| # RUN: %PYTHON %s | FileCheck %s |
| |
| from mlir.ir import * |
| import mlir.dialects.arith as arith |
| import mlir.dialects.func as func |
| import mlir.dialects.tensor as tensor |
| from mlir.extras import types as T |
| |
| |
| def run(f): |
| print("\nTEST:", f.__name__) |
| f() |
| return f |
| |
| |
| # CHECK-LABEL: TEST: testDimOp |
| @run |
| def testDimOp(): |
| with Context() as ctx, Location.unknown(): |
| module = Module.create() |
| f32Type = F32Type.get() |
| indexType = IndexType.get() |
| with InsertionPoint(module.body): |
| |
| @func.FuncOp.from_py_func( |
| RankedTensorType.get( |
| (ShapedType.get_dynamic_size(), ShapedType.get_dynamic_size()), |
| f32Type, |
| ) |
| ) |
| # CHECK: func @tensor_static_dim |
| # CHECK-SAME: %[[ARG0:.+]]: tensor<?x?xf32> |
| # CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index |
| # CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index |
| # CHECK: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]] |
| # CHECK: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]] |
| # CHECK: return %[[D0]], %[[D1]] |
| def tensor_static_dim(t): |
| c0 = arith.ConstantOp(indexType, 0) |
| c1 = arith.ConstantOp(indexType, 1) |
| d0 = tensor.DimOp(t, c0) |
| d1 = tensor.DimOp(t, c1) |
| return [d0.result, d1.result] |
| |
| print(module) |
| |
| |
| # CHECK-LABEL: TEST: testEmptyOp |
| @run |
| def testEmptyOp(): |
| with Context() as ctx, Location.unknown(): |
| module = Module.create() |
| f32 = F32Type.get() |
| with InsertionPoint(module.body): |
| # CHECK-LABEL: func @static_sizes |
| # CHECK: %0 = tensor.empty() : tensor<3x4xf32> |
| @func.FuncOp.from_py_func() |
| def static_sizes(): |
| return tensor.EmptyOp([3, 4], f32) |
| |
| # CHECK-LABEL: func @dynamic_sizes |
| # CHECK: %0 = tensor.empty(%arg0, %arg1) : tensor<?x?xf32> |
| @func.FuncOp.from_py_func(IndexType.get(), IndexType.get()) |
| def dynamic_sizes(d0, d1): |
| return tensor.EmptyOp([d0, d1], f32) |
| |
| # CHECK-LABEL: func @mixed_static_dynamic_sizes |
| # CHECK: %0 = tensor.empty(%arg0) : tensor<?x4xf32> |
| @func.FuncOp.from_py_func(IndexType.get()) |
| def mixed_static_dynamic_sizes(d0): |
| return tensor.EmptyOp([d0, 4], f32) |
| |
| # CHECK-LABEL: func @zero_d |
| # CHECK: %0 = tensor.empty() : tensor<f32> |
| @func.FuncOp.from_py_func() |
| def zero_d(): |
| return tensor.EmptyOp([], f32) |
| |
| print(module) |
| |
| |
| # CHECK-LABEL: TEST: testInferTypesInsertSlice |
| @run |
| def testInferTypesInsertSlice(): |
| with Context() as ctx, Location.unknown(): |
| module = Module.create() |
| f32Type = F32Type.get() |
| with InsertionPoint(module.body): |
| |
| @func.FuncOp.from_py_func( |
| RankedTensorType.get((1, 1), f32Type), |
| RankedTensorType.get((1, 1), f32Type), |
| ) |
| # CHECK: func @f |
| # CHECK: tensor.insert_slice %arg0 into %arg1[0, 0] [1, 1] [0, 0] : |
| # CHECK-SAME: tensor<1x1xf32> into tensor<1x1xf32> |
| def f(source, dest): |
| d0 = tensor.InsertSliceOp( |
| source, |
| dest, |
| [], |
| [], |
| [], |
| DenseI64ArrayAttr.get([0, 0]), |
| DenseI64ArrayAttr.get([1, 1]), |
| DenseI64ArrayAttr.get([0, 0]), |
| ) |
| return [d0.result] |
| |
| print(module) |
| |
| |
| # CHECK-LABEL: TEST: testFromElementsOp |
| @run |
| def testFromElementsOp(): |
| with Context() as ctx, Location.unknown(): |
| module = Module.create() |
| f32 = F32Type.get() |
| with InsertionPoint(module.body): |
| |
| @func.FuncOp.from_py_func() |
| def default_builder(): |
| c0 = arith.ConstantOp(f32, 0.0) |
| # CHECK: %[[C0:.*]] = "arith.constant |
| # CHECK-SAME: value = 0.000000e+00 : f32 |
| print(c0) |
| c1 = arith.ConstantOp(f32, 1.0) |
| # CHECK: %[[C1:.*]] = "arith.constant |
| # CHECK-SAME: value = 1.000000e+00 : f32 |
| print(c1) |
| |
| t = tensor.FromElementsOp(RankedTensorType.get((2,), f32), [c0, c1]) |
| # CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2xf32> |
| print(t) |
| |
| t = tensor.FromElementsOp(RankedTensorType.get((2, 1), f32), [c0, c1]) |
| # CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2x1xf32> |
| print(t) |
| |
| t = tensor.FromElementsOp(RankedTensorType.get((1, 2), f32), [c0, c1]) |
| # CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<1x2xf32> |
| print(t) |
| |
| |
| # CHECK-LABEL: TEST: testGenerateRegionOp |
| @run |
| def testGenerateRegionOp(): |
| S = ShapedType.get_dynamic_size() |
| with Context(), Location.unknown(): |
| module = Module.create() |
| with InsertionPoint(module.body): |
| # CHECK: %[[VAL_0:.*]] = arith.constant 1 : index |
| # CHECK: %[[VAL_1:.*]] = arith.constant 2 : index |
| one = arith.constant(T.index(), 1) |
| two = arith.constant(T.index(), 2) |
| |
| @tensor.generate(T.tensor(S, 3, S, T.index()), dynamic_extents=[one, two]) |
| def generate_one(i: T.index(), j: T.index(), k: T.index()): |
| ij = arith.addi(i, j) |
| ijk = arith.addi(ij, k) |
| return ijk |
| |
| assert ( |
| isinstance(generate_one, Value) |
| and generate_one.owner.name == "tensor.generate" |
| ) |
| |
| # CHECK: %[[GENERATED:.*]] = tensor.generate |
| # CHECK-SAME: %[[VAL_0]], |
| # CHECK-SAME: %[[VAL_1]] { |
| # CHECK: ^bb0(%[[VAL_1:.*]]: index, %[[VAL_2:.*]]: index, %[[VAL_3:.*]]: index): |
| # CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_1]], %[[VAL_2]] : index |
| # CHECK: %[[VAL_5:.*]] = arith.addi %[[VAL_4]], %[[VAL_3]] : index |
| # CHECK: tensor.yield %[[VAL_5]] : index |
| # CHECK: } : tensor<?x3x?xindex> |
| print(module) |