprintf(f, " spi_cu_en_has_effect = %i\n", info->spi_cu_en_has_effect);
fprintf(f, " max_good_cu_per_sa = %i\n", info->max_good_cu_per_sa);
fprintf(f, " min_good_cu_per_sa = %i\n", info->min_good_cu_per_sa);
fprintf(f, " max_se = %i\n", info->max_se);
fprintf(f, " max_sa_per_se = %i\n", info->max_sa_per_se);
fprintf(f, " max_wave64_per_simd = %i\n", info->max_wave64_per_simd);
fprintf(f, " num_physical_sgprs_per_simd = %i\n", info->num_physical_sgprs_per_simd);
fprintf(f, " num_physical_wave64_vgprs_per_simd = %i\n",
info->num_physical_wave64_vgprs_per_simd);
fprintf(f, " num_simd_per_compute_unit = %i\n", info->num_simd_per_compute_unit);
fprintf(f, " min_sgpr_alloc = %i\n", info->min_sgpr_alloc);
fprintf(f, " max_sgpr_alloc = %i\n", info->max_sgpr_alloc);
fprintf(f, " sgpr_alloc_granularity = %i\n", info->sgpr_alloc_granularity);
fprintf(f, " min_wave64_vgpr_alloc = %i\n", info->min_wave64_vgpr_alloc);
fprintf(f, " max_vgpr_alloc = %i\n", info->max_vgpr_alloc);
fprintf(f, " wave64_vgpr_alloc_granularity = %i\n", info->wave64_vgpr_alloc_granularity);
fprintf(f, " max_scratch_waves = %i\n", info->max_scratch_waves);
fprintf(f, "Render backend info:\n");
fprintf(f, " pa_sc_tile_steering_override = 0x%x\n", info->pa_sc_tile_steering_override);
fprintf(f, " max_render_backends = %i\n", info->max_render_backends);
fprintf(f, " num_tile_pipes = %i\n", info->num_tile_pipes);
fprintf(f, " pipe_interleave_bytes = %i\n", info->pipe_interleave_bytes);
fprintf(f, " enabled_rb_mask = 0x%x\n", info->enabled_rb_mask);
fprintf(f, " max_alignment = %u\n", (unsigned)info->max_alignment);
fprintf(f, " pbb_max_alloc_count = %u\n", info->pbb_max_alloc_count);
fprintf(f, "GB_ADDR_CONFIG: 0x%08x\n", info->gb_addr_config);
if (info->gfx_level >= GFX10) {
fprintf(f, " num_pipes = %u\n", 1 << G_0098F8_NUM_PIPES(info->gb_addr_config));
fprintf(f, " pipe_interleave_size = %u\n",
256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX9(info->gb_addr_config));
fprintf(f, " max_compressed_frags = %u\n",
1 << G_0098F8_MAX_COMPRESSED_FRAGS(info->gb_addr_config));
if (info->gfx_level >= GFX10_3)
fprintf(f, " num_pkrs = %u\n", 1 << G_0098F8_NUM_PKRS(info->gb_addr_config));
} else if (info->gfx_level == GFX9) {
fprintf(f, " num_pipes = %u\n", 1 << G_0098F8_NUM_PIPES(info->gb_addr_config));
fprintf(f, " pipe_interleave_size = %u\n",
256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX9(info->gb_addr_config));
fprintf(f, " max_compressed_frags = %u\n",
1 << G_0098F8_MAX_COMPRESSED_FRAGS(info->gb_addr_config));
fprintf(f, " bank_interleave_size = %u\n",
1 << G_0098F8_BANK_INTERLEAVE_SIZE(info->gb_addr_config));
fprintf(f, " num_banks = %u\n", 1 << G_0098F8_NUM_BANKS(info->gb_addr_config));
fprintf(f, " shader_engine_tile_size = %u\n",
16 << G_0098F8_SHADER_ENGINE_TILE_SIZE(info->gb_addr_config));
fprintf(f, " num_shader_engines = %u\n",
1 << G_0098F8_NUM_SHADER_ENGINES_GFX9(info->gb_addr_config));
fprintf(f, " num_gpus = %u (raw)\n", G_0098F8_NUM_GPUS_GFX9(info->gb_addr_config));
fprintf(f, " multi_gpu_tile_size = %u (raw)\n",
G_0098F8_MULTI_GPU_TILE_SIZE(info->gb_addr_config));
fprintf(f, " num_rb_per_se = %u\n", 1 << G_0098F8_NUM_RB_PER_SE(info->gb_addr_config));
fprintf(f, " row_size = %u\n", 1024 << G_0098F8_ROW_SIZE(info->gb_addr_config));
fprintf(f, " num_lower_pipes = %u (raw)\n", G_0098F8_NUM_LOWER_PIPES(info->gb_addr_config));
fprintf(f, " se_enable = %u (raw)\n", G_0098F8_SE_ENABLE(info->gb_addr_config));
} else {
fprintf(f, " num_pipes = %u\n", 1 << G_0098F8_NUM_PIPES(info->gb_addr_config));
fprintf(f, " pipe_interleave_size = %u\n",
256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX6(info->gb_addr_config));
fprintf(f, " bank_interleave_size = %u\n",
1 << G_0098F8_BANK_INTERLEAVE_SIZE(info->gb_addr_config));
fprintf(f, " num_shader_engines = %u\n",
1 << G_0098F8_NUM_SHADER_ENGINES_GFX6(info->gb_addr_config));
fprintf(f, " shader_engine_tile_size = %u\n",
16 << G_0098F8_SHADER_ENGINE_TILE_SIZE(info->gb_addr_config));
fprintf(f, " num_gpus = %u (raw)\n", G_0098F8_NUM_GPUS_GFX6(info->gb_addr_config));
fprintf(f, " multi_gpu_tile_size = %u (raw)\n",
G_0098F8_MULTI_GPU_TILE_SIZE(info->gb_addr_config));
fprintf(f, " row_size = %u\n", 1024 << G_0098F8_ROW_SIZE(info->gb_addr_config));
fprintf(f, " num_lower_pipes = %u (raw)\n", G_0098F8_NUM_LOWER_PIPES(info->gb_addr_config));
}
}
int ac_get_gs_table_depth(enum amd_gfx_level gfx_level, enum radeon_family family)
{
if (gfx_level >= GFX9)
return -1;
switch (family) {
case CHIP_OLAND:
case CHIP_HAINAN:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_ICELAND:
case CHIP_CARRIZO:
case CHIP_STONEY:
return 16;
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_VERDE:
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
return 32;
default:
unreachable("Unknown GPU");
}
}
void ac_get_raster_config(struct radeon_info *info, uint32_t *raster_config_p,
uint32_t *raster_config_1_p, uint32_t *se_tile_repeat_p)
{
unsigned raster_config, raster_config_1, se_tile_repeat;
switch (info->family) {
/* 1 SE / 1 RB */
case CHIP_HAINAN:
case CHIP_KABINI:
case CHIP_STONEY:
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
/* 1 SE / 4 RBs */
case CHIP_VERDE:
raster_config = 0x0000124a;
raster_config_1 = 0x00000000;
break;
/* 1 SE / 2 RBs (Oland is special) */
case CHIP_OLAND:
raster_config = 0x00000082;
raster_config_1 = 0x00000000;
break;
/* 1 SE / 2 RBs */
case CHIP_KAVERI:
case CHIP_ICELAND:
case CHIP_CARRIZO:
raster_config = 0x00000002;
raster_config_1 = 0x00000000;
break;
/* 2 SEs / 4 RBs */
case CHIP_BONAIRE:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
raster_config = 0x16000012;
raster_config_1 = 0x00000000;
break;
/* 2 SEs / 8 RBs */
case CHIP_TAHITI:
case CHIP_PITCAIRN:
raster_config = 0x2a00126a;
raster_config_1 = 0x00000000;
break;
/* 4 SEs / 8 RBs */
case CHIP_TONGA:
case CHIP_POLARIS10:
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
break;
/* 4 SEs / 16 RBs */
case CHIP_HAWAII:
case CHIP_FIJI:
case CHIP_VEGAM:
raster_config = 0x3a00161a;
raster_config_1 = 0x0000002e;
break;
default:
fprintf(stderr, "ac: Unknown GPU, using 0 for raster_config\n");
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
}
/* drm/radeon on Kaveri is buggy, so disable 1 RB to work around it.
* This decreases performance by up to 50% when the RB is the bottleneck.
*/
if (info->family == CHIP_KAVERI && !info->is_amdgpu)
raster_config = 0x00000000;
/* Fiji: Old kernels have incorrect tiling config. This decreases
* RB performance by 25%. (it disables 1 RB in the second packer)
*/
if (info->family == CHIP_FIJI && info->cik_macrotile_mode_array[0] == 0x000000e8) {
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
}
unsigned se_width = 8 << G_028350_SE_XSEL_GFX6(raster_config);
unsigned se_height = 8 << G_028350_SE_YSEL_GFX6(raster_config);
/* I don't know how to calculate this, though this is probably a good guess. */
se_tile_repeat = MAX2(se_width, se_height) * info->max_se;
*raster_config_p = raster_config;
*raster_config_1_p = raster_config_1;
if (se_tile_repeat_p)
*se_tile_repeat_p = se_tile_repeat;
}
void ac_get_harvested_configs(struct radeon_info *info, unsigned raster_config,
unsigned *cik_raster_config_1_p, unsigned *raster_config_se)
{
unsigned sh_per_se = MAX2(info->max_sa_per_se, 1);
unsigned num_se = MAX2(info->max_se, 1);
unsigned rb_mask = info->enabled_rb_mask;
unsigned num_rb = MIN2(info->max_render_backends, 16);
unsigned rb_per_pkr = MIN2(num_rb / num_se / sh_per_se, 2);
unsigned rb_per_se = num_rb / num_se;
unsigned se_mask[4];
unsigned se;
se_mask[0] = ((1 << rb_per_se) - 1) & rb_mask;
se_mask[1] = (se_mask[0] << rb_per_se) & rb_mask;
se_mask[2] = (se_mask[1] << rb_per_se) & rb_mask;
se_mask[3] = (se_mask[2] << rb_per_se) & rb_mask;
assert(num_se == 1 || num_se == 2 || num_se == 4);
assert(sh_per_se == 1 || sh_per_se == 2);
assert(rb_per_pkr == 1 || rb_per_pkr == 2);
if (info->gfx_level >= GFX7) {
unsigned raster_config_1 = *cik_raster_config_1_p;
if ((num_se > 2) && ((!se_mask[0] && !se_mask[1]) || (!se_mask[2] && !se_mask[3]))) {
raster_config_1 &= C_028354_SE_PAIR_MAP;
if (!se_mask[0] && !se_mask[1]) {
raster_config_1 |= S_028354_SE_PAIR_MAP(V_028354_RASTER_CONFIG_SE_PAIR_MAP_3);
} else {
raster_config_1 |= S_028354_SE_PAIR_MAP(V_028354_RASTER_CONFIG_SE_PAIR_MAP_0);
}
*cik_raster_config_1_p = raster_config_1;
}
}
for (se = 0; se < num_se; se++) {
unsigned pkr0_mask = ((1 << rb_per_pkr) - 1) << (se * rb_per_se);
unsigned pkr1_mask = pkr0_mask << rb_per_pkr;
int idx = (se / 2) * 2;
raster_config_se[se] = raster_config;
if ((num_se > 1) && (!se_mask[idx] || !se_mask[idx + 1])) {
raster_config_se[se] &= C_028350_SE_MAP;
if (!se_mask[idx]) {
raster_config_se[se] |= S_028350_SE_MAP(V_028350_RASTER_CONFIG_SE_MAP_3);
} else {
raster_config_se[se] |= S_028350_SE_MAP(V_028350_RASTER_CONFIG_SE_MAP_0);
}
}
pkr0_mask &= rb_mask;
pkr1_mask &= rb_mask;
if (rb_per_se > 2 && (!pkr0_mask || !pkr1_mask)) {
raster_config_se[se] &= C_028350_PKR_MAP;
if (!pkr0_mask) {
raster_config_se[se] |= S_028350_PKR_MAP(V_028350_RASTER_CONFIG_PKR_MAP_3);
} else {
raster_config_se[se] |= S_028350_PKR_MAP(V_028350_RASTER_CONFIG_PKR_MAP_0);
}
}
if (rb_per_se >= 2) {
unsigned rb0_mask = 1 << (se * rb_per_se);
unsigned rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se[se] &= C_028350_RB_MAP_PKR0;
if (!rb0_mask) {
raster_config_se[se] |= S_028350_RB_MAP_PKR0(V_028350_RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se[se] |= S_028350_RB_MAP_PKR0(V_028350_RASTER_CONFIG_RB_MAP_0);
}
}
if (rb_per_se > 2) {
rb0_mask = 1 << (se * rb_per_se + rb_per_pkr);
rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se[se] &= C_028350_RB_MAP_PKR1;
if (!rb0_mask) {
raster_config_se[se] |= S_028350_RB_MAP_PKR1(V_028350_RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se[se] |= S_028350_RB_MAP_PKR1(V_028350_RASTER_CONFIG_RB_MAP_0);
}
}
}
}
}
}
unsigned
ac_get_compute_resource_limits(const struct radeon_info *info, unsigned waves_per_threadgroup,
unsigned max_waves_per_sh, unsigned threadgroups_per_cu)
{
unsigned compute_resource_limits = S_00B854_SIMD_DEST_CNTL(waves_per_threadgroup % 4 == 0);
if (info->gfx_level >= GFX7) {
unsigned num_cu_per_se = info->num_cu / info->num_se;
/* Gfx9 should set the limit to max instead of 0 to fix high priority compute. */
if (info->gfx_level == GFX9 && !max_waves_per_sh) {
max_waves_per_sh = info->max_good_cu_per_sa * info->num_simd_per_compute_unit *
info->max_wave64_per_simd;
}
/* Force even distribution on all SIMDs in CU if the workgroup
* size is 64. This has shown some good improvements if # of CUs
* per SE is not a multiple of 4.
*/
if (num_cu_per_se % 4 && waves_per_threadgroup == 1)
compute_resource_limits |= S_00B854_FORCE_SIMD_DIST(1);
assert(threadgroups_per_cu >= 1 && threadgroups_per_cu <= 8);
compute_resource_limits |=
S_00B854_WAVES_PER_SH(max_waves_per_sh) | S_00B854_CU_GROUP_COUNT(threadgroups_per_cu - 1);
} else {
/* GFX6 */
if (max_waves_per_sh) {
unsigned limit_div16 = DIV_ROUND_UP(max_waves_per_sh, 16);
compute_resource_limits |= S_00B854_WAVES_PER_SH_GFX6(limit_div16);
}
}
return compute_resource_limits;
}
void ac_get_hs_info(struct radeon_info *info,
struct ac_hs_info *hs)
{
bool double_offchip_buffers = info->gfx_level >= GFX7 &&
info->family != CHIP_CARRIZO &&
info->family != CHIP_STONEY;
unsigned max_offchip_buffers_per_se;
unsigned max_offchip_buffers;
unsigned offchip_granularity;
unsigned hs_offchip_param;
hs->tess_offchip_block_dw_size =
info->family == CHIP_HAWAII ? 4096 : 8192;
/*
* Per RadeonSI:
* This must be one less than the maximum number due to a hw limitation.
* Various hardware bugs need this.
*
* Per AMDVLK:
* Vega10 should limit max_offchip_buffers to 508 (4 * 127).
* Gfx7 should limit max_offchip_buffers to 508
* Gfx6 should limit max_offchip_buffers to 126 (2 * 63)
*
* Follow AMDVLK here.
*/
if (info->gfx_level >= GFX11) {
max_offchip_buffers_per_se = 256; /* TODO: we could decrease this to reduce memory/cache usage */
} else if (info->gfx_level >= GFX10) {
max_offchip_buffers_per_se = 128;
} else if (info->family == CHIP_VEGA12 || info->family == CHIP_VEGA20) {
/* Only certain chips can use the maximum value. */
max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
} else {
max_offchip_buffers_per_se = double_offchip_buffers ? 127 : 63;
}
max_offchip_buffers = max_offchip_buffers_per_se * info->max_se;
/* Hawaii has a bug with offchip buffers > 256 that can be worked
* around by setting 4K granularity.
*/
if (hs->tess_offchip_block_dw_size == 4096) {
assert(info->family == CHIP_HAWAII);
offchip_granularity = V_03093C_X_4K_DWORDS;
} else {
assert(hs->tess_offchip_block_dw_size == 8192);
offchip_granularity = V_03093C_X_8K_DWORDS;
}
switch (info->gfx_level) {
case GFX6:
max_offchip_buffers = MIN2(max_offchip_buffers, 126);
break;
case GFX7:
case GFX8:
case GFX9:
max_offchip_buffers = MIN2(max_offchip_buffers, 508);
break;
case GFX10:
break;
default:
break;
}
hs->max_offchip_buffers = max_offchip_buffers;
if (info->gfx_level >= GFX11) {
/* OFFCHIP_BUFFERING is per SE. */
hs_offchip_param = S_03093C_OFFCHIP_BUFFERING_GFX103(max_offchip_buffers_per_se - 1) |
S_03093C_OFFCHIP_GRANULARITY_GFX103(offchip_granularity);
} else if (info->gfx_level >= GFX10_3) {
hs_offchip_param = S_03093C_OFFCHIP_BUFFERING_GFX103(max_offchip_buffers - 1) |
S_03093C_OFFCHIP_GRANULARITY_GFX103(offchip_granularity);
} else if (info->gfx_level >= GFX7) {
if (info->gfx_level >= GFX8)
--max_offchip_buffers;
hs_offchip_param = S_03093C_OFFCHIP_BUFFERING_GFX7(max_offchip_buffers) |
S_03093C_OFFCHIP_GRANULARITY_GFX7(offchip_granularity);
} else {
hs_offchip_param = S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers);
}
hs->hs_offchip_param = hs_offchip_param;
hs->tess_factor_ring_size = 48 * 1024 * info->max_se;
hs->tess_offchip_ring_offset = align(hs->tess_factor_ring_size, 64 * 1024);
hs->tess_offchip_ring_size = hs->max_offchip_buffers * hs->tess_offchip_block_dw_size * 4;
}
static uint16_t get_task_num_entries(enum radeon_family fam)
{
/* Number of task shader ring entries. Needs to be a power of two.
* Use a low number on smaller chips so we don't waste space,
* but keep it high on bigger chips so it doesn't inhibit parallelism.
*
* This number is compiled into task/mesh shaders as a constant.
* In order to ensure this works fine with the shader cache, we must
* base this decision on the chip family, not the number of CUs in
* the current GPU. (So, the cache remains consistent for all
* chips in the same family.)
*/
switch (fam) {
case CHIP_VANGOGH:
case CHIP_NAVI24:
case CHIP_REMBRANDT:
return 256;
case CHIP_NAVI21:
case CHIP_NAVI22:
case CHIP_NAVI23:
default:
return 1024;
}
}
void ac_get_task_info(struct radeon_info *info,
struct ac_task_info *task_info)
{
const uint16_t num_entries = get_task_num_entries(info->family);
const uint32_t draw_ring_bytes = num_entries * AC_TASK_DRAW_ENTRY_BYTES;
const uint32_t payload_ring_bytes = num_entries * AC_TASK_PAYLOAD_ENTRY_BYTES;
/* Ensure that the addresses of each ring are 256 byte aligned. */
task_info->num_entries = num_entries;
task_info->draw_ring_offset = ALIGN(AC_TASK_CTRLBUF_BYTES, 256);
task_info->payload_ring_offset = ALIGN(task_info->draw_ring_offset + draw_ring_bytes, 256);
task_info->bo_size_bytes = task_info->payload_ring_offset + payload_ring_bytes;
}
uint32_t ac_memory_ops_per_clock(uint32_t vram_type)
{
/* Based on MemoryOpsPerClockTable from PAL. */
switch (vram_type) {
case AMDGPU_VRAM_TYPE_GDDR1:
case AMDGPU_VRAM_TYPE_GDDR3: /* last in low-end Evergreen */
case AMDGPU_VRAM_TYPE_GDDR4: /* last in R7xx, not used much */
case AMDGPU_VRAM_TYPE_UNKNOWN:
default:
return 0;
case AMDGPU_VRAM_TYPE_DDR2:
case AMDGPU_VRAM_TYPE_DDR3:
case AMDGPU_VRAM_TYPE_DDR4:
case AMDGPU_VRAM_TYPE_LPDDR4:
case AMDGPU_VRAM_TYPE_HBM: /* same for HBM2 and HBM3 */
return 2;
case AMDGPU_VRAM_TYPE_DDR5:
case AMDGPU_VRAM_TYPE_LPDDR5:
case AMDGPU_VRAM_TYPE_GDDR5: /* last in Polaris and low-end Navi14 */
return 4;
case AMDGPU_VRAM_TYPE_GDDR6:
return 16;
}
}