blob: b492cf9495c02a86bb470dd9272a4e4d66ad1091 [file] [log] [blame]
//===- TGParser.cpp - Parser for TableGen Files ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implement the Parser for TableGen.
//
//===----------------------------------------------------------------------===//
#include "TGParser.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Support Code for the Semantic Actions.
//===----------------------------------------------------------------------===//
namespace llvm {
struct SubClassReference {
SMRange RefRange;
Record *Rec;
SmallVector<Init*, 4> TemplateArgs;
SubClassReference() : Rec(nullptr) {}
bool isInvalid() const { return Rec == nullptr; }
};
struct SubMultiClassReference {
SMRange RefRange;
MultiClass *MC;
SmallVector<Init*, 4> TemplateArgs;
SubMultiClassReference() : MC(nullptr) {}
bool isInvalid() const { return MC == nullptr; }
void dump() const;
};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SubMultiClassReference::dump() const {
errs() << "Multiclass:\n";
MC->dump();
errs() << "Template args:\n";
for (Init *TA : TemplateArgs)
TA->dump();
}
#endif
} // end namespace llvm
bool TGParser::AddValue(Record *CurRec, SMLoc Loc, const RecordVal &RV) {
if (!CurRec)
CurRec = &CurMultiClass->Rec;
if (RecordVal *ERV = CurRec->getValue(RV.getNameInit())) {
// The value already exists in the class, treat this as a set.
if (ERV->setValue(RV.getValue()))
return Error(Loc, "New definition of '" + RV.getName() + "' of type '" +
RV.getType()->getAsString() + "' is incompatible with " +
"previous definition of type '" +
ERV->getType()->getAsString() + "'");
} else {
CurRec->addValue(RV);
}
return false;
}
/// SetValue -
/// Return true on error, false on success.
bool TGParser::SetValue(Record *CurRec, SMLoc Loc, Init *ValName,
ArrayRef<unsigned> BitList, Init *V,
bool AllowSelfAssignment) {
if (!V) return false;
if (!CurRec) CurRec = &CurMultiClass->Rec;
RecordVal *RV = CurRec->getValue(ValName);
if (!RV)
return Error(Loc, "Value '" + ValName->getAsUnquotedString() +
"' unknown!");
// Do not allow assignments like 'X = X'. This will just cause infinite loops
// in the resolution machinery.
if (BitList.empty())
if (VarInit *VI = dyn_cast<VarInit>(V))
if (VI->getNameInit() == ValName && !AllowSelfAssignment)
return true;
// If we are assigning to a subset of the bits in the value... then we must be
// assigning to a field of BitsRecTy, which must have a BitsInit
// initializer.
//
if (!BitList.empty()) {
BitsInit *CurVal = dyn_cast<BitsInit>(RV->getValue());
if (!CurVal)
return Error(Loc, "Value '" + ValName->getAsUnquotedString() +
"' is not a bits type");
// Convert the incoming value to a bits type of the appropriate size...
Init *BI = V->convertInitializerTo(BitsRecTy::get(BitList.size()));
if (!BI)
return Error(Loc, "Initializer is not compatible with bit range");
// We should have a BitsInit type now.
BitsInit *BInit = cast<BitsInit>(BI);
SmallVector<Init *, 16> NewBits(CurVal->getNumBits());
// Loop over bits, assigning values as appropriate.
for (unsigned i = 0, e = BitList.size(); i != e; ++i) {
unsigned Bit = BitList[i];
if (NewBits[Bit])
return Error(Loc, "Cannot set bit #" + Twine(Bit) + " of value '" +
ValName->getAsUnquotedString() + "' more than once");
NewBits[Bit] = BInit->getBit(i);
}
for (unsigned i = 0, e = CurVal->getNumBits(); i != e; ++i)
if (!NewBits[i])
NewBits[i] = CurVal->getBit(i);
V = BitsInit::get(NewBits);
}
if (RV->setValue(V)) {
std::string InitType;
if (BitsInit *BI = dyn_cast<BitsInit>(V))
InitType = (Twine("' of type bit initializer with length ") +
Twine(BI->getNumBits())).str();
return Error(Loc, "Value '" + ValName->getAsUnquotedString() +
"' of type '" + RV->getType()->getAsString() +
"' is incompatible with initializer '" + V->getAsString() +
InitType + "'");
}
return false;
}
/// AddSubClass - Add SubClass as a subclass to CurRec, resolving its template
/// args as SubClass's template arguments.
bool TGParser::AddSubClass(Record *CurRec, SubClassReference &SubClass) {
Record *SC = SubClass.Rec;
// Add all of the values in the subclass into the current class.
for (const RecordVal &Val : SC->getValues())
if (AddValue(CurRec, SubClass.RefRange.Start, Val))
return true;
ArrayRef<Init *> TArgs = SC->getTemplateArgs();
// Ensure that an appropriate number of template arguments are specified.
if (TArgs.size() < SubClass.TemplateArgs.size())
return Error(SubClass.RefRange.Start,
"More template args specified than expected");
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
if (i < SubClass.TemplateArgs.size()) {
// If a value is specified for this template arg, set it now.
if (SetValue(CurRec, SubClass.RefRange.Start, TArgs[i],
None, SubClass.TemplateArgs[i]))
return true;
// Resolve it next.
CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i]));
// Now remove it.
CurRec->removeValue(TArgs[i]);
} else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) {
return Error(SubClass.RefRange.Start,
"Value not specified for template argument #" +
Twine(i) + " (" + TArgs[i]->getAsUnquotedString() +
") of subclass '" + SC->getNameInitAsString() + "'!");
}
}
// Since everything went well, we can now set the "superclass" list for the
// current record.
ArrayRef<std::pair<Record *, SMRange>> SCs = SC->getSuperClasses();
for (const auto &SCPair : SCs) {
if (CurRec->isSubClassOf(SCPair.first))
return Error(SubClass.RefRange.Start,
"Already subclass of '" + SCPair.first->getName() + "'!\n");
CurRec->addSuperClass(SCPair.first, SCPair.second);
}
if (CurRec->isSubClassOf(SC))
return Error(SubClass.RefRange.Start,
"Already subclass of '" + SC->getName() + "'!\n");
CurRec->addSuperClass(SC, SubClass.RefRange);
return false;
}
/// AddSubMultiClass - Add SubMultiClass as a subclass to
/// CurMC, resolving its template args as SubMultiClass's
/// template arguments.
bool TGParser::AddSubMultiClass(MultiClass *CurMC,
SubMultiClassReference &SubMultiClass) {
MultiClass *SMC = SubMultiClass.MC;
Record *CurRec = &CurMC->Rec;
// Add all of the values in the subclass into the current class.
for (const auto &SMCVal : SMC->Rec.getValues())
if (AddValue(CurRec, SubMultiClass.RefRange.Start, SMCVal))
return true;
unsigned newDefStart = CurMC->DefPrototypes.size();
// Add all of the defs in the subclass into the current multiclass.
for (const std::unique_ptr<Record> &R : SMC->DefPrototypes) {
// Clone the def and add it to the current multiclass
auto NewDef = make_unique<Record>(*R);
// Add all of the values in the superclass into the current def.
for (const auto &MCVal : CurRec->getValues())
if (AddValue(NewDef.get(), SubMultiClass.RefRange.Start, MCVal))
return true;
CurMC->DefPrototypes.push_back(std::move(NewDef));
}
ArrayRef<Init *> SMCTArgs = SMC->Rec.getTemplateArgs();
// Ensure that an appropriate number of template arguments are
// specified.
if (SMCTArgs.size() < SubMultiClass.TemplateArgs.size())
return Error(SubMultiClass.RefRange.Start,
"More template args specified than expected");
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
for (unsigned i = 0, e = SMCTArgs.size(); i != e; ++i) {
if (i < SubMultiClass.TemplateArgs.size()) {
// If a value is specified for this template arg, set it in the
// superclass now.
if (SetValue(CurRec, SubMultiClass.RefRange.Start, SMCTArgs[i],
None, SubMultiClass.TemplateArgs[i]))
return true;
// Resolve it next.
CurRec->resolveReferencesTo(CurRec->getValue(SMCTArgs[i]));
// Now remove it.
CurRec->removeValue(SMCTArgs[i]);
// If a value is specified for this template arg, set it in the
// new defs now.
for (const auto &Def :
makeArrayRef(CurMC->DefPrototypes).slice(newDefStart)) {
if (SetValue(Def.get(), SubMultiClass.RefRange.Start, SMCTArgs[i],
None, SubMultiClass.TemplateArgs[i]))
return true;
// Resolve it next.
Def->resolveReferencesTo(Def->getValue(SMCTArgs[i]));
// Now remove it
Def->removeValue(SMCTArgs[i]);
}
} else if (!CurRec->getValue(SMCTArgs[i])->getValue()->isComplete()) {
return Error(SubMultiClass.RefRange.Start,
"Value not specified for template argument #" +
Twine(i) + " (" + SMCTArgs[i]->getAsUnquotedString() +
") of subclass '" + SMC->Rec.getNameInitAsString() + "'!");
}
}
return false;
}
/// ProcessForeachDefs - Given a record, apply all of the variable
/// values in all surrounding foreach loops, creating new records for
/// each combination of values.
bool TGParser::ProcessForeachDefs(Record *CurRec, SMLoc Loc) {
if (Loops.empty())
return false;
// We want to instantiate a new copy of CurRec for each combination
// of nested loop iterator values. We don't want top instantiate
// any copies until we have values for each loop iterator.
IterSet IterVals;
return ProcessForeachDefs(CurRec, Loc, IterVals);
}
/// ProcessForeachDefs - Given a record, a loop and a loop iterator,
/// apply each of the variable values in this loop and then process
/// subloops.
bool TGParser::ProcessForeachDefs(Record *CurRec, SMLoc Loc, IterSet &IterVals){
// Recursively build a tuple of iterator values.
if (IterVals.size() != Loops.size()) {
assert(IterVals.size() < Loops.size());
ForeachLoop &CurLoop = Loops[IterVals.size()];
ListInit *List = dyn_cast<ListInit>(CurLoop.ListValue);
if (!List) {
Error(Loc, "Loop list is not a list");
return true;
}
// Process each value.
for (unsigned i = 0; i < List->size(); ++i) {
Init *ItemVal = List->resolveListElementReference(*CurRec, nullptr, i);
IterVals.push_back(IterRecord(CurLoop.IterVar, ItemVal));
if (ProcessForeachDefs(CurRec, Loc, IterVals))
return true;
IterVals.pop_back();
}
return false;
}
// This is the bottom of the recursion. We have all of the iterator values
// for this point in the iteration space. Instantiate a new record to
// reflect this combination of values.
auto IterRec = make_unique<Record>(*CurRec);
// Set the iterator values now.
for (IterRecord &IR : IterVals) {
VarInit *IterVar = IR.IterVar;
TypedInit *IVal = dyn_cast<TypedInit>(IR.IterValue);
if (!IVal)
return Error(Loc, "foreach iterator value is untyped");
IterRec->addValue(RecordVal(IterVar->getNameInit(), IVal->getType(), false));
if (SetValue(IterRec.get(), Loc, IterVar->getNameInit(), None, IVal))
return Error(Loc, "when instantiating this def");
// Resolve it next.
IterRec->resolveReferencesTo(IterRec->getValue(IterVar->getNameInit()));
// Remove it.
IterRec->removeValue(IterVar->getNameInit());
}
if (Records.getDef(IterRec->getNameInitAsString())) {
// If this record is anonymous, it's no problem, just generate a new name
if (!IterRec->isAnonymous())
return Error(Loc, "def already exists: " +IterRec->getNameInitAsString());
IterRec->setName(GetNewAnonymousName());
}
Record *IterRecSave = IterRec.get(); // Keep a copy before release.
Records.addDef(std::move(IterRec));
IterRecSave->resolveReferences();
return false;
}
//===----------------------------------------------------------------------===//
// Parser Code
//===----------------------------------------------------------------------===//
/// isObjectStart - Return true if this is a valid first token for an Object.
static bool isObjectStart(tgtok::TokKind K) {
return K == tgtok::Class || K == tgtok::Def ||
K == tgtok::Defm || K == tgtok::Let ||
K == tgtok::MultiClass || K == tgtok::Foreach;
}
/// GetNewAnonymousName - Generate a unique anonymous name that can be used as
/// an identifier.
Init *TGParser::GetNewAnonymousName() {
return StringInit::get("anonymous_" + utostr(AnonCounter++));
}
/// ParseObjectName - If an object name is specified, return it. Otherwise,
/// return 0.
/// ObjectName ::= Value [ '#' Value ]*
/// ObjectName ::= /*empty*/
///
Init *TGParser::ParseObjectName(MultiClass *CurMultiClass) {
switch (Lex.getCode()) {
case tgtok::colon:
case tgtok::semi:
case tgtok::l_brace:
// These are all of the tokens that can begin an object body.
// Some of these can also begin values but we disallow those cases
// because they are unlikely to be useful.
return nullptr;
default:
break;
}
Record *CurRec = nullptr;
if (CurMultiClass)
CurRec = &CurMultiClass->Rec;
RecTy *Type = nullptr;
if (CurRec) {
const TypedInit *CurRecName = dyn_cast<TypedInit>(CurRec->getNameInit());
if (!CurRecName) {
TokError("Record name is not typed!");
return nullptr;
}
Type = CurRecName->getType();
}
return ParseValue(CurRec, Type, ParseNameMode);
}
/// ParseClassID - Parse and resolve a reference to a class name. This returns
/// null on error.
///
/// ClassID ::= ID
///
Record *TGParser::ParseClassID() {
if (Lex.getCode() != tgtok::Id) {
TokError("expected name for ClassID");
return nullptr;
}
Record *Result = Records.getClass(Lex.getCurStrVal());
if (!Result)
TokError("Couldn't find class '" + Lex.getCurStrVal() + "'");
Lex.Lex();
return Result;
}
/// ParseMultiClassID - Parse and resolve a reference to a multiclass name.
/// This returns null on error.
///
/// MultiClassID ::= ID
///
MultiClass *TGParser::ParseMultiClassID() {
if (Lex.getCode() != tgtok::Id) {
TokError("expected name for MultiClassID");
return nullptr;
}
MultiClass *Result = MultiClasses[Lex.getCurStrVal()].get();
if (!Result)
TokError("Couldn't find multiclass '" + Lex.getCurStrVal() + "'");
Lex.Lex();
return Result;
}
/// ParseSubClassReference - Parse a reference to a subclass or to a templated
/// subclass. This returns a SubClassRefTy with a null Record* on error.
///
/// SubClassRef ::= ClassID
/// SubClassRef ::= ClassID '<' ValueList '>'
///
SubClassReference TGParser::
ParseSubClassReference(Record *CurRec, bool isDefm) {
SubClassReference Result;
Result.RefRange.Start = Lex.getLoc();
if (isDefm) {
if (MultiClass *MC = ParseMultiClassID())
Result.Rec = &MC->Rec;
} else {
Result.Rec = ParseClassID();
}
if (!Result.Rec) return Result;
// If there is no template arg list, we're done.
if (Lex.getCode() != tgtok::less) {
Result.RefRange.End = Lex.getLoc();
return Result;
}
Lex.Lex(); // Eat the '<'
if (Lex.getCode() == tgtok::greater) {
TokError("subclass reference requires a non-empty list of template values");
Result.Rec = nullptr;
return Result;
}
ParseValueList(Result.TemplateArgs, CurRec, Result.Rec);
if (Result.TemplateArgs.empty()) {
Result.Rec = nullptr; // Error parsing value list.
return Result;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' in template value list");
Result.Rec = nullptr;
return Result;
}
Lex.Lex();
Result.RefRange.End = Lex.getLoc();
return Result;
}
/// ParseSubMultiClassReference - Parse a reference to a subclass or to a
/// templated submulticlass. This returns a SubMultiClassRefTy with a null
/// Record* on error.
///
/// SubMultiClassRef ::= MultiClassID
/// SubMultiClassRef ::= MultiClassID '<' ValueList '>'
///
SubMultiClassReference TGParser::
ParseSubMultiClassReference(MultiClass *CurMC) {
SubMultiClassReference Result;
Result.RefRange.Start = Lex.getLoc();
Result.MC = ParseMultiClassID();
if (!Result.MC) return Result;
// If there is no template arg list, we're done.
if (Lex.getCode() != tgtok::less) {
Result.RefRange.End = Lex.getLoc();
return Result;
}
Lex.Lex(); // Eat the '<'
if (Lex.getCode() == tgtok::greater) {
TokError("subclass reference requires a non-empty list of template values");
Result.MC = nullptr;
return Result;
}
ParseValueList(Result.TemplateArgs, &CurMC->Rec, &Result.MC->Rec);
if (Result.TemplateArgs.empty()) {
Result.MC = nullptr; // Error parsing value list.
return Result;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' in template value list");
Result.MC = nullptr;
return Result;
}
Lex.Lex();
Result.RefRange.End = Lex.getLoc();
return Result;
}
/// ParseRangePiece - Parse a bit/value range.
/// RangePiece ::= INTVAL
/// RangePiece ::= INTVAL '-' INTVAL
/// RangePiece ::= INTVAL INTVAL
bool TGParser::ParseRangePiece(SmallVectorImpl<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::IntVal) {
TokError("expected integer or bitrange");
return true;
}
int64_t Start = Lex.getCurIntVal();
int64_t End;
if (Start < 0)
return TokError("invalid range, cannot be negative");
switch (Lex.Lex()) { // eat first character.
default:
Ranges.push_back(Start);
return false;
case tgtok::minus:
if (Lex.Lex() != tgtok::IntVal) {
TokError("expected integer value as end of range");
return true;
}
End = Lex.getCurIntVal();
break;
case tgtok::IntVal:
End = -Lex.getCurIntVal();
break;
}
if (End < 0)
return TokError("invalid range, cannot be negative");
Lex.Lex();
// Add to the range.
if (Start < End)
for (; Start <= End; ++Start)
Ranges.push_back(Start);
else
for (; Start >= End; --Start)
Ranges.push_back(Start);
return false;
}
/// ParseRangeList - Parse a list of scalars and ranges into scalar values.
///
/// RangeList ::= RangePiece (',' RangePiece)*
///
void TGParser::ParseRangeList(SmallVectorImpl<unsigned> &Result) {
// Parse the first piece.
if (ParseRangePiece(Result)) {
Result.clear();
return;
}
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // Eat the comma.
// Parse the next range piece.
if (ParseRangePiece(Result)) {
Result.clear();
return;
}
}
}
/// ParseOptionalRangeList - Parse either a range list in <>'s or nothing.
/// OptionalRangeList ::= '<' RangeList '>'
/// OptionalRangeList ::= /*empty*/
bool TGParser::ParseOptionalRangeList(SmallVectorImpl<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::less)
return false;
SMLoc StartLoc = Lex.getLoc();
Lex.Lex(); // eat the '<'
// Parse the range list.
ParseRangeList(Ranges);
if (Ranges.empty()) return true;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of range list");
return Error(StartLoc, "to match this '<'");
}
Lex.Lex(); // eat the '>'.
return false;
}
/// ParseOptionalBitList - Parse either a bit list in {}'s or nothing.
/// OptionalBitList ::= '{' RangeList '}'
/// OptionalBitList ::= /*empty*/
bool TGParser::ParseOptionalBitList(SmallVectorImpl<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::l_brace)
return false;
SMLoc StartLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
// Parse the range list.
ParseRangeList(Ranges);
if (Ranges.empty()) return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit list");
return Error(StartLoc, "to match this '{'");
}
Lex.Lex(); // eat the '}'.
return false;
}
/// ParseType - Parse and return a tblgen type. This returns null on error.
///
/// Type ::= STRING // string type
/// Type ::= CODE // code type
/// Type ::= BIT // bit type
/// Type ::= BITS '<' INTVAL '>' // bits<x> type
/// Type ::= INT // int type
/// Type ::= LIST '<' Type '>' // list<x> type
/// Type ::= DAG // dag type
/// Type ::= ClassID // Record Type
///
RecTy *TGParser::ParseType() {
switch (Lex.getCode()) {
default: TokError("Unknown token when expecting a type"); return nullptr;
case tgtok::String: Lex.Lex(); return StringRecTy::get();
case tgtok::Code: Lex.Lex(); return CodeRecTy::get();
case tgtok::Bit: Lex.Lex(); return BitRecTy::get();
case tgtok::Int: Lex.Lex(); return IntRecTy::get();
case tgtok::Dag: Lex.Lex(); return DagRecTy::get();
case tgtok::Id:
if (Record *R = ParseClassID()) return RecordRecTy::get(R);
return nullptr;
case tgtok::Bits: {
if (Lex.Lex() != tgtok::less) { // Eat 'bits'
TokError("expected '<' after bits type");
return nullptr;
}
if (Lex.Lex() != tgtok::IntVal) { // Eat '<'
TokError("expected integer in bits<n> type");
return nullptr;
}
uint64_t Val = Lex.getCurIntVal();
if (Lex.Lex() != tgtok::greater) { // Eat count.
TokError("expected '>' at end of bits<n> type");
return nullptr;
}
Lex.Lex(); // Eat '>'
return BitsRecTy::get(Val);
}
case tgtok::List: {
if (Lex.Lex() != tgtok::less) { // Eat 'bits'
TokError("expected '<' after list type");
return nullptr;
}
Lex.Lex(); // Eat '<'
RecTy *SubType = ParseType();
if (!SubType) return nullptr;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of list<ty> type");
return nullptr;
}
Lex.Lex(); // Eat '>'
return ListRecTy::get(SubType);
}
}
}
/// ParseIDValue - This is just like ParseIDValue above, but it assumes the ID
/// has already been read.
Init *TGParser::ParseIDValue(Record *CurRec, StringInit *Name, SMLoc NameLoc,
IDParseMode Mode) {
if (CurRec) {
if (const RecordVal *RV = CurRec->getValue(Name))
return VarInit::get(Name, RV->getType());
Init *TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name, ":");
if (CurMultiClass)
TemplateArgName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name,
"::");
if (CurRec->isTemplateArg(TemplateArgName)) {
const RecordVal *RV = CurRec->getValue(TemplateArgName);
assert(RV && "Template arg doesn't exist??");
return VarInit::get(TemplateArgName, RV->getType());
}
}
if (CurMultiClass) {
Init *MCName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::");
if (CurMultiClass->Rec.isTemplateArg(MCName)) {
const RecordVal *RV = CurMultiClass->Rec.getValue(MCName);
assert(RV && "Template arg doesn't exist??");
return VarInit::get(MCName, RV->getType());
}
}
// If this is in a foreach loop, make sure it's not a loop iterator
for (const auto &L : Loops) {
VarInit *IterVar = dyn_cast<VarInit>(L.IterVar);
if (IterVar && IterVar->getNameInit() == Name)
return IterVar;
}
if (Mode == ParseNameMode)
return Name;
if (Record *D = Records.getDef(Name->getValue()))
return DefInit::get(D);
if (Mode == ParseValueMode) {
Error(NameLoc, "Variable not defined: '" + Name->getValue() + "'");
return nullptr;
}
return Name;
}
/// ParseOperation - Parse an operator. This returns null on error.
///
/// Operation ::= XOperator ['<' Type '>'] '(' Args ')'
///
Init *TGParser::ParseOperation(Record *CurRec, RecTy *ItemType) {
switch (Lex.getCode()) {
default:
TokError("unknown operation");
return nullptr;
case tgtok::XHead:
case tgtok::XTail:
case tgtok::XEmpty:
case tgtok::XCast: { // Value ::= !unop '(' Value ')'
UnOpInit::UnaryOp Code;
RecTy *Type = nullptr;
switch (Lex.getCode()) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XCast:
Lex.Lex(); // eat the operation
Code = UnOpInit::CAST;
Type = ParseOperatorType();
if (!Type) {
TokError("did not get type for unary operator");
return nullptr;
}
break;
case tgtok::XHead:
Lex.Lex(); // eat the operation
Code = UnOpInit::HEAD;
break;
case tgtok::XTail:
Lex.Lex(); // eat the operation
Code = UnOpInit::TAIL;
break;
case tgtok::XEmpty:
Lex.Lex(); // eat the operation
Code = UnOpInit::EMPTY;
Type = IntRecTy::get();
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after unary operator");
return nullptr;
}
Lex.Lex(); // eat the '('
Init *LHS = ParseValue(CurRec);
if (!LHS) return nullptr;
if (Code == UnOpInit::HEAD ||
Code == UnOpInit::TAIL ||
Code == UnOpInit::EMPTY) {
ListInit *LHSl = dyn_cast<ListInit>(LHS);
StringInit *LHSs = dyn_cast<StringInit>(LHS);
TypedInit *LHSt = dyn_cast<TypedInit>(LHS);
if (!LHSl && !LHSs && !LHSt) {
TokError("expected list or string type argument in unary operator");
return nullptr;
}
if (LHSt) {
ListRecTy *LType = dyn_cast<ListRecTy>(LHSt->getType());
StringRecTy *SType = dyn_cast<StringRecTy>(LHSt->getType());
if (!LType && !SType) {
TokError("expected list or string type argument in unary operator");
return nullptr;
}
}
if (Code == UnOpInit::HEAD || Code == UnOpInit::TAIL) {
if (!LHSl && !LHSt) {
TokError("expected list type argument in unary operator");
return nullptr;
}
if (LHSl && LHSl->empty()) {
TokError("empty list argument in unary operator");
return nullptr;
}
if (LHSl) {
Init *Item = LHSl->getElement(0);
TypedInit *Itemt = dyn_cast<TypedInit>(Item);
if (!Itemt) {
TokError("untyped list element in unary operator");
return nullptr;
}
Type = (Code == UnOpInit::HEAD) ? Itemt->getType()
: ListRecTy::get(Itemt->getType());
} else {
assert(LHSt && "expected list type argument in unary operator");
ListRecTy *LType = dyn_cast<ListRecTy>(LHSt->getType());
if (!LType) {
TokError("expected list type argument in unary operator");
return nullptr;
}
Type = (Code == UnOpInit::HEAD) ? LType->getElementType() : LType;
}
}
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in unary operator");
return nullptr;
}
Lex.Lex(); // eat the ')'
return (UnOpInit::get(Code, LHS, Type))->Fold(CurRec, CurMultiClass);
}
case tgtok::XConcat:
case tgtok::XADD:
case tgtok::XAND:
case tgtok::XOR:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
case tgtok::XEq:
case tgtok::XListConcat:
case tgtok::XStrConcat: { // Value ::= !binop '(' Value ',' Value ')'
tgtok::TokKind OpTok = Lex.getCode();
SMLoc OpLoc = Lex.getLoc();
Lex.Lex(); // eat the operation
BinOpInit::BinaryOp Code;
RecTy *Type = nullptr;
switch (OpTok) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XConcat: Code = BinOpInit::CONCAT;Type = DagRecTy::get(); break;
case tgtok::XADD: Code = BinOpInit::ADD; Type = IntRecTy::get(); break;
case tgtok::XAND: Code = BinOpInit::AND; Type = IntRecTy::get(); break;
case tgtok::XOR: Code = BinOpInit::OR; Type = IntRecTy::get(); break;
case tgtok::XSRA: Code = BinOpInit::SRA; Type = IntRecTy::get(); break;
case tgtok::XSRL: Code = BinOpInit::SRL; Type = IntRecTy::get(); break;
case tgtok::XSHL: Code = BinOpInit::SHL; Type = IntRecTy::get(); break;
case tgtok::XEq: Code = BinOpInit::EQ; Type = BitRecTy::get(); break;
case tgtok::XListConcat:
Code = BinOpInit::LISTCONCAT;
// We don't know the list type until we parse the first argument
break;
case tgtok::XStrConcat:
Code = BinOpInit::STRCONCAT;
Type = StringRecTy::get();
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after binary operator");
return nullptr;
}
Lex.Lex(); // eat the '('
SmallVector<Init*, 2> InitList;
InitList.push_back(ParseValue(CurRec));
if (!InitList.back()) return nullptr;
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // eat the ','
InitList.push_back(ParseValue(CurRec));
if (!InitList.back()) return nullptr;
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in operator");
return nullptr;
}
Lex.Lex(); // eat the ')'
// If we are doing !listconcat, we should know the type by now
if (OpTok == tgtok::XListConcat) {
if (VarInit *Arg0 = dyn_cast<VarInit>(InitList[0]))
Type = Arg0->getType();
else if (ListInit *Arg0 = dyn_cast<ListInit>(InitList[0]))
Type = Arg0->getType();
else {
InitList[0]->print(errs());
Error(OpLoc, "expected a list");
return nullptr;
}
}
// We allow multiple operands to associative operators like !strconcat as
// shorthand for nesting them.
if (Code == BinOpInit::STRCONCAT || Code == BinOpInit::LISTCONCAT) {
while (InitList.size() > 2) {
Init *RHS = InitList.pop_back_val();
RHS = (BinOpInit::get(Code, InitList.back(), RHS, Type))
->Fold(CurRec, CurMultiClass);
InitList.back() = RHS;
}
}
if (InitList.size() == 2)
return (BinOpInit::get(Code, InitList[0], InitList[1], Type))
->Fold(CurRec, CurMultiClass);
Error(OpLoc, "expected two operands to operator");
return nullptr;
}
case tgtok::XIf:
case tgtok::XForEach:
case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')'
TernOpInit::TernaryOp Code;
RecTy *Type = nullptr;
tgtok::TokKind LexCode = Lex.getCode();
Lex.Lex(); // eat the operation
switch (LexCode) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XIf:
Code = TernOpInit::IF;
break;
case tgtok::XForEach:
Code = TernOpInit::FOREACH;
break;
case tgtok::XSubst:
Code = TernOpInit::SUBST;
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after ternary operator");
return nullptr;
}
Lex.Lex(); // eat the '('
Init *LHS = ParseValue(CurRec);
if (!LHS) return nullptr;
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in ternary operator");
return nullptr;
}
Lex.Lex(); // eat the ','
Init *MHS = ParseValue(CurRec, ItemType);
if (!MHS)
return nullptr;
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in ternary operator");
return nullptr;
}
Lex.Lex(); // eat the ','
Init *RHS = ParseValue(CurRec, ItemType);
if (!RHS)
return nullptr;
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in binary operator");
return nullptr;
}
Lex.Lex(); // eat the ')'
switch (LexCode) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XIf: {
RecTy *MHSTy = nullptr;
RecTy *RHSTy = nullptr;
if (TypedInit *MHSt = dyn_cast<TypedInit>(MHS))
MHSTy = MHSt->getType();
if (BitsInit *MHSbits = dyn_cast<BitsInit>(MHS))
MHSTy = BitsRecTy::get(MHSbits->getNumBits());
if (isa<BitInit>(MHS))
MHSTy = BitRecTy::get();
if (TypedInit *RHSt = dyn_cast<TypedInit>(RHS))
RHSTy = RHSt->getType();
if (BitsInit *RHSbits = dyn_cast<BitsInit>(RHS))
RHSTy = BitsRecTy::get(RHSbits->getNumBits());
if (isa<BitInit>(RHS))
RHSTy = BitRecTy::get();
// For UnsetInit, it's typed from the other hand.
if (isa<UnsetInit>(MHS))
MHSTy = RHSTy;
if (isa<UnsetInit>(RHS))
RHSTy = MHSTy;
if (!MHSTy || !RHSTy) {
TokError("could not get type for !if");
return nullptr;
}
if (MHSTy->typeIsConvertibleTo(RHSTy)) {
Type = RHSTy;
} else if (RHSTy->typeIsConvertibleTo(MHSTy)) {
Type = MHSTy;
} else {
TokError("inconsistent types for !if");
return nullptr;
}
break;
}
case tgtok::XForEach: {
TypedInit *MHSt = dyn_cast<TypedInit>(MHS);
if (!MHSt) {
TokError("could not get type for !foreach");
return nullptr;
}
Type = MHSt->getType();
break;
}
case tgtok::XSubst: {
TypedInit *RHSt = dyn_cast<TypedInit>(RHS);
if (!RHSt) {
TokError("could not get type for !subst");
return nullptr;
}
Type = RHSt->getType();
break;
}
}
return (TernOpInit::get(Code, LHS, MHS, RHS, Type))->Fold(CurRec,
CurMultiClass);
}
}
}
/// ParseOperatorType - Parse a type for an operator. This returns
/// null on error.
///
/// OperatorType ::= '<' Type '>'
///
RecTy *TGParser::ParseOperatorType() {
RecTy *Type = nullptr;
if (Lex.getCode() != tgtok::less) {
TokError("expected type name for operator");
return nullptr;
}
Lex.Lex(); // eat the <
Type = ParseType();
if (!Type) {
TokError("expected type name for operator");
return nullptr;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected type name for operator");
return nullptr;
}
Lex.Lex(); // eat the >
return Type;
}
/// ParseSimpleValue - Parse a tblgen value. This returns null on error.
///
/// SimpleValue ::= IDValue
/// SimpleValue ::= INTVAL
/// SimpleValue ::= STRVAL+
/// SimpleValue ::= CODEFRAGMENT
/// SimpleValue ::= '?'
/// SimpleValue ::= '{' ValueList '}'
/// SimpleValue ::= ID '<' ValueListNE '>'
/// SimpleValue ::= '[' ValueList ']'
/// SimpleValue ::= '(' IDValue DagArgList ')'
/// SimpleValue ::= CONCATTOK '(' Value ',' Value ')'
/// SimpleValue ::= ADDTOK '(' Value ',' Value ')'
/// SimpleValue ::= SHLTOK '(' Value ',' Value ')'
/// SimpleValue ::= SRATOK '(' Value ',' Value ')'
/// SimpleValue ::= SRLTOK '(' Value ',' Value ')'
/// SimpleValue ::= LISTCONCATTOK '(' Value ',' Value ')'
/// SimpleValue ::= STRCONCATTOK '(' Value ',' Value ')'
///
Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType,
IDParseMode Mode) {
Init *R = nullptr;
switch (Lex.getCode()) {
default: TokError("Unknown token when parsing a value"); break;
case tgtok::paste:
// This is a leading paste operation. This is deprecated but
// still exists in some .td files. Ignore it.
Lex.Lex(); // Skip '#'.
return ParseSimpleValue(CurRec, ItemType, Mode);
case tgtok::IntVal: R = IntInit::get(Lex.getCurIntVal()); Lex.Lex(); break;
case tgtok::BinaryIntVal: {
auto BinaryVal = Lex.getCurBinaryIntVal();
SmallVector<Init*, 16> Bits(BinaryVal.second);
for (unsigned i = 0, e = BinaryVal.second; i != e; ++i)
Bits[i] = BitInit::get(BinaryVal.first & (1LL << i));
R = BitsInit::get(Bits);
Lex.Lex();
break;
}
case tgtok::StrVal: {
std::string Val = Lex.getCurStrVal();
Lex.Lex();
// Handle multiple consecutive concatenated strings.
while (Lex.getCode() == tgtok::StrVal) {
Val += Lex.getCurStrVal();
Lex.Lex();
}
R = StringInit::get(Val);
break;
}
case tgtok::CodeFragment:
R = CodeInit::get(Lex.getCurStrVal());
Lex.Lex();
break;
case tgtok::question:
R = UnsetInit::get();
Lex.Lex();
break;
case tgtok::Id: {
SMLoc NameLoc = Lex.getLoc();
StringInit *Name = StringInit::get(Lex.getCurStrVal());
if (Lex.Lex() != tgtok::less) // consume the Id.
return ParseIDValue(CurRec, Name, NameLoc, Mode); // Value ::= IDValue
// Value ::= ID '<' ValueListNE '>'
if (Lex.Lex() == tgtok::greater) {
TokError("expected non-empty value list");
return nullptr;
}
// This is a CLASS<initvalslist> expression. This is supposed to synthesize
// a new anonymous definition, deriving from CLASS<initvalslist> with no
// body.
Record *Class = Records.getClass(Name->getValue());
if (!Class) {
Error(NameLoc, "Expected a class name, got '" + Name->getValue() + "'");
return nullptr;
}
SubClassReference SCRef;
ParseValueList(SCRef.TemplateArgs, CurRec, Class);
if (SCRef.TemplateArgs.empty()) return nullptr;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of value list");
return nullptr;
}
Lex.Lex(); // eat the '>'
SMLoc EndLoc = Lex.getLoc();
// Create the new record, set it as CurRec temporarily.
auto NewRecOwner = llvm::make_unique<Record>(GetNewAnonymousName(), NameLoc,
Records, /*IsAnonymous=*/true);
Record *NewRec = NewRecOwner.get(); // Keep a copy since we may release.
SCRef.RefRange = SMRange(NameLoc, EndLoc);
SCRef.Rec = Class;
// Add info about the subclass to NewRec.
if (AddSubClass(NewRec, SCRef))
return nullptr;
if (!CurMultiClass) {
NewRec->resolveReferences();
Records.addDef(std::move(NewRecOwner));
} else {
// This needs to get resolved once the multiclass template arguments are
// known before any use.
NewRec->setResolveFirst(true);
// Otherwise, we're inside a multiclass, add it to the multiclass.
CurMultiClass->DefPrototypes.push_back(std::move(NewRecOwner));
// Copy the template arguments for the multiclass into the def.
for (Init *TArg : CurMultiClass->Rec.getTemplateArgs()) {
const RecordVal *RV = CurMultiClass->Rec.getValue(TArg);
assert(RV && "Template arg doesn't exist?");
NewRec->addValue(*RV);
}
// We can't return the prototype def here, instead return:
// !cast<ItemType>(!strconcat(NAME, AnonName)).
const RecordVal *MCNameRV = CurMultiClass->Rec.getValue("NAME");
assert(MCNameRV && "multiclass record must have a NAME");
return UnOpInit::get(UnOpInit::CAST,
BinOpInit::get(BinOpInit::STRCONCAT,
VarInit::get(MCNameRV->getName(),
MCNameRV->getType()),
NewRec->getNameInit(),
StringRecTy::get()),
Class->getDefInit()->getType());
}
// The result of the expression is a reference to the new record.
return DefInit::get(NewRec);
}
case tgtok::l_brace: { // Value ::= '{' ValueList '}'
SMLoc BraceLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
SmallVector<Init*, 16> Vals;
if (Lex.getCode() != tgtok::r_brace) {
ParseValueList(Vals, CurRec);
if (Vals.empty()) return nullptr;
}
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit list value");
return nullptr;
}
Lex.Lex(); // eat the '}'
SmallVector<Init *, 16> NewBits;
// As we parse { a, b, ... }, 'a' is the highest bit, but we parse it
// first. We'll first read everything in to a vector, then we can reverse
// it to get the bits in the correct order for the BitsInit value.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
// FIXME: The following two loops would not be duplicated
// if the API was a little more orthogonal.
// bits<n> values are allowed to initialize n bits.
if (BitsInit *BI = dyn_cast<BitsInit>(Vals[i])) {
for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i)
NewBits.push_back(BI->getBit((e - i) - 1));
continue;
}
// bits<n> can also come from variable initializers.
if (VarInit *VI = dyn_cast<VarInit>(Vals[i])) {
if (BitsRecTy *BitsRec = dyn_cast<BitsRecTy>(VI->getType())) {
for (unsigned i = 0, e = BitsRec->getNumBits(); i != e; ++i)
NewBits.push_back(VI->getBit((e - i) - 1));
continue;
}
// Fallthrough to try convert this to a bit.
}
// All other values must be convertible to just a single bit.
Init *Bit = Vals[i]->convertInitializerTo(BitRecTy::get());
if (!Bit) {
Error(BraceLoc, "Element #" + Twine(i) + " (" + Vals[i]->getAsString() +
") is not convertable to a bit");
return nullptr;
}
NewBits.push_back(Bit);
}
std::reverse(NewBits.begin(), NewBits.end());
return BitsInit::get(NewBits);
}
case tgtok::l_square: { // Value ::= '[' ValueList ']'
Lex.Lex(); // eat the '['
SmallVector<Init*, 16> Vals;
RecTy *DeducedEltTy = nullptr;
ListRecTy *GivenListTy = nullptr;
if (ItemType) {
ListRecTy *ListType = dyn_cast<ListRecTy>(ItemType);
if (!ListType) {
TokError(Twine("Type mismatch for list, expected list type, got ") +
ItemType->getAsString());
return nullptr;
}
GivenListTy = ListType;
}
if (Lex.getCode() != tgtok::r_square) {
ParseValueList(Vals, CurRec, nullptr,
GivenListTy ? GivenListTy->getElementType() : nullptr);
if (Vals.empty()) return nullptr;
}
if (Lex.getCode() != tgtok::r_square) {
TokError("expected ']' at end of list value");
return nullptr;
}
Lex.Lex(); // eat the ']'
RecTy *GivenEltTy = nullptr;
if (Lex.getCode() == tgtok::less) {
// Optional list element type
Lex.Lex(); // eat the '<'
GivenEltTy = ParseType();
if (!GivenEltTy) {
// Couldn't parse element type
return nullptr;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of list element type");
return nullptr;
}
Lex.Lex(); // eat the '>'
}
// Check elements
RecTy *EltTy = nullptr;
for (Init *V : Vals) {
TypedInit *TArg = dyn_cast<TypedInit>(V);
if (!TArg) {
TokError("Untyped list element");
return nullptr;
}
if (EltTy) {
EltTy = resolveTypes(EltTy, TArg->getType());
if (!EltTy) {
TokError("Incompatible types in list elements");
return nullptr;
}
} else {
EltTy = TArg->getType();
}
}
if (GivenEltTy) {
if (EltTy) {
// Verify consistency
if (!EltTy->typeIsConvertibleTo(GivenEltTy)) {
TokError("Incompatible types in list elements");
return nullptr;
}
}
EltTy = GivenEltTy;
}
if (!EltTy) {
if (!ItemType) {
TokError("No type for list");
return nullptr;
}
DeducedEltTy = GivenListTy->getElementType();
} else {
// Make sure the deduced type is compatible with the given type
if (GivenListTy) {
if (!EltTy->typeIsConvertibleTo(GivenListTy->getElementType())) {
TokError("Element type mismatch for list");
return nullptr;
}
}
DeducedEltTy = EltTy;
}
return ListInit::get(Vals, DeducedEltTy);
}
case tgtok::l_paren: { // Value ::= '(' IDValue DagArgList ')'
Lex.Lex(); // eat the '('
if (Lex.getCode() != tgtok::Id && Lex.getCode() != tgtok::XCast) {
TokError("expected identifier in dag init");
return nullptr;
}
Init *Operator = ParseValue(CurRec);
if (!Operator) return nullptr;
// If the operator name is present, parse it.
StringInit *OperatorName = nullptr;
if (Lex.getCode() == tgtok::colon) {
if (Lex.Lex() != tgtok::VarName) { // eat the ':'
TokError("expected variable name in dag operator");
return nullptr;
}
OperatorName = StringInit::get(Lex.getCurStrVal());
Lex.Lex(); // eat the VarName.
}
SmallVector<std::pair<llvm::Init*, StringInit*>, 8> DagArgs;
if (Lex.getCode() != tgtok::r_paren) {
ParseDagArgList(DagArgs, CurRec);
if (DagArgs.empty()) return nullptr;
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in dag init");
return nullptr;
}
Lex.Lex(); // eat the ')'
return DagInit::get(Operator, OperatorName, DagArgs);
}
case tgtok::XHead:
case tgtok::XTail:
case tgtok::XEmpty:
case tgtok::XCast: // Value ::= !unop '(' Value ')'
case tgtok::XConcat:
case tgtok::XADD:
case tgtok::XAND:
case tgtok::XOR:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
case tgtok::XEq:
case tgtok::XListConcat:
case tgtok::XStrConcat: // Value ::= !binop '(' Value ',' Value ')'
case tgtok::XIf:
case tgtok::XForEach:
case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')'
return ParseOperation(CurRec, ItemType);
}
}
return R;
}
/// ParseValue - Parse a tblgen value. This returns null on error.
///
/// Value ::= SimpleValue ValueSuffix*
/// ValueSuffix ::= '{' BitList '}'
/// ValueSuffix ::= '[' BitList ']'
/// ValueSuffix ::= '.' ID
///
Init *TGParser::ParseValue(Record *CurRec, RecTy *ItemType, IDParseMode Mode) {
Init *Result = ParseSimpleValue(CurRec, ItemType, Mode);
if (!Result) return nullptr;
// Parse the suffixes now if present.
while (true) {
switch (Lex.getCode()) {
default: return Result;
case tgtok::l_brace: {
if (Mode == ParseNameMode || Mode == ParseForeachMode)
// This is the beginning of the object body.
return Result;
SMLoc CurlyLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
SmallVector<unsigned, 16> Ranges;
ParseRangeList(Ranges);
if (Ranges.empty()) return nullptr;
// Reverse the bitlist.
std::reverse(Ranges.begin(), Ranges.end());
Result = Result->convertInitializerBitRange(Ranges);
if (!Result) {
Error(CurlyLoc, "Invalid bit range for value");
return nullptr;
}
// Eat the '}'.
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit range list");
return nullptr;
}
Lex.Lex();
break;
}
case tgtok::l_square: {
SMLoc SquareLoc = Lex.getLoc();
Lex.Lex(); // eat the '['
SmallVector<unsigned, 16> Ranges;
ParseRangeList(Ranges);
if (Ranges.empty()) return nullptr;
Result = Result->convertInitListSlice(Ranges);
if (!Result) {
Error(SquareLoc, "Invalid range for list slice");
return nullptr;
}
// Eat the ']'.
if (Lex.getCode() != tgtok::r_square) {
TokError("expected ']' at end of list slice");
return nullptr;
}
Lex.Lex();
break;
}
case tgtok::period: {
if (Lex.Lex() != tgtok::Id) { // eat the .
TokError("expected field identifier after '.'");
return nullptr;
}
StringInit *FieldName = StringInit::get(Lex.getCurStrVal());
if (!Result->getFieldType(FieldName)) {
TokError("Cannot access field '" + Lex.getCurStrVal() + "' of value '" +
Result->getAsString() + "'");
return nullptr;
}
Result = FieldInit::get(Result, FieldName);
Lex.Lex(); // eat field name
break;
}
case tgtok::paste:
SMLoc PasteLoc = Lex.getLoc();
// Create a !strconcat() operation, first casting each operand to
// a string if necessary.
TypedInit *LHS = dyn_cast<TypedInit>(Result);
if (!LHS) {
Error(PasteLoc, "LHS of paste is not typed!");
return nullptr;
}
if (LHS->getType() != StringRecTy::get()) {
LHS = UnOpInit::get(UnOpInit::CAST, LHS, StringRecTy::get());
}
TypedInit *RHS = nullptr;
Lex.Lex(); // Eat the '#'.
switch (Lex.getCode()) {
case tgtok::colon:
case tgtok::semi:
case tgtok::l_brace:
// These are all of the tokens that can begin an object body.
// Some of these can also begin values but we disallow those cases
// because they are unlikely to be useful.
// Trailing paste, concat with an empty string.
RHS = StringInit::get("");
break;
default:
Init *RHSResult = ParseValue(CurRec, ItemType, ParseNameMode);
RHS = dyn_cast<TypedInit>(RHSResult);
if (!RHS) {
Error(PasteLoc, "RHS of paste is not typed!");
return nullptr;
}
if (RHS->getType() != StringRecTy::get()) {
RHS = UnOpInit::get(UnOpInit::CAST, RHS, StringRecTy::get());
}
break;
}
Result = BinOpInit::get(BinOpInit::STRCONCAT, LHS, RHS,
StringRecTy::get())->Fold(CurRec, CurMultiClass);
break;
}
}
}
/// ParseDagArgList - Parse the argument list for a dag literal expression.
///
/// DagArg ::= Value (':' VARNAME)?
/// DagArg ::= VARNAME
/// DagArgList ::= DagArg
/// DagArgList ::= DagArgList ',' DagArg
void TGParser::ParseDagArgList(
SmallVectorImpl<std::pair<llvm::Init*, StringInit*>> &Result,
Record *CurRec) {
while (true) {
// DagArg ::= VARNAME
if (Lex.getCode() == tgtok::VarName) {
// A missing value is treated like '?'.
StringInit *VarName = StringInit::get(Lex.getCurStrVal());
Result.emplace_back(UnsetInit::get(), VarName);
Lex.Lex();
} else {
// DagArg ::= Value (':' VARNAME)?
Init *Val = ParseValue(CurRec);
if (!Val) {
Result.clear();
return;
}
// If the variable name is present, add it.
StringInit *VarName = nullptr;
if (Lex.getCode() == tgtok::colon) {
if (Lex.Lex() != tgtok::VarName) { // eat the ':'
TokError("expected variable name in dag literal");
Result.clear();
return;
}
VarName = StringInit::get(Lex.getCurStrVal());
Lex.Lex(); // eat the VarName.
}
Result.push_back(std::make_pair(Val, VarName));
}
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat the ','
}
}
/// ParseValueList - Parse a comma separated list of values, returning them as a
/// vector. Note that this always expects to be able to parse at least one
/// value. It returns an empty list if this is not possible.
///
/// ValueList ::= Value (',' Value)
///
void TGParser::ParseValueList(SmallVectorImpl<Init*> &Result, Record *CurRec,
Record *ArgsRec, RecTy *EltTy) {
RecTy *ItemType = EltTy;
unsigned int ArgN = 0;
if (ArgsRec && !EltTy) {
ArrayRef<Init *> TArgs = ArgsRec->getTemplateArgs();
if (TArgs.empty()) {
TokError("template argument provided to non-template class");
Result.clear();
return;
}
const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]);
if (!RV) {
errs() << "Cannot find template arg " << ArgN << " (" << TArgs[ArgN]
<< ")\n";
}
assert(RV && "Template argument record not found??");
ItemType = RV->getType();
++ArgN;
}
Result.push_back(ParseValue(CurRec, ItemType));
if (!Result.back()) {
Result.clear();
return;
}
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // Eat the comma
if (ArgsRec && !EltTy) {
ArrayRef<Init *> TArgs = ArgsRec->getTemplateArgs();
if (ArgN >= TArgs.size()) {
TokError("too many template arguments");
Result.clear();
return;
}
const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]);
assert(RV && "Template argument record not found??");
ItemType = RV->getType();
++ArgN;
}
Result.push_back(ParseValue(CurRec, ItemType));
if (!Result.back()) {
Result.clear();
return;
}
}
}
/// ParseDeclaration - Read a declaration, returning the name of field ID, or an
/// empty string on error. This can happen in a number of different context's,
/// including within a def or in the template args for a def (which which case
/// CurRec will be non-null) and within the template args for a multiclass (in
/// which case CurRec will be null, but CurMultiClass will be set). This can
/// also happen within a def that is within a multiclass, which will set both
/// CurRec and CurMultiClass.
///
/// Declaration ::= FIELD? Type ID ('=' Value)?
///
Init *TGParser::ParseDeclaration(Record *CurRec,
bool ParsingTemplateArgs) {
// Read the field prefix if present.
bool HasField = Lex.getCode() == tgtok::Field;
if (HasField) Lex.Lex();
RecTy *Type = ParseType();
if (!Type) return nullptr;
if (Lex.getCode() != tgtok::Id) {
TokError("Expected identifier in declaration");
return nullptr;
}
SMLoc IdLoc = Lex.getLoc();
Init *DeclName = StringInit::get(Lex.getCurStrVal());
Lex.Lex();
if (ParsingTemplateArgs) {
if (CurRec)
DeclName = QualifyName(*CurRec, CurMultiClass, DeclName, ":");
else
assert(CurMultiClass);
if (CurMultiClass)
DeclName = QualifyName(CurMultiClass->Rec, CurMultiClass, DeclName,
"::");
}
// Add the value.
if (AddValue(CurRec, IdLoc, RecordVal(DeclName, Type, HasField)))
return nullptr;
// If a value is present, parse it.
if (Lex.getCode() == tgtok::equal) {
Lex.Lex();
SMLoc ValLoc = Lex.getLoc();
Init *Val = ParseValue(CurRec, Type);
if (!Val ||
SetValue(CurRec, ValLoc, DeclName, None, Val))
// Return the name, even if an error is thrown. This is so that we can
// continue to make some progress, even without the value having been
// initialized.
return DeclName;
}
return DeclName;
}
/// ParseForeachDeclaration - Read a foreach declaration, returning
/// the name of the declared object or a NULL Init on error. Return
/// the name of the parsed initializer list through ForeachListName.
///
/// ForeachDeclaration ::= ID '=' '[' ValueList ']'
/// ForeachDeclaration ::= ID '=' '{' RangeList '}'
/// ForeachDeclaration ::= ID '=' RangePiece
///
VarInit *TGParser::ParseForeachDeclaration(ListInit *&ForeachListValue) {
if (Lex.getCode() != tgtok::Id) {
TokError("Expected identifier in foreach declaration");
return nullptr;
}
Init *DeclName = StringInit::get(Lex.getCurStrVal());
Lex.Lex();
// If a value is present, parse it.
if (Lex.getCode() != tgtok::equal) {
TokError("Expected '=' in foreach declaration");
return nullptr;
}
Lex.Lex(); // Eat the '='
RecTy *IterType = nullptr;
SmallVector<unsigned, 16> Ranges;
switch (Lex.getCode()) {
default: TokError("Unknown token when expecting a range list"); return nullptr;
case tgtok::l_square: { // '[' ValueList ']'
Init *List = ParseSimpleValue(nullptr, nullptr, ParseForeachMode);
ForeachListValue = dyn_cast<ListInit>(List);
if (!ForeachListValue) {
TokError("Expected a Value list");
return nullptr;
}
RecTy *ValueType = ForeachListValue->getType();
ListRecTy *ListType = dyn_cast<ListRecTy>(ValueType);
if (!ListType) {
TokError("Value list is not of list type");
return nullptr;
}
IterType = ListType->getElementType();
break;
}
case tgtok::IntVal: { // RangePiece.
if (ParseRangePiece(Ranges))
return nullptr;
break;
}
case tgtok::l_brace: { // '{' RangeList '}'
Lex.Lex(); // eat the '{'
ParseRangeList(Ranges);
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit range list");
return nullptr;
}
Lex.Lex();
break;
}
}
if (!Ranges.empty()) {
assert(!IterType && "Type already initialized?");
IterType = IntRecTy::get();
std::vector<Init*> Values;
for (unsigned R : Ranges)
Values.push_back(IntInit::get(R));
ForeachListValue = ListInit::get(Values, IterType);
}
if (!IterType)
return nullptr;
return VarInit::get(DeclName, IterType);
}
/// ParseTemplateArgList - Read a template argument list, which is a non-empty
/// sequence of template-declarations in <>'s. If CurRec is non-null, these are
/// template args for a def, which may or may not be in a multiclass. If null,
/// these are the template args for a multiclass.
///
/// TemplateArgList ::= '<' Declaration (',' Declaration)* '>'
///
bool TGParser::ParseTemplateArgList(Record *CurRec) {
assert(Lex.getCode() == tgtok::less && "Not a template arg list!");
Lex.Lex(); // eat the '<'
Record *TheRecToAddTo = CurRec ? CurRec : &CurMultiClass->Rec;
// Read the first declaration.
Init *TemplArg = ParseDeclaration(CurRec, true/*templateargs*/);
if (!TemplArg)
return true;
TheRecToAddTo->addTemplateArg(TemplArg);
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // eat the ','
// Read the following declarations.
TemplArg = ParseDeclaration(CurRec, true/*templateargs*/);
if (!TemplArg)
return true;
TheRecToAddTo->addTemplateArg(TemplArg);
}
if (Lex.getCode() != tgtok::greater)
return TokError("expected '>' at end of template argument list");
Lex.Lex(); // eat the '>'.
return false;
}
/// ParseBodyItem - Parse a single item at within the body of a def or class.
///
/// BodyItem ::= Declaration ';'
/// BodyItem ::= LET ID OptionalBitList '=' Value ';'
bool TGParser::ParseBodyItem(Record *CurRec) {
if (Lex.getCode() != tgtok::Let) {
if (!ParseDeclaration(CurRec, false))
return true;
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' after declaration");
Lex.Lex();
return false;
}
// LET ID OptionalRangeList '=' Value ';'
if (Lex.Lex() != tgtok::Id)
return TokError("expected field identifier after let");
SMLoc IdLoc = Lex.getLoc();
StringInit *FieldName = StringInit::get(Lex.getCurStrVal());
Lex.Lex(); // eat the field name.
SmallVector<unsigned, 16> BitList;
if (ParseOptionalBitList(BitList))
return true;
std::reverse(BitList.begin(), BitList.end());
if (Lex.getCode() != tgtok::equal)
return TokError("expected '=' in let expression");
Lex.Lex(); // eat the '='.
RecordVal *Field = CurRec->getValue(FieldName);
if (!Field)
return TokError("Value '" + FieldName->getValue() + "' unknown!");
RecTy *Type = Field->getType();
Init *Val = ParseValue(CurRec, Type);
if (!Val) return true;
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' after let expression");
Lex.Lex();
return SetValue(CurRec, IdLoc, FieldName, BitList, Val);
}
/// ParseBody - Read the body of a class or def. Return true on error, false on
/// success.
///
/// Body ::= ';'
/// Body ::= '{' BodyList '}'
/// BodyList BodyItem*
///
bool TGParser::ParseBody(Record *CurRec) {
// If this is a null definition, just eat the semi and return.
if (Lex.getCode() == tgtok::semi) {
Lex.Lex();
return false;
}
if (Lex.getCode() != tgtok::l_brace)
return TokError("Expected ';' or '{' to start body");
// Eat the '{'.
Lex.Lex();
while (Lex.getCode() != tgtok::r_brace)
if (ParseBodyItem(CurRec))
return true;
// Eat the '}'.
Lex.Lex();
return false;
}
/// \brief Apply the current let bindings to \a CurRec.
/// \returns true on error, false otherwise.
bool TGParser::ApplyLetStack(Record *CurRec) {
for (SmallVectorImpl<LetRecord> &LetInfo : LetStack)
for (LetRecord &LR : LetInfo)
if (SetValue(CurRec, LR.Loc, LR.Name, LR.Bits, LR.Value))
return true;
return false;
}
/// ParseObjectBody - Parse the body of a def or class. This consists of an
/// optional ClassList followed by a Body. CurRec is the current def or class
/// that is being parsed.
///
/// ObjectBody ::= BaseClassList Body
/// BaseClassList ::= /*empty*/
/// BaseClassList ::= ':' BaseClassListNE
/// BaseClassListNE ::= SubClassRef (',' SubClassRef)*
///
bool TGParser::ParseObjectBody(Record *CurRec) {
// If there is a baseclass list, read it.
if (Lex.getCode() == tgtok::colon) {
Lex.Lex();
// Read all of the subclasses.
SubClassReference SubClass = ParseSubClassReference(CurRec, false);
while (true) {
// Check for error.
if (!SubClass.Rec) return true;
// Add it.
if (AddSubClass(CurRec, SubClass))
return true;
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubClass = ParseSubClassReference(CurRec, false);
}
}
if (ApplyLetStack(CurRec))
return true;
return ParseBody(CurRec);
}
/// ParseDef - Parse and return a top level or multiclass def, return the record
/// corresponding to it. This returns null on error.
///
/// DefInst ::= DEF ObjectName ObjectBody
///
bool TGParser::ParseDef(MultiClass *CurMultiClass) {
SMLoc DefLoc = Lex.getLoc();
assert(Lex.getCode() == tgtok::Def && "Unknown tok");
Lex.Lex(); // Eat the 'def' token.
// Parse ObjectName and make a record for it.
std::unique_ptr<Record> CurRecOwner;
Init *Name = ParseObjectName(CurMultiClass);
if (Name)
CurRecOwner = make_unique<Record>(Name, DefLoc, Records);
else
CurRecOwner = llvm::make_unique<Record>(GetNewAnonymousName(), DefLoc,
Records, /*IsAnonymous=*/true);
Record *CurRec = CurRecOwner.get(); // Keep a copy since we may release.
if (!CurMultiClass && Loops.empty()) {
// Top-level def definition.
// Ensure redefinition doesn't happen.
if (Records.getDef(CurRec->getNameInitAsString()))
return Error(DefLoc, "def '" + CurRec->getNameInitAsString()+
"' already defined");
Records.addDef(std::move(CurRecOwner));
if (ParseObjectBody(CurRec))
return true;
} else if (CurMultiClass) {
// Parse the body before adding this prototype to the DefPrototypes vector.
// That way implicit definitions will be added to the DefPrototypes vector
// before this object, instantiated prior to defs derived from this object,
// and this available for indirect name resolution when defs derived from
// this object are instantiated.
if (ParseObjectBody(CurRec))
return true;
// Otherwise, a def inside a multiclass, add it to the multiclass.
for (const auto &Proto : CurMultiClass->DefPrototypes)
if (Proto->getNameInit() == CurRec->getNameInit())
return Error(DefLoc, "def '" + CurRec->getNameInitAsString() +
"' already defined in this multiclass!");
CurMultiClass->DefPrototypes.push_back(std::move(CurRecOwner));
} else if (ParseObjectBody(CurRec)) {
return true;
}
if (!CurMultiClass) // Def's in multiclasses aren't really defs.
// See Record::setName(). This resolve step will see any new name
// for the def that might have been created when resolving
// inheritance, values and arguments above.
CurRec->resolveReferences();
// If ObjectBody has template arguments, it's an error.
assert(CurRec->getTemplateArgs().empty() && "How'd this get template args?");
if (CurMultiClass) {
// Copy the template arguments for the multiclass into the def.
for (Init *TArg : CurMultiClass->Rec.getTemplateArgs()) {
const RecordVal *RV = CurMultiClass->Rec.getValue(TArg);
assert(RV && "Template arg doesn't exist?");
CurRec->addValue(*RV);
}
}
if (ProcessForeachDefs(CurRec, DefLoc))
return Error(DefLoc, "Could not process loops for def" +
CurRec->getNameInitAsString());
return false;
}
/// ParseForeach - Parse a for statement. Return the record corresponding
/// to it. This returns true on error.
///
/// Foreach ::= FOREACH Declaration IN '{ ObjectList '}'
/// Foreach ::= FOREACH Declaration IN Object
///
bool TGParser::ParseForeach(MultiClass *CurMultiClass) {
assert(Lex.getCode() == tgtok::Foreach && "Unknown tok");
Lex.Lex(); // Eat the 'for' token.
// Make a temporary object to record items associated with the for
// loop.
ListInit *ListValue = nullptr;
VarInit *IterName = ParseForeachDeclaration(ListValue);
if (!IterName)
return TokError("expected declaration in for");
if (Lex.getCode() != tgtok::In)
return TokError("Unknown tok");
Lex.Lex(); // Eat the in
// Create a loop object and remember it.
Loops.push_back(ForeachLoop(IterName, ListValue));
if (Lex.getCode() != tgtok::l_brace) {
// FOREACH Declaration IN Object
if (ParseObject(CurMultiClass))
return true;
} else {
SMLoc BraceLoc = Lex.getLoc();
// Otherwise, this is a group foreach.
Lex.Lex(); // eat the '{'.
// Parse the object list.
if (ParseObjectList(CurMultiClass))
return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of foreach command");
return Error(BraceLoc, "to match this '{'");
}
Lex.Lex(); // Eat the }
}
// We've processed everything in this loop.
Loops.pop_back();
return false;
}
/// ParseClass - Parse a tblgen class definition.
///
/// ClassInst ::= CLASS ID TemplateArgList? ObjectBody
///
bool TGParser::ParseClass() {
assert(Lex.getCode() == tgtok::Class && "Unexpected token!");
Lex.Lex();
if (Lex.getCode() != tgtok::Id)
return TokError("expected class name after 'class' keyword");
Record *CurRec = Records.getClass(Lex.getCurStrVal());
if (CurRec) {
// If the body was previously defined, this is an error.
if (CurRec->getValues().size() > 1 || // Account for NAME.
!CurRec->getSuperClasses().empty() ||
!CurRec->getTemplateArgs().empty())
return TokError("Class '" + CurRec->getNameInitAsString() +
"' already defined");
} else {
// If this is the first reference to this class, create and add it.
auto NewRec =
llvm::make_unique<Record>(Lex.getCurStrVal(), Lex.getLoc(), Records);
CurRec = NewRec.get();
Records.addClass(std::move(NewRec));
}
Lex.Lex(); // eat the name.
// If there are template args, parse them.
if (Lex.getCode() == tgtok::less)
if (ParseTemplateArgList(CurRec))
return true;
// Finally, parse the object body.
return ParseObjectBody(CurRec);
}
/// ParseLetList - Parse a non-empty list of assignment expressions into a list
/// of LetRecords.
///
/// LetList ::= LetItem (',' LetItem)*
/// LetItem ::= ID OptionalRangeList '=' Value
///
void TGParser::ParseLetList(SmallVectorImpl<LetRecord> &Result) {
while (true) {
if (Lex.getCode() != tgtok::Id) {
TokError("expected identifier in let definition");
Result.clear();
return;
}
StringInit *Name = StringInit::get(Lex.getCurStrVal());
SMLoc NameLoc = Lex.getLoc();
Lex.Lex(); // Eat the identifier.
// Check for an optional RangeList.
SmallVector<unsigned, 16> Bits;
if (ParseOptionalRangeList(Bits)) {
Result.clear();
return;
}
std::reverse(Bits.begin(), Bits.end());
if (Lex.getCode() != tgtok::equal) {
TokError("expected '=' in let expression");
Result.clear();
return;
}
Lex.Lex(); // eat the '='.
Init *Val = ParseValue(nullptr);
if (!Val) {
Result.clear();
return;
}
// Now that we have everything, add the record.
Result.emplace_back(Name, Bits, Val, NameLoc);
if (Lex.getCode() != tgtok::comma)
return;
Lex.Lex(); // eat the comma.
}
}
/// ParseTopLevelLet - Parse a 'let' at top level. This can be a couple of
/// different related productions. This works inside multiclasses too.
///
/// Object ::= LET LetList IN '{' ObjectList '}'
/// Object ::= LET LetList IN Object
///
bool TGParser::ParseTopLevelLet(MultiClass *CurMultiClass) {
assert(Lex.getCode() == tgtok::Let && "Unexpected token");
Lex.Lex();
// Add this entry to the let stack.
SmallVector<LetRecord, 8> LetInfo;
ParseLetList(LetInfo);
if (LetInfo.empty()) return true;
LetStack.push_back(std::move(LetInfo));
if (Lex.getCode() != tgtok::In)
return TokError("expected 'in' at end of top-level 'let'");
Lex.Lex();
// If this is a scalar let, just handle it now
if (Lex.getCode() != tgtok::l_brace) {
// LET LetList IN Object
if (ParseObject(CurMultiClass))
return true;
} else { // Object ::= LETCommand '{' ObjectList '}'
SMLoc BraceLoc = Lex.getLoc();
// Otherwise, this is a group let.
Lex.Lex(); // eat the '{'.
// Parse the object list.
if (ParseObjectList(CurMultiClass))
return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of top level let command");
return Error(BraceLoc, "to match this '{'");
}
Lex.Lex();
}
// Outside this let scope, this let block is not active.
LetStack.pop_back();
return false;
}
/// ParseMultiClass - Parse a multiclass definition.
///
/// MultiClassInst ::= MULTICLASS ID TemplateArgList?
/// ':' BaseMultiClassList '{' MultiClassObject+ '}'
/// MultiClassObject ::= DefInst
/// MultiClassObject ::= MultiClassInst
/// MultiClassObject ::= DefMInst
/// MultiClassObject ::= LETCommand '{' ObjectList '}'
/// MultiClassObject ::= LETCommand Object
///
bool TGParser::ParseMultiClass() {
assert(Lex.getCode() == tgtok::MultiClass && "Unexpected token");
Lex.Lex(); // Eat the multiclass token.
if (Lex.getCode() != tgtok::Id)
return TokError("expected identifier after multiclass for name");
std::string Name = Lex.getCurStrVal();
auto Result =
MultiClasses.insert(std::make_pair(Name,
llvm::make_unique<MultiClass>(Name, Lex.getLoc(),Records)));
if (!Result.second)
return TokError("multiclass '" + Name + "' already defined");
CurMultiClass = Result.first->second.get();
Lex.Lex(); // Eat the identifier.
// If there are template args, parse them.
if (Lex.getCode() == tgtok::less)
if (ParseTemplateArgList(nullptr))
return true;
bool inherits = false;
// If there are submulticlasses, parse them.
if (Lex.getCode() == tgtok::colon) {
inherits = true;
Lex.Lex();
// Read all of the submulticlasses.
SubMultiClassReference SubMultiClass =
ParseSubMultiClassReference(CurMultiClass);
while (true) {
// Check for error.
if (!SubMultiClass.MC) return true;
// Add it.
if (AddSubMultiClass(CurMultiClass, SubMultiClass))
return true;
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubMultiClass = ParseSubMultiClassReference(CurMultiClass);
}
}
if (Lex.getCode() != tgtok::l_brace) {
if (!inherits)
return TokError("expected '{' in multiclass definition");
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' in multiclass definition");
Lex.Lex(); // eat the ';'.
} else {
if (Lex.Lex() == tgtok::r_brace) // eat the '{'.
return TokError("multiclass must contain at least one def");
while (Lex.getCode() != tgtok::r_brace) {
switch (Lex.getCode()) {
default:
return TokError("expected 'let', 'def' or 'defm' in multiclass body");
case tgtok::Let:
case tgtok::Def:
case tgtok::Defm:
case tgtok::Foreach:
if (ParseObject(CurMultiClass))
return true;
break;
}
}
Lex.Lex(); // eat the '}'.
}
CurMultiClass = nullptr;
return false;
}
Record *TGParser::InstantiateMulticlassDef(MultiClass &MC, Record *DefProto,
Init *&DefmPrefix,
SMRange DefmPrefixRange,
ArrayRef<Init *> TArgs,
ArrayRef<Init *> TemplateVals) {
// We need to preserve DefProto so it can be reused for later
// instantiations, so create a new Record to inherit from it.
// Add in the defm name. If the defm prefix is empty, give each
// instantiated def a unique name. Otherwise, if "#NAME#" exists in the
// name, substitute the prefix for #NAME#. Otherwise, use the defm name
// as a prefix.
bool IsAnonymous = false;
if (!DefmPrefix) {
DefmPrefix = GetNewAnonymousName();
IsAnonymous = true;
}
Init *DefName = DefProto->getNameInit();
StringInit *DefNameString = dyn_cast<StringInit>(DefName);
if (DefNameString) {
// We have a fully expanded string so there are no operators to
// resolve. We should concatenate the given prefix and name.
DefName =
BinOpInit::get(BinOpInit::STRCONCAT,
UnOpInit::get(UnOpInit::CAST, DefmPrefix,
StringRecTy::get())->Fold(DefProto, &MC),
DefName, StringRecTy::get())->Fold(DefProto, &MC);
}
// Make a trail of SMLocs from the multiclass instantiations.
SmallVector<SMLoc, 4> Locs(1, DefmPrefixRange.Start);
Locs.append(DefProto->getLoc().begin(), DefProto->getLoc().end());
auto CurRec = make_unique<Record>(DefName, Locs, Records, IsAnonymous);
SubClassReference Ref;
Ref.RefRange = DefmPrefixRange;
Ref.Rec = DefProto;
AddSubClass(CurRec.get(), Ref);
// Set the value for NAME. We don't resolve references to it 'til later,
// though, so that uses in nested multiclass names don't get
// confused.
if (SetValue(CurRec.get(), Ref.RefRange.Start, StringInit::get("NAME"), None,
DefmPrefix, /*AllowSelfAssignment*/true)) {
Error(DefmPrefixRange.Start, "Could not resolve " +
CurRec->getNameInitAsString() + ":NAME to '" +
DefmPrefix->getAsUnquotedString() + "'");
return nullptr;
}
// If the DefNameString didn't resolve, we probably have a reference to
// NAME and need to replace it. We need to do at least this much greedily,
// otherwise nested multiclasses will end up with incorrect NAME expansions.
if (!DefNameString) {
RecordVal *DefNameRV = CurRec->getValue("NAME");
CurRec->resolveReferencesTo(DefNameRV);
}
if (!CurMultiClass) {
// Now that we're at the top level, resolve all NAME references
// in the resultant defs that weren't in the def names themselves.
RecordVal *DefNameRV = CurRec->getValue("NAME");
CurRec->resolveReferencesTo(DefNameRV);
// Check if the name is a complex pattern.
// If so, resolve it.
DefName = CurRec->getNameInit();
DefNameString = dyn_cast<StringInit>(DefName);
// OK the pattern is more complex than simply using NAME.
// Let's use the heavy weaponery.
if (!DefNameString) {
ResolveMulticlassDefArgs(MC, CurRec.get(), DefmPrefixRange.Start,
Lex.getLoc(), TArgs, TemplateVals,
false/*Delete args*/);
DefName = CurRec->getNameInit();
DefNameString = dyn_cast<StringInit>(DefName);
if (!DefNameString)
DefName = DefName->convertInitializerTo(StringRecTy::get());
// We ran out of options here...
DefNameString = dyn_cast<StringInit>(DefName);
if (!DefNameString) {
PrintFatalError(CurRec->getLoc()[CurRec->getLoc().size() - 1],
DefName->getAsUnquotedString() + " is not a string.");
return nullptr;
}
CurRec->setName(DefName);
}
// Now that NAME references are resolved and we're at the top level of
// any multiclass expansions, add the record to the RecordKeeper. If we are
// currently in a multiclass, it means this defm appears inside a
// multiclass and its name won't be fully resolvable until we see
// the top-level defm. Therefore, we don't add this to the
// RecordKeeper at this point. If we did we could get duplicate
// defs as more than one probably refers to NAME or some other
// common internal placeholder.
// Ensure redefinition doesn't happen.
if (Records.getDef(CurRec->getNameInitAsString())) {
Error(DefmPrefixRange.Start, "def '" + CurRec->getNameInitAsString() +
"' already defined, instantiating defm with subdef '" +
DefProto->getNameInitAsString() + "'");
return nullptr;
}
Record *CurRecSave = CurRec.get(); // Keep a copy before we release.
Records.addDef(std::move(CurRec));
return CurRecSave;
}
// FIXME This is bad but the ownership transfer to caller is pretty messy.
// The unique_ptr in this function at least protects the exits above.
return CurRec.release();
}
bool TGParser::ResolveMulticlassDefArgs(MultiClass &MC, Record *CurRec,
SMLoc DefmPrefixLoc, SMLoc SubClassLoc,
ArrayRef<Init *> TArgs,
ArrayRef<Init *> TemplateVals,
bool DeleteArgs) {
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
// Check if a value is specified for this temp-arg.
if (i < TemplateVals.size()) {
// Set it now.
if (SetValue(CurRec, DefmPrefixLoc, TArgs[i], None, TemplateVals[i]))
return true;
// Resolve it next.
CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i]));
if (DeleteArgs)
// Now remove it.
CurRec->removeValue(TArgs[i]);
} else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) {
return Error(SubClassLoc, "value not specified for template argument #" +
Twine(i) + " (" + TArgs[i]->getAsUnquotedString() +
") of multiclassclass '" + MC.Rec.getNameInitAsString() +
"'");
}
}
return false;
}
bool TGParser::ResolveMulticlassDef(MultiClass &MC,
Record *CurRec,
Record *DefProto,
SMLoc DefmPrefixLoc) {
// If the mdef is inside a 'let' expression, add to each def.
if (ApplyLetStack(CurRec))
return Error(DefmPrefixLoc, "when instantiating this defm");
// Don't create a top level definition for defm inside multiclasses,
// instead, only update the prototypes and bind the template args
// with the new created definition.
if (!CurMultiClass)
return false;
for (const auto &Proto : CurMultiClass->DefPrototypes)
if (Proto->getNameInit() == CurRec->getNameInit())
return Error(DefmPrefixLoc, "defm '" + CurRec->getNameInitAsString() +
"' already defined in this multiclass!");
CurMultiClass->DefPrototypes.push_back(std::unique_ptr<Record>(CurRec));
// Copy the template arguments for the multiclass into the new def.
for (Init * TA : CurMultiClass->Rec.getTemplateArgs()) {
const RecordVal *RV = CurMultiClass->Rec.getValue(TA);
assert(RV && "Template arg doesn't exist?");