blob: a7b4526392b9198a4befbd6497b9dbd68dadb11f [file] [log] [blame]
from contextlib import nullcontext as does_not_raise
from datetime import datetime
from itertools import cycle
from typing import Callable, Generator, Iterable, Optional, Tuple, Union
import yaml
from freezegun import freeze_time
from lava.utils.log_section import (
DEFAULT_GITLAB_SECTION_TIMEOUTS,
FALLBACK_GITLAB_SECTION_TIMEOUT,
LogSectionType,
)
def section_timeout(section_type: LogSectionType) -> int:
return int(
DEFAULT_GITLAB_SECTION_TIMEOUTS.get(
section_type, FALLBACK_GITLAB_SECTION_TIMEOUT
).total_seconds()
)
def create_lava_yaml_msg(
dt: Callable = datetime.now, msg="test", lvl="target"
) -> dict[str, str]:
return {"dt": str(dt()), "msg": msg, "lvl": lvl}
def generate_testsuite_result(
name="test-mesa-ci", result="pass", metadata_extra=None, extra=None
):
if metadata_extra is None:
metadata_extra = {}
if extra is None:
extra = {}
return {"metadata": {"result": result, **metadata_extra}, "name": name}
def jobs_logs_response(
finished=False, msg=None, lvl="target", result=None
) -> Tuple[bool, str]:
timed_msg = {"dt": str(datetime.now()), "msg": "New message", "lvl": lvl}
if result:
timed_msg["lvl"] = "target"
timed_msg["msg"] = f"hwci: mesa: {result}"
logs = [timed_msg] if msg is None else msg
return finished, yaml.safe_dump(logs)
def section_aware_message_generator(
messages: dict[LogSectionType, Iterable[int]], result: Optional[str] = None
) -> Iterable[tuple[dict, Iterable[int]]]:
default = [1]
result_message_section = LogSectionType.TEST_CASE
for section_type in LogSectionType:
delay = messages.get(section_type, default)
yield mock_lava_signal(section_type), delay
if result and section_type == result_message_section:
# To consider the job finished, the result `echo` should be produced
# in the correct section
yield create_lava_yaml_msg(msg=f"hwci: mesa: {result}"), delay
def message_generator():
for section_type in LogSectionType:
yield mock_lava_signal(section_type)
def level_generator():
# Tests all known levels by default
yield from cycle(("results", "feedback", "warning", "error", "debug", "target"))
def generate_n_logs(
n=1,
tick_fn: Union[Generator, Iterable[int], int] = 1,
level_fn=level_generator,
result="pass",
):
"""Simulate a log partitionated in n components"""
level_gen = level_fn()
if isinstance(tick_fn, Generator):
tick_gen = tick_fn
elif isinstance(tick_fn, Iterable):
tick_gen = cycle(tick_fn)
else:
tick_gen = cycle((tick_fn,))
with freeze_time(datetime.now()) as time_travel:
tick_sec: int = next(tick_gen)
while True:
# Simulate a scenario where the target job is waiting for being started
for _ in range(n - 1):
level: str = next(level_gen)
time_travel.tick(tick_sec)
yield jobs_logs_response(finished=False, msg=[], lvl=level)
time_travel.tick(tick_sec)
yield jobs_logs_response(finished=True, result=result)
def to_iterable(tick_fn):
if isinstance(tick_fn, Generator):
return tick_fn
elif isinstance(tick_fn, Iterable):
return cycle(tick_fn)
else:
return cycle((tick_fn,))
def mock_logs(messages=None, result=None):
if messages is None:
messages = {}
with freeze_time(datetime.now()) as time_travel:
# Simulate a complete run given by message_fn
for msg, tick_list in section_aware_message_generator(messages, result):
for tick_sec in tick_list:
yield jobs_logs_response(finished=False, msg=[msg])
time_travel.tick(tick_sec)
def mock_lava_signal(type: LogSectionType) -> dict[str, str]:
return {
LogSectionType.TEST_CASE: create_lava_yaml_msg(
msg="<STARTTC> case", lvl="debug"
),
LogSectionType.TEST_SUITE: create_lava_yaml_msg(
msg="<STARTRUN> suite", lvl="debug"
),
LogSectionType.LAVA_POST_PROCESSING: create_lava_yaml_msg(
msg="<LAVA_SIGNAL_ENDTC case>", lvl="target"
),
}.get(type, create_lava_yaml_msg())