| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * |
| */ |
| |
| #include "brw_eu.h" |
| #include "brw_fs.h" |
| #include "brw_cfg.h" |
| #include "util/set.h" |
| #include "util/register_allocate.h" |
| |
| using namespace brw; |
| |
| static void |
| assign_reg(unsigned *reg_hw_locations, fs_reg *reg) |
| { |
| if (reg->file == VGRF) { |
| reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE; |
| reg->offset %= REG_SIZE; |
| } |
| } |
| |
| void |
| fs_visitor::assign_regs_trivial() |
| { |
| unsigned hw_reg_mapping[this->alloc.count + 1]; |
| unsigned i; |
| int reg_width = dispatch_width / 8; |
| |
| /* Note that compressed instructions require alignment to 2 registers. */ |
| hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width); |
| for (i = 1; i <= this->alloc.count; i++) { |
| hw_reg_mapping[i] = (hw_reg_mapping[i - 1] + |
| this->alloc.sizes[i - 1]); |
| } |
| this->grf_used = hw_reg_mapping[this->alloc.count]; |
| |
| foreach_block_and_inst(block, fs_inst, inst, cfg) { |
| assign_reg(hw_reg_mapping, &inst->dst); |
| for (i = 0; i < inst->sources; i++) { |
| assign_reg(hw_reg_mapping, &inst->src[i]); |
| } |
| } |
| |
| if (this->grf_used >= max_grf) { |
| fail("Ran out of regs on trivial allocator (%d/%d)\n", |
| this->grf_used, max_grf); |
| } else { |
| this->alloc.count = this->grf_used; |
| } |
| |
| } |
| |
| /** |
| * Size of a register from the aligned_bary_class register class. |
| */ |
| static unsigned |
| aligned_bary_size(unsigned dispatch_width) |
| { |
| return (dispatch_width == 8 ? 2 : 4); |
| } |
| |
| static void |
| brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width) |
| { |
| const struct intel_device_info *devinfo = compiler->devinfo; |
| int base_reg_count = BRW_MAX_GRF; |
| const int index = util_logbase2(dispatch_width / 8); |
| |
| if (dispatch_width > 8 && devinfo->ver >= 7) { |
| /* For IVB+, we don't need the PLN hacks or the even-reg alignment in |
| * SIMD16. Therefore, we can use the exact same register sets for |
| * SIMD16 as we do for SIMD8 and we don't need to recalculate them. |
| */ |
| compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0]; |
| return; |
| } |
| |
| /* The registers used to make up almost all values handled in the compiler |
| * are a scalar value occupying a single register (or 2 registers in the |
| * case of SIMD16, which is handled by dividing base_reg_count by 2 and |
| * multiplying allocated register numbers by 2). Things that were |
| * aggregates of scalar values at the GLSL level were split to scalar |
| * values by split_virtual_grfs(). |
| * |
| * However, texture SEND messages return a series of contiguous registers |
| * to write into. We currently always ask for 4 registers, but we may |
| * convert that to use less some day. |
| * |
| * Additionally, on gfx5 we need aligned pairs of registers for the PLN |
| * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16 |
| * texturing. |
| */ |
| const int class_count = MAX_VGRF_SIZE; |
| int class_sizes[MAX_VGRF_SIZE]; |
| for (unsigned i = 0; i < MAX_VGRF_SIZE; i++) |
| class_sizes[i] = i + 1; |
| |
| struct ra_regs *regs = ra_alloc_reg_set(compiler, BRW_MAX_GRF, false); |
| if (devinfo->ver >= 6) |
| ra_set_allocate_round_robin(regs); |
| struct ra_class **classes = ralloc_array(compiler, struct ra_class *, class_count); |
| struct ra_class *aligned_bary_class = NULL; |
| |
| /* Now, make the register classes for each size of contiguous register |
| * allocation we might need to make. |
| */ |
| for (int i = 0; i < class_count; i++) { |
| classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]); |
| |
| if (devinfo->ver <= 5 && dispatch_width >= 16) { |
| /* From the G45 PRM: |
| * |
| * In order to reduce the hardware complexity, the following |
| * rules and restrictions apply to the compressed instruction: |
| * ... |
| * * Operand Alignment Rule: With the exceptions listed below, a |
| * source/destination operand in general should be aligned to |
| * even 256-bit physical register with a region size equal to |
| * two 256-bit physical register |
| */ |
| for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg += 2) |
| ra_class_add_reg(classes[i], reg); |
| } else { |
| for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++) |
| ra_class_add_reg(classes[i], reg); |
| } |
| } |
| |
| /* Add a special class for aligned barycentrics, which we'll put the |
| * first source of LINTERP on so that we can do PLN on Gen <= 6. |
| */ |
| if (devinfo->has_pln && (devinfo->ver == 6 || |
| (dispatch_width == 8 && devinfo->ver <= 5))) { |
| int contig_len = aligned_bary_size(dispatch_width); |
| aligned_bary_class = ra_alloc_contig_reg_class(regs, contig_len); |
| |
| for (int i = 0; i <= base_reg_count - contig_len; i += 2) |
| ra_class_add_reg(aligned_bary_class, i); |
| } |
| |
| ra_set_finalize(regs, NULL); |
| |
| compiler->fs_reg_sets[index].regs = regs; |
| for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++) |
| compiler->fs_reg_sets[index].classes[i] = NULL; |
| for (int i = 0; i < class_count; i++) |
| compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i]; |
| compiler->fs_reg_sets[index].aligned_bary_class = aligned_bary_class; |
| } |
| |
| void |
| brw_fs_alloc_reg_sets(struct brw_compiler *compiler) |
| { |
| brw_alloc_reg_set(compiler, 8); |
| brw_alloc_reg_set(compiler, 16); |
| brw_alloc_reg_set(compiler, 32); |
| } |
| |
| static int |
| count_to_loop_end(const bblock_t *block) |
| { |
| if (block->end()->opcode == BRW_OPCODE_WHILE) |
| return block->end_ip; |
| |
| int depth = 1; |
| /* Skip the first block, since we don't want to count the do the calling |
| * function found. |
| */ |
| for (block = block->next(); |
| depth > 0; |
| block = block->next()) { |
| if (block->start()->opcode == BRW_OPCODE_DO) |
| depth++; |
| if (block->end()->opcode == BRW_OPCODE_WHILE) { |
| depth--; |
| if (depth == 0) |
| return block->end_ip; |
| } |
| } |
| unreachable("not reached"); |
| } |
| |
| void fs_visitor::calculate_payload_ranges(int payload_node_count, |
| int *payload_last_use_ip) const |
| { |
| int loop_depth = 0; |
| int loop_end_ip = 0; |
| |
| for (int i = 0; i < payload_node_count; i++) |
| payload_last_use_ip[i] = -1; |
| |
| int ip = 0; |
| foreach_block_and_inst(block, fs_inst, inst, cfg) { |
| switch (inst->opcode) { |
| case BRW_OPCODE_DO: |
| loop_depth++; |
| |
| /* Since payload regs are deffed only at the start of the shader |
| * execution, any uses of the payload within a loop mean the live |
| * interval extends to the end of the outermost loop. Find the ip of |
| * the end now. |
| */ |
| if (loop_depth == 1) |
| loop_end_ip = count_to_loop_end(block); |
| break; |
| case BRW_OPCODE_WHILE: |
| loop_depth--; |
| break; |
| default: |
| break; |
| } |
| |
| int use_ip; |
| if (loop_depth > 0) |
| use_ip = loop_end_ip; |
| else |
| use_ip = ip; |
| |
| /* Note that UNIFORM args have been turned into FIXED_GRF by |
| * assign_curbe_setup(), and interpolation uses fixed hardware regs from |
| * the start (see interp_reg()). |
| */ |
| for (int i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == FIXED_GRF) { |
| int node_nr = inst->src[i].nr; |
| if (node_nr >= payload_node_count) |
| continue; |
| |
| for (unsigned j = 0; j < regs_read(inst, i); j++) { |
| payload_last_use_ip[node_nr + j] = use_ip; |
| assert(node_nr + j < unsigned(payload_node_count)); |
| } |
| } |
| } |
| |
| if (inst->dst.file == FIXED_GRF) { |
| int node_nr = inst->dst.nr; |
| if (node_nr < payload_node_count) { |
| for (unsigned j = 0; j < regs_written(inst); j++) { |
| payload_last_use_ip[node_nr + j] = use_ip; |
| assert(node_nr + j < unsigned(payload_node_count)); |
| } |
| } |
| } |
| |
| /* Special case instructions which have extra implied registers used. */ |
| switch (inst->opcode) { |
| case CS_OPCODE_CS_TERMINATE: |
| payload_last_use_ip[0] = use_ip; |
| break; |
| |
| default: |
| if (inst->eot) { |
| /* We could omit this for the !inst->header_present case, except |
| * that the simulator apparently incorrectly reads from g0/g1 |
| * instead of sideband. It also really freaks out driver |
| * developers to see g0 used in unusual places, so just always |
| * reserve it. |
| */ |
| payload_last_use_ip[0] = use_ip; |
| payload_last_use_ip[1] = use_ip; |
| } |
| break; |
| } |
| |
| ip++; |
| } |
| } |
| |
| class fs_reg_alloc { |
| public: |
| fs_reg_alloc(fs_visitor *fs): |
| fs(fs), devinfo(fs->devinfo), compiler(fs->compiler), |
| live(fs->live_analysis.require()), g(NULL), |
| have_spill_costs(false) |
| { |
| mem_ctx = ralloc_context(NULL); |
| |
| /* Stash the number of instructions so we can sanity check that our |
| * counts still match liveness. |
| */ |
| live_instr_count = fs->cfg->last_block()->end_ip + 1; |
| |
| spill_insts = _mesa_pointer_set_create(mem_ctx); |
| |
| /* Most of this allocation was written for a reg_width of 1 |
| * (dispatch_width == 8). In extending to SIMD16, the code was |
| * left in place and it was converted to have the hardware |
| * registers it's allocating be contiguous physical pairs of regs |
| * for reg_width == 2. |
| */ |
| int reg_width = fs->dispatch_width / 8; |
| rsi = util_logbase2(reg_width); |
| payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width); |
| |
| /* Get payload IP information */ |
| payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count); |
| |
| node_count = 0; |
| first_payload_node = 0; |
| first_mrf_hack_node = 0; |
| scratch_header_node = 0; |
| grf127_send_hack_node = 0; |
| first_vgrf_node = 0; |
| last_vgrf_node = 0; |
| first_spill_node = 0; |
| |
| spill_vgrf_ip = NULL; |
| spill_vgrf_ip_alloc = 0; |
| spill_node_count = 0; |
| } |
| |
| ~fs_reg_alloc() |
| { |
| ralloc_free(mem_ctx); |
| } |
| |
| bool assign_regs(bool allow_spilling, bool spill_all); |
| |
| private: |
| void setup_live_interference(unsigned node, |
| int node_start_ip, int node_end_ip); |
| void setup_inst_interference(const fs_inst *inst); |
| |
| void build_interference_graph(bool allow_spilling); |
| void discard_interference_graph(); |
| |
| fs_reg build_lane_offsets(const fs_builder &bld, |
| uint32_t spill_offset, int ip); |
| fs_reg build_single_offset(const fs_builder &bld, |
| uint32_t spill_offset, int ip); |
| |
| void emit_unspill(const fs_builder &bld, struct shader_stats *stats, |
| fs_reg dst, uint32_t spill_offset, unsigned count, int ip); |
| void emit_spill(const fs_builder &bld, struct shader_stats *stats, |
| fs_reg src, uint32_t spill_offset, unsigned count, int ip); |
| |
| void set_spill_costs(); |
| int choose_spill_reg(); |
| fs_reg alloc_scratch_header(); |
| fs_reg alloc_spill_reg(unsigned size, int ip); |
| void spill_reg(unsigned spill_reg); |
| |
| void *mem_ctx; |
| fs_visitor *fs; |
| const intel_device_info *devinfo; |
| const brw_compiler *compiler; |
| const fs_live_variables &live; |
| int live_instr_count; |
| |
| set *spill_insts; |
| |
| /* Which compiler->fs_reg_sets[] to use */ |
| int rsi; |
| |
| ra_graph *g; |
| bool have_spill_costs; |
| |
| int payload_node_count; |
| int *payload_last_use_ip; |
| |
| int node_count; |
| int first_payload_node; |
| int first_mrf_hack_node; |
| int scratch_header_node; |
| int grf127_send_hack_node; |
| int first_vgrf_node; |
| int last_vgrf_node; |
| int first_spill_node; |
| |
| int *spill_vgrf_ip; |
| int spill_vgrf_ip_alloc; |
| int spill_node_count; |
| |
| fs_reg scratch_header; |
| }; |
| |
| /** |
| * Sets the mrf_used array to indicate which MRFs are used by the shader IR |
| * |
| * This is used in assign_regs() to decide which of the GRFs that we use as |
| * MRFs on gfx7 get normally register allocated, and in register spilling to |
| * see if we can actually use MRFs to do spills without overwriting normal MRF |
| * contents. |
| */ |
| static void |
| get_used_mrfs(const fs_visitor *v, bool *mrf_used) |
| { |
| int reg_width = v->dispatch_width / 8; |
| |
| memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->ver) * sizeof(bool)); |
| |
| foreach_block_and_inst(block, fs_inst, inst, v->cfg) { |
| if (inst->dst.file == MRF) { |
| int reg = inst->dst.nr & ~BRW_MRF_COMPR4; |
| mrf_used[reg] = true; |
| if (reg_width == 2) { |
| if (inst->dst.nr & BRW_MRF_COMPR4) { |
| mrf_used[reg + 4] = true; |
| } else { |
| mrf_used[reg + 1] = true; |
| } |
| } |
| } |
| |
| if (inst->mlen > 0) { |
| for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) { |
| mrf_used[inst->base_mrf + i] = true; |
| } |
| } |
| } |
| } |
| |
| namespace { |
| /** |
| * Maximum spill block size we expect to encounter in 32B units. |
| * |
| * This is somewhat arbitrary and doesn't necessarily limit the maximum |
| * variable size that can be spilled -- A higher value will allow a |
| * variable of a given size to be spilled more efficiently with a smaller |
| * number of scratch messages, but will increase the likelihood of a |
| * collision between the MRFs reserved for spilling and other MRFs used by |
| * the program (and possibly increase GRF register pressure on platforms |
| * without hardware MRFs), what could cause register allocation to fail. |
| * |
| * For the moment reserve just enough space so a register of 32 bit |
| * component type and natural region width can be spilled without splitting |
| * into multiple (force_writemask_all) scratch messages. |
| */ |
| unsigned |
| spill_max_size(const backend_shader *s) |
| { |
| /* LSC is limited to SIMD16 sends */ |
| if (s->devinfo->has_lsc) |
| return 2; |
| |
| /* FINISHME - On Gfx7+ it should be possible to avoid this limit |
| * altogether by spilling directly from the temporary GRF |
| * allocated to hold the result of the instruction (and the |
| * scratch write header). |
| */ |
| /* FINISHME - The shader's dispatch width probably belongs in |
| * backend_shader (or some nonexistent fs_shader class?) |
| * rather than in the visitor class. |
| */ |
| return static_cast<const fs_visitor *>(s)->dispatch_width / 8; |
| } |
| |
| /** |
| * First MRF register available for spilling. |
| */ |
| unsigned |
| spill_base_mrf(const backend_shader *s) |
| { |
| /* We don't use the MRF hack on Gfx9+ */ |
| assert(s->devinfo->ver < 9); |
| return BRW_MAX_MRF(s->devinfo->ver) - spill_max_size(s) - 1; |
| } |
| } |
| |
| void |
| fs_reg_alloc::setup_live_interference(unsigned node, |
| int node_start_ip, int node_end_ip) |
| { |
| /* Mark any virtual grf that is live between the start of the program and |
| * the last use of a payload node interfering with that payload node. |
| */ |
| for (int i = 0; i < payload_node_count; i++) { |
| if (payload_last_use_ip[i] == -1) |
| continue; |
| |
| /* Note that we use a <= comparison, unlike vgrfs_interfere(), |
| * in order to not have to worry about the uniform issue described in |
| * calculate_live_intervals(). |
| */ |
| if (node_start_ip <= payload_last_use_ip[i]) |
| ra_add_node_interference(g, node, first_payload_node + i); |
| } |
| |
| /* If we have the MRF hack enabled, mark this node as interfering with all |
| * MRF registers. |
| */ |
| if (first_mrf_hack_node >= 0) { |
| for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++) |
| ra_add_node_interference(g, node, first_mrf_hack_node + i); |
| } |
| |
| /* Everything interferes with the scratch header */ |
| if (scratch_header_node >= 0) |
| ra_add_node_interference(g, node, scratch_header_node); |
| |
| /* Add interference with every vgrf whose live range intersects this |
| * node's. We only need to look at nodes below this one as the reflexivity |
| * of interference will take care of the rest. |
| */ |
| for (unsigned n2 = first_vgrf_node; |
| n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) { |
| unsigned vgrf = n2 - first_vgrf_node; |
| if (!(node_end_ip <= live.vgrf_start[vgrf] || |
| live.vgrf_end[vgrf] <= node_start_ip)) |
| ra_add_node_interference(g, node, n2); |
| } |
| } |
| |
| void |
| fs_reg_alloc::setup_inst_interference(const fs_inst *inst) |
| { |
| /* Certain instructions can't safely use the same register for their |
| * sources and destination. Add interference. |
| */ |
| if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) { |
| for (unsigned i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == VGRF) { |
| ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, |
| first_vgrf_node + inst->src[i].nr); |
| } |
| } |
| } |
| |
| /* A compressed instruction is actually two instructions executed |
| * simultaneously. On most platforms, it ok to have the source and |
| * destination registers be the same. In this case, each instruction |
| * over-writes its own source and there's no problem. The real problem |
| * here is if the source and destination registers are off by one. Then |
| * you can end up in a scenario where the first instruction over-writes the |
| * source of the second instruction. Since the compiler doesn't know about |
| * this level of granularity, we simply make the source and destination |
| * interfere. |
| */ |
| if (inst->dst.component_size(inst->exec_size) > REG_SIZE && |
| inst->dst.file == VGRF) { |
| for (int i = 0; i < inst->sources; ++i) { |
| if (inst->src[i].file == VGRF) { |
| ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, |
| first_vgrf_node + inst->src[i].nr); |
| } |
| } |
| } |
| |
| if (grf127_send_hack_node >= 0) { |
| /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference", |
| * subsection "EUISA Instructions", Send Message (page 990): |
| * |
| * "r127 must not be used for return address when there is a src and |
| * dest overlap in send instruction." |
| * |
| * We are avoiding using grf127 as part of the destination of send |
| * messages adding a node interference to the grf127_send_hack_node. |
| * This node has a fixed assignment to grf127. |
| * |
| * We don't apply it to SIMD16 instructions because previous code avoids |
| * any register overlap between sources and destination. |
| */ |
| if (inst->exec_size < 16 && inst->is_send_from_grf() && |
| inst->dst.file == VGRF) |
| ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, |
| grf127_send_hack_node); |
| |
| /* Spilling instruction are generated as SEND messages from MRF but as |
| * Gfx7+ supports sending from GRF the driver will maps assingn these |
| * MRF registers to a GRF. Implementations reuses the dest of the send |
| * message as source. So as we will have an overlap for sure, we create |
| * an interference between destination and grf127. |
| */ |
| if ((inst->opcode == SHADER_OPCODE_GFX7_SCRATCH_READ || |
| inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_READ) && |
| inst->dst.file == VGRF) |
| ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, |
| grf127_send_hack_node); |
| } |
| |
| /* From the Skylake PRM Vol. 2a docs for sends: |
| * |
| * "It is required that the second block of GRFs does not overlap with |
| * the first block." |
| * |
| * Normally, this is taken care of by fixup_sends_duplicate_payload() but |
| * in the case where one of the registers is an undefined value, the |
| * register allocator may decide that they don't interfere even though |
| * they're used as sources in the same instruction. We also need to add |
| * interference here. |
| */ |
| if (devinfo->ver >= 9) { |
| if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 && |
| inst->src[2].file == VGRF && inst->src[3].file == VGRF && |
| inst->src[2].nr != inst->src[3].nr) |
| ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr, |
| first_vgrf_node + inst->src[3].nr); |
| } |
| |
| /* When we do send-from-GRF for FB writes, we need to ensure that the last |
| * write instruction sends from a high register. This is because the |
| * vertex fetcher wants to start filling the low payload registers while |
| * the pixel data port is still working on writing out the memory. If we |
| * don't do this, we get rendering artifacts. |
| * |
| * We could just do "something high". Instead, we just pick the highest |
| * register that works. |
| */ |
| if (inst->eot) { |
| const int vgrf = inst->opcode == SHADER_OPCODE_SEND ? |
| inst->src[2].nr : inst->src[0].nr; |
| int reg = BRW_MAX_GRF - fs->alloc.sizes[vgrf]; |
| |
| if (first_mrf_hack_node >= 0) { |
| /* If something happened to spill, we want to push the EOT send |
| * register early enough in the register file that we don't |
| * conflict with any used MRF hack registers. |
| */ |
| reg -= BRW_MAX_MRF(devinfo->ver) - spill_base_mrf(fs); |
| } else if (grf127_send_hack_node >= 0) { |
| /* Avoid r127 which might be unusable if the node was previously |
| * written by a SIMD8 SEND message with source/destination overlap. |
| */ |
| reg--; |
| } |
| |
| ra_set_node_reg(g, first_vgrf_node + vgrf, reg); |
| |
| if (inst->ex_mlen > 0) { |
| const int vgrf = inst->src[3].nr; |
| reg -= fs->alloc.sizes[vgrf]; |
| ra_set_node_reg(g, first_vgrf_node + vgrf, reg); |
| } |
| } |
| } |
| |
| void |
| fs_reg_alloc::build_interference_graph(bool allow_spilling) |
| { |
| /* Compute the RA node layout */ |
| node_count = 0; |
| first_payload_node = node_count; |
| node_count += payload_node_count; |
| if (devinfo->ver >= 7 && devinfo->ver < 9 && allow_spilling) { |
| first_mrf_hack_node = node_count; |
| node_count += BRW_MAX_GRF - GFX7_MRF_HACK_START; |
| } else { |
| first_mrf_hack_node = -1; |
| } |
| if (devinfo->ver >= 8) { |
| grf127_send_hack_node = node_count; |
| node_count ++; |
| } else { |
| grf127_send_hack_node = -1; |
| } |
| first_vgrf_node = node_count; |
| node_count += fs->alloc.count; |
| last_vgrf_node = node_count - 1; |
| if ((devinfo->ver >= 9 && devinfo->verx10 < 125) && allow_spilling) { |
| scratch_header_node = node_count++; |
| } else { |
| scratch_header_node = -1; |
| } |
| first_spill_node = node_count; |
| |
| fs->calculate_payload_ranges(payload_node_count, |
| payload_last_use_ip); |
| |
| assert(g == NULL); |
| g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count); |
| ralloc_steal(mem_ctx, g); |
| |
| /* Set up the payload nodes */ |
| for (int i = 0; i < payload_node_count; i++) |
| ra_set_node_reg(g, first_payload_node + i, i); |
| |
| if (first_mrf_hack_node >= 0) { |
| /* Mark each MRF reg node as being allocated to its physical |
| * register. |
| * |
| * The alternative would be to have per-physical-register classes, |
| * which would just be silly. |
| */ |
| for (int i = 0; i < BRW_MAX_MRF(devinfo->ver); i++) { |
| ra_set_node_reg(g, first_mrf_hack_node + i, |
| GFX7_MRF_HACK_START + i); |
| } |
| } |
| |
| if (grf127_send_hack_node >= 0) |
| ra_set_node_reg(g, grf127_send_hack_node, 127); |
| |
| /* Specify the classes of each virtual register. */ |
| for (unsigned i = 0; i < fs->alloc.count; i++) { |
| unsigned size = fs->alloc.sizes[i]; |
| |
| assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) && |
| "Register allocation relies on split_virtual_grfs()"); |
| |
| ra_set_node_class(g, first_vgrf_node + i, |
| compiler->fs_reg_sets[rsi].classes[size - 1]); |
| } |
| |
| /* Special case: on pre-Gfx7 hardware that supports PLN, the second operand |
| * of a PLN instruction needs to be an even-numbered register, so we have a |
| * special register class aligned_bary_class to handle this case. |
| */ |
| if (compiler->fs_reg_sets[rsi].aligned_bary_class) { |
| foreach_block_and_inst(block, fs_inst, inst, fs->cfg) { |
| if (inst->opcode == FS_OPCODE_LINTERP && inst->src[0].file == VGRF && |
| fs->alloc.sizes[inst->src[0].nr] == |
| aligned_bary_size(fs->dispatch_width)) { |
| ra_set_node_class(g, first_vgrf_node + inst->src[0].nr, |
| compiler->fs_reg_sets[rsi].aligned_bary_class); |
| } |
| } |
| } |
| |
| /* Add interference based on the live range of the register */ |
| for (unsigned i = 0; i < fs->alloc.count; i++) { |
| setup_live_interference(first_vgrf_node + i, |
| live.vgrf_start[i], |
| live.vgrf_end[i]); |
| } |
| |
| /* Add interference based on the instructions in which a register is used. |
| */ |
| foreach_block_and_inst(block, fs_inst, inst, fs->cfg) |
| setup_inst_interference(inst); |
| } |
| |
| void |
| fs_reg_alloc::discard_interference_graph() |
| { |
| ralloc_free(g); |
| g = NULL; |
| have_spill_costs = false; |
| } |
| |
| fs_reg |
| fs_reg_alloc::build_single_offset(const fs_builder &bld, uint32_t spill_offset, int ip) |
| { |
| fs_reg offset = retype(alloc_spill_reg(1, ip), BRW_REGISTER_TYPE_UD); |
| fs_inst *inst = bld.MOV(offset, brw_imm_ud(spill_offset)); |
| _mesa_set_add(spill_insts, inst); |
| return offset; |
| } |
| |
| fs_reg |
| fs_reg_alloc::build_lane_offsets(const fs_builder &bld, uint32_t spill_offset, int ip) |
| { |
| /* LSC messages are limited to SIMD16 */ |
| assert(bld.dispatch_width() <= 16); |
| |
| const fs_builder ubld = bld.exec_all(); |
| const unsigned reg_count = ubld.dispatch_width() / 8; |
| |
| fs_reg offset = retype(alloc_spill_reg(reg_count, ip), BRW_REGISTER_TYPE_UD); |
| fs_inst *inst; |
| |
| /* Build an offset per lane in SIMD8 */ |
| inst = ubld.group(8, 0).MOV(retype(offset, BRW_REGISTER_TYPE_UW), |
| brw_imm_uv(0x76543210)); |
| _mesa_set_add(spill_insts, inst); |
| inst = ubld.group(8, 0).MOV(offset, retype(offset, BRW_REGISTER_TYPE_UW)); |
| _mesa_set_add(spill_insts, inst); |
| |
| /* Build offsets in the upper 8 lanes of SIMD16 */ |
| if (ubld.dispatch_width() > 8) { |
| inst = ubld.group(8, 0).ADD( |
| byte_offset(offset, REG_SIZE), |
| byte_offset(offset, 0), |
| brw_imm_ud(8)); |
| _mesa_set_add(spill_insts, inst); |
| } |
| |
| /* Make the offset a dword */ |
| inst = ubld.SHL(offset, offset, brw_imm_ud(2)); |
| _mesa_set_add(spill_insts, inst); |
| |
| /* Add the base offset */ |
| inst = ubld.ADD(offset, offset, brw_imm_ud(spill_offset)); |
| _mesa_set_add(spill_insts, inst); |
| |
| return offset; |
| } |
| |
| void |
| fs_reg_alloc::emit_unspill(const fs_builder &bld, |
| struct shader_stats *stats, |
| fs_reg dst, |
| uint32_t spill_offset, unsigned count, int ip) |
| { |
| const intel_device_info *devinfo = bld.shader->devinfo; |
| const unsigned reg_size = dst.component_size(bld.dispatch_width()) / |
| REG_SIZE; |
| assert(count % reg_size == 0); |
| |
| for (unsigned i = 0; i < count / reg_size; i++) { |
| ++stats->fill_count; |
| |
| fs_inst *unspill_inst; |
| if (devinfo->verx10 >= 125) { |
| /* LSC is limited to SIMD16 load/store but we can load more using |
| * transpose messages. |
| */ |
| const bool use_transpose = bld.dispatch_width() > 16; |
| const fs_builder ubld = use_transpose ? bld.exec_all().group(1, 0) : bld; |
| fs_reg offset; |
| if (use_transpose) { |
| offset = build_single_offset(ubld, spill_offset, ip); |
| } else { |
| offset = build_lane_offsets(ubld, spill_offset, ip); |
| } |
| /* We leave the extended descriptor empty and flag the instruction to |
| * ask the generated to insert the extended descriptor in the address |
| * register. That way we don't need to burn an additional register |
| * for register allocation spill/fill. |
| */ |
| fs_reg srcs[] = { |
| brw_imm_ud(0), /* desc */ |
| brw_imm_ud(0), /* ex_desc */ |
| offset, /* payload */ |
| fs_reg(), /* payload2 */ |
| }; |
| |
| unspill_inst = ubld.emit(SHADER_OPCODE_SEND, dst, |
| srcs, ARRAY_SIZE(srcs)); |
| unspill_inst->sfid = GFX12_SFID_UGM; |
| unspill_inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD, |
| unspill_inst->exec_size, |
| LSC_ADDR_SURFTYPE_SS, |
| LSC_ADDR_SIZE_A32, |
| 1 /* num_coordinates */, |
| LSC_DATA_SIZE_D32, |
| use_transpose ? reg_size * 8 : 1 /* num_channels */, |
| use_transpose, |
| LSC_CACHE_LOAD_L1STATE_L3MOCS, |
| true /* has_dest */); |
| unspill_inst->header_size = 0; |
| unspill_inst->mlen = |
| lsc_msg_desc_src0_len(devinfo, unspill_inst->desc); |
| unspill_inst->ex_mlen = 0; |
| unspill_inst->size_written = |
| lsc_msg_desc_dest_len(devinfo, unspill_inst->desc) * REG_SIZE; |
| unspill_inst->send_has_side_effects = false; |
| unspill_inst->send_is_volatile = true; |
| unspill_inst->send_ex_desc_scratch = true; |
| } else if (devinfo->ver >= 9) { |
| fs_reg header = this->scratch_header; |
| fs_builder ubld = bld.exec_all().group(1, 0); |
| assert(spill_offset % 16 == 0); |
| unspill_inst = ubld.MOV(component(header, 2), |
| brw_imm_ud(spill_offset / 16)); |
| _mesa_set_add(spill_insts, unspill_inst); |
| |
| const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT; |
| const fs_reg ex_desc = brw_imm_ud(0); |
| |
| fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header }; |
| unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst, |
| srcs, ARRAY_SIZE(srcs)); |
| unspill_inst->mlen = 1; |
| unspill_inst->header_size = 1; |
| unspill_inst->size_written = reg_size * REG_SIZE; |
| unspill_inst->send_has_side_effects = false; |
| unspill_inst->send_is_volatile = true; |
| unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; |
| unspill_inst->desc = |
| brw_dp_desc(devinfo, bti, |
| BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ, |
| BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)); |
| } else if (devinfo->ver >= 7 && spill_offset < (1 << 12) * REG_SIZE) { |
| /* The Gfx7 descriptor-based offset is 12 bits of HWORD units. |
| * Because the Gfx7-style scratch block read is hardwired to BTI 255, |
| * on Gfx9+ it would cause the DC to do an IA-coherent read, what |
| * largely outweighs the slight advantage from not having to provide |
| * the address as part of the message header, so we're better off |
| * using plain old oword block reads. |
| */ |
| unspill_inst = bld.emit(SHADER_OPCODE_GFX7_SCRATCH_READ, dst); |
| unspill_inst->offset = spill_offset; |
| } else { |
| unspill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_READ, dst); |
| unspill_inst->offset = spill_offset; |
| unspill_inst->base_mrf = spill_base_mrf(bld.shader); |
| unspill_inst->mlen = 1; /* header contains offset */ |
| } |
| _mesa_set_add(spill_insts, unspill_inst); |
| |
| dst.offset += reg_size * REG_SIZE; |
| spill_offset += reg_size * REG_SIZE; |
| } |
| } |
| |
| void |
| fs_reg_alloc::emit_spill(const fs_builder &bld, |
| struct shader_stats *stats, |
| fs_reg src, |
| uint32_t spill_offset, unsigned count, int ip) |
| { |
| const intel_device_info *devinfo = bld.shader->devinfo; |
| const unsigned reg_size = src.component_size(bld.dispatch_width()) / |
| REG_SIZE; |
| assert(count % reg_size == 0); |
| |
| for (unsigned i = 0; i < count / reg_size; i++) { |
| ++stats->spill_count; |
| |
| fs_inst *spill_inst; |
| if (devinfo->verx10 >= 125) { |
| fs_reg offset = build_lane_offsets(bld, spill_offset, ip); |
| /* We leave the extended descriptor empty and flag the instruction |
| * relocate the extended descriptor. That way the surface offset is |
| * directly put into the instruction and we don't need to use a |
| * register to hold it. |
| */ |
| fs_reg srcs[] = { |
| brw_imm_ud(0), /* desc */ |
| brw_imm_ud(0), /* ex_desc */ |
| offset, /* payload */ |
| src, /* payload2 */ |
| }; |
| spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(), |
| srcs, ARRAY_SIZE(srcs)); |
| spill_inst->sfid = GFX12_SFID_UGM; |
| spill_inst->desc = lsc_msg_desc(devinfo, LSC_OP_STORE, |
| bld.dispatch_width(), |
| LSC_ADDR_SURFTYPE_SS, |
| LSC_ADDR_SIZE_A32, |
| 1 /* num_coordinates */, |
| LSC_DATA_SIZE_D32, |
| 1 /* num_channels */, |
| false /* transpose */, |
| LSC_CACHE_LOAD_L1STATE_L3MOCS, |
| false /* has_dest */); |
| spill_inst->header_size = 0; |
| spill_inst->mlen = lsc_msg_desc_src0_len(devinfo, spill_inst->desc); |
| spill_inst->ex_mlen = reg_size; |
| spill_inst->size_written = 0; |
| spill_inst->send_has_side_effects = true; |
| spill_inst->send_is_volatile = false; |
| spill_inst->send_ex_desc_scratch = true; |
| } else if (devinfo->ver >= 9) { |
| fs_reg header = this->scratch_header; |
| fs_builder ubld = bld.exec_all().group(1, 0); |
| assert(spill_offset % 16 == 0); |
| spill_inst = ubld.MOV(component(header, 2), |
| brw_imm_ud(spill_offset / 16)); |
| _mesa_set_add(spill_insts, spill_inst); |
| |
| const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT; |
| const fs_reg ex_desc = brw_imm_ud(0); |
| |
| fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header, src }; |
| spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(), |
| srcs, ARRAY_SIZE(srcs)); |
| spill_inst->mlen = 1; |
| spill_inst->ex_mlen = reg_size; |
| spill_inst->size_written = 0; |
| spill_inst->header_size = 1; |
| spill_inst->send_has_side_effects = true; |
| spill_inst->send_is_volatile = false; |
| spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; |
| spill_inst->desc = |
| brw_dp_desc(devinfo, bti, |
| GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE, |
| BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)); |
| } else { |
| spill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_WRITE, |
| bld.null_reg_f(), src); |
| spill_inst->offset = spill_offset; |
| spill_inst->mlen = 1 + reg_size; /* header, value */ |
| spill_inst->base_mrf = spill_base_mrf(bld.shader); |
| } |
| _mesa_set_add(spill_insts, spill_inst); |
| |
| src.offset += reg_size * REG_SIZE; |
| spill_offset += reg_size * REG_SIZE; |
| } |
| } |
| |
| void |
| fs_reg_alloc::set_spill_costs() |
| { |
| float block_scale = 1.0; |
| float spill_costs[fs->alloc.count]; |
| bool no_spill[fs->alloc.count]; |
| |
| for (unsigned i = 0; i < fs->alloc.count; i++) { |
| spill_costs[i] = 0.0; |
| no_spill[i] = false; |
| } |
| |
| /* Calculate costs for spilling nodes. Call it a cost of 1 per |
| * spill/unspill we'll have to do, and guess that the insides of |
| * loops run 10 times. |
| */ |
| foreach_block_and_inst(block, fs_inst, inst, fs->cfg) { |
| for (unsigned int i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == VGRF) |
| spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale; |
| } |
| |
| if (inst->dst.file == VGRF) |
| spill_costs[inst->dst.nr] += regs_written(inst) * block_scale; |
| |
| /* Don't spill anything we generated while spilling */ |
| if (_mesa_set_search(spill_insts, inst)) { |
| for (unsigned int i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == VGRF) |
| no_spill[inst->src[i].nr] = true; |
| } |
| if (inst->dst.file == VGRF) |
| no_spill[inst->dst.nr] = true; |
| } |
| |
| switch (inst->opcode) { |
| |
| case BRW_OPCODE_DO: |
| block_scale *= 10; |
| break; |
| |
| case BRW_OPCODE_WHILE: |
| block_scale /= 10; |
| break; |
| |
| case BRW_OPCODE_IF: |
| case BRW_OPCODE_IFF: |
| block_scale *= 0.5; |
| break; |
| |
| case BRW_OPCODE_ENDIF: |
| block_scale /= 0.5; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| for (unsigned i = 0; i < fs->alloc.count; i++) { |
| /* Do the no_spill check first. Registers that are used as spill |
| * temporaries may have been allocated after we calculated liveness so |
| * we shouldn't look their liveness up. Fortunately, they're always |
| * used in SCRATCH_READ/WRITE instructions so they'll always be flagged |
| * no_spill. |
| */ |
| if (no_spill[i]) |
| continue; |
| |
| int live_length = live.vgrf_end[i] - live.vgrf_start[i]; |
| if (live_length <= 0) |
| continue; |
| |
| /* Divide the cost (in number of spills/fills) by the log of the length |
| * of the live range of the register. This will encourage spill logic |
| * to spill long-living things before spilling short-lived things where |
| * spilling is less likely to actually do us any good. We use the log |
| * of the length because it will fall off very quickly and not cause us |
| * to spill medium length registers with more uses. |
| */ |
| float adjusted_cost = spill_costs[i] / logf(live_length); |
| ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost); |
| } |
| |
| have_spill_costs = true; |
| } |
| |
| int |
| fs_reg_alloc::choose_spill_reg() |
| { |
| if (!have_spill_costs) |
| set_spill_costs(); |
| |
| int node = ra_get_best_spill_node(g); |
| if (node < 0) |
| return -1; |
| |
| assert(node >= first_vgrf_node); |
| return node - first_vgrf_node; |
| } |
| |
| fs_reg |
| fs_reg_alloc::alloc_scratch_header() |
| { |
| int vgrf = fs->alloc.allocate(1); |
| assert(first_vgrf_node + vgrf == scratch_header_node); |
| ra_set_node_class(g, scratch_header_node, |
| compiler->fs_reg_sets[rsi].classes[0]); |
| |
| setup_live_interference(scratch_header_node, 0, INT_MAX); |
| |
| return fs_reg(VGRF, vgrf, BRW_REGISTER_TYPE_UD); |
| } |
| |
| fs_reg |
| fs_reg_alloc::alloc_spill_reg(unsigned size, int ip) |
| { |
| int vgrf = fs->alloc.allocate(size); |
| int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[size - 1]); |
| assert(n == first_vgrf_node + vgrf); |
| assert(n == first_spill_node + spill_node_count); |
| |
| setup_live_interference(n, ip - 1, ip + 1); |
| |
| /* Add interference between this spill node and any other spill nodes for |
| * the same instruction. |
| */ |
| for (int s = 0; s < spill_node_count; s++) { |
| if (spill_vgrf_ip[s] == ip) |
| ra_add_node_interference(g, n, first_spill_node + s); |
| } |
| |
| /* Add this spill node to the list for next time */ |
| if (spill_node_count >= spill_vgrf_ip_alloc) { |
| if (spill_vgrf_ip_alloc == 0) |
| spill_vgrf_ip_alloc = 16; |
| else |
| spill_vgrf_ip_alloc *= 2; |
| spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int, |
| spill_vgrf_ip_alloc); |
| } |
| spill_vgrf_ip[spill_node_count++] = ip; |
| |
| return fs_reg(VGRF, vgrf); |
| } |
| |
| void |
| fs_reg_alloc::spill_reg(unsigned spill_reg) |
| { |
| int size = fs->alloc.sizes[spill_reg]; |
| unsigned int spill_offset = fs->last_scratch; |
| assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */ |
| |
| /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done |
| * using up to 11 MRFs starting from either m1 or m2, and fb writes can use |
| * up to m13 (gfx6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or |
| * m15 (gfx4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst |
| * depth), starting from m1. In summary: We may not be able to spill in |
| * SIMD16 mode, because we'd stomp the FB writes. |
| */ |
| if (!fs->spilled_any_registers) { |
| if (devinfo->verx10 >= 125) { |
| /* We will allocate a register on the fly */ |
| } else if (devinfo->ver >= 9) { |
| this->scratch_header = alloc_scratch_header(); |
| fs_builder ubld = fs->bld.exec_all().group(8, 0).at( |
| fs->cfg->first_block(), fs->cfg->first_block()->start()); |
| |
| fs_inst *inst = ubld.emit(SHADER_OPCODE_SCRATCH_HEADER, |
| this->scratch_header); |
| _mesa_set_add(spill_insts, inst); |
| } else { |
| bool mrf_used[BRW_MAX_MRF(devinfo->ver)]; |
| get_used_mrfs(fs, mrf_used); |
| |
| for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++) { |
| if (mrf_used[i]) { |
| fs->fail("Register spilling not supported with m%d used", i); |
| return; |
| } |
| } |
| } |
| |
| fs->spilled_any_registers = true; |
| } |
| |
| fs->last_scratch += size * REG_SIZE; |
| |
| /* We're about to replace all uses of this register. It no longer |
| * conflicts with anything so we can get rid of its interference. |
| */ |
| ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0); |
| ra_reset_node_interference(g, first_vgrf_node + spill_reg); |
| |
| /* Generate spill/unspill instructions for the objects being |
| * spilled. Right now, we spill or unspill the whole thing to a |
| * virtual grf of the same size. For most instructions, though, we |
| * could just spill/unspill the GRF being accessed. |
| */ |
| int ip = 0; |
| foreach_block_and_inst (block, fs_inst, inst, fs->cfg) { |
| const fs_builder ibld = fs_builder(fs, block, inst); |
| exec_node *before = inst->prev; |
| exec_node *after = inst->next; |
| |
| for (unsigned int i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == VGRF && |
| inst->src[i].nr == spill_reg) { |
| int count = regs_read(inst, i); |
| int subset_spill_offset = spill_offset + |
| ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE); |
| fs_reg unspill_dst = alloc_spill_reg(count, ip); |
| |
| inst->src[i].nr = unspill_dst.nr; |
| inst->src[i].offset %= REG_SIZE; |
| |
| /* We read the largest power-of-two divisor of the register count |
| * (because only POT scratch read blocks are allowed by the |
| * hardware) up to the maximum supported block size. |
| */ |
| const unsigned width = |
| MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1)); |
| |
| /* Set exec_all() on unspill messages under the (rather |
| * pessimistic) assumption that there is no one-to-one |
| * correspondence between channels of the spilled variable in |
| * scratch space and the scratch read message, which operates on |
| * 32 bit channels. It shouldn't hurt in any case because the |
| * unspill destination is a block-local temporary. |
| */ |
| emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats, |
| unspill_dst, subset_spill_offset, count, ip); |
| } |
| } |
| |
| if (inst->dst.file == VGRF && |
| inst->dst.nr == spill_reg && |
| inst->opcode != SHADER_OPCODE_UNDEF) { |
| int subset_spill_offset = spill_offset + |
| ROUND_DOWN_TO(inst->dst.offset, REG_SIZE); |
| fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip); |
| |
| inst->dst.nr = spill_src.nr; |
| inst->dst.offset %= REG_SIZE; |
| |
| /* If we're immediately spilling the register, we should not use |
| * destination dependency hints. Doing so will cause the GPU do |
| * try to read and write the register at the same time and may |
| * hang the GPU. |
| */ |
| inst->no_dd_clear = false; |
| inst->no_dd_check = false; |
| |
| /* Calculate the execution width of the scratch messages (which work |
| * in terms of 32 bit components so we have a fixed number of eight |
| * channels per spilled register). We attempt to write one |
| * exec_size-wide component of the variable at a time without |
| * exceeding the maximum number of (fake) MRF registers reserved for |
| * spills. |
| */ |
| const unsigned width = 8 * MIN2( |
| DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE), |
| spill_max_size(fs)); |
| |
| /* Spills should only write data initialized by the instruction for |
| * whichever channels are enabled in the execution mask. If that's |
| * not possible we'll have to emit a matching unspill before the |
| * instruction and set force_writemask_all on the spill. |
| */ |
| const bool per_channel = |
| inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 && |
| inst->exec_size == width; |
| |
| /* Builder used to emit the scratch messages. */ |
| const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0); |
| |
| /* If our write is going to affect just part of the |
| * regs_written(inst), then we need to unspill the destination since |
| * we write back out all of the regs_written(). If the original |
| * instruction had force_writemask_all set and is not a partial |
| * write, there should be no need for the unspill since the |
| * instruction will be overwriting the whole destination in any case. |
| */ |
| if (inst->is_partial_write() || |
| (!inst->force_writemask_all && !per_channel)) |
| emit_unspill(ubld, &fs->shader_stats, spill_src, |
| subset_spill_offset, regs_written(inst), ip); |
| |
| emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src, |
| subset_spill_offset, regs_written(inst), ip); |
| } |
| |
| for (fs_inst *inst = (fs_inst *)before->next; |
| inst != after; inst = (fs_inst *)inst->next) |
| setup_inst_interference(inst); |
| |
| /* We don't advance the ip for scratch read/write instructions |
| * because we consider them to have the same ip as instruction we're |
| * spilling around for the purposes of interference. Also, we're |
| * inserting spill instructions without re-running liveness analysis |
| * and we don't want to mess up our IPs. |
| */ |
| if (!_mesa_set_search(spill_insts, inst)) |
| ip++; |
| } |
| |
| assert(ip == live_instr_count); |
| } |
| |
| bool |
| fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all) |
| { |
| build_interference_graph(fs->spilled_any_registers || spill_all); |
| |
| bool spilled = false; |
| while (1) { |
| /* Debug of register spilling: Go spill everything. */ |
| if (unlikely(spill_all)) { |
| int reg = choose_spill_reg(); |
| if (reg != -1) { |
| spill_reg(reg); |
| continue; |
| } |
| } |
| |
| if (ra_allocate(g)) |
| break; |
| |
| if (!allow_spilling) |
| return false; |
| |
| /* Failed to allocate registers. Spill a reg, and the caller will |
| * loop back into here to try again. |
| */ |
| int reg = choose_spill_reg(); |
| if (reg == -1) |
| return false; |
| |
| /* If we're going to spill but we've never spilled before, we need to |
| * re-build the interference graph with MRFs enabled to allow spilling. |
| */ |
| if (!fs->spilled_any_registers) { |
| discard_interference_graph(); |
| build_interference_graph(true); |
| } |
| |
| spilled = true; |
| |
| spill_reg(reg); |
| } |
| |
| if (spilled) |
| fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); |
| |
| /* Get the chosen virtual registers for each node, and map virtual |
| * regs in the register classes back down to real hardware reg |
| * numbers. |
| */ |
| unsigned hw_reg_mapping[fs->alloc.count]; |
| fs->grf_used = fs->first_non_payload_grf; |
| for (unsigned i = 0; i < fs->alloc.count; i++) { |
| int reg = ra_get_node_reg(g, first_vgrf_node + i); |
| |
| hw_reg_mapping[i] = reg; |
| fs->grf_used = MAX2(fs->grf_used, |
| hw_reg_mapping[i] + fs->alloc.sizes[i]); |
| } |
| |
| foreach_block_and_inst(block, fs_inst, inst, fs->cfg) { |
| assign_reg(hw_reg_mapping, &inst->dst); |
| for (int i = 0; i < inst->sources; i++) { |
| assign_reg(hw_reg_mapping, &inst->src[i]); |
| } |
| } |
| |
| fs->alloc.count = fs->grf_used; |
| |
| return true; |
| } |
| |
| bool |
| fs_visitor::assign_regs(bool allow_spilling, bool spill_all) |
| { |
| fs_reg_alloc alloc(this); |
| bool success = alloc.assign_regs(allow_spilling, spill_all); |
| if (!success && allow_spilling) { |
| fail("no register to spill:\n"); |
| dump_instructions(NULL); |
| } |
| return success; |
| } |