| # RUN: env SUPPORT_LIB=%mlir_cuda_runtime \ |
| # RUN: %PYTHON %s | FileCheck %s |
| |
| |
| # ===--- GEMM Hopper Tensor Core Integration Test ---=== |
| # |
| # This test aims to validate the correctness of the supported GEMM kernels in |
| # NVGPU dialects, with current support for Multistage and Warp Specialization |
| # kernels. |
| # The test constructs and metaprograms IR using Python bindings, allowing |
| # generic IR building. This flexibility enables changes to the shape, |
| # tile size, or data type of the GEMM for testing purposes. |
| # The entry function is `matmul`, where one can specify GEMM shape, tile size, |
| # data type, GEMM algorithm (Multistage or Warp Specialization), and the maximum |
| # number of stages. |
| # Verification is done via numpy's matmul operation. |
| # |
| # Example: |
| # matmul(input_type=np.float16, # input types |
| # output_type=np.float32, # output type |
| # M=4096, N=4096, K=4096, # Shape |
| # BLOCK_M=128, BLOCK_N=128, BLOCK_K=64, # Tile Size |
| # use_warp_specialization=True, # Enable Warp Specialization |
| # max_num_stages=3) # Number of stages in shared memory |
| # |
| # ===--- Parallelism Across CTAs ---=== |
| # |
| # GEMM includes three loops defining the shape of the GEMM, specified in the |
| # `matmul` function. |
| # The program builds IR using the following loop structure, tiling the loops |
| # with the given tile size and parallelizing the two outermost loops into the |
| # first and second dimensions of CTAs. |
| # |
| # for(bi = 0; i < M; i += BLOCK_M) # parallelize across blockIdx.x |
| # for(bj = 0; j < N; j += BLOCK_N) # parallelize across blockIdx.y |
| # for(bk = 0; k < K; K += BLOCK_K) |
| # for(i = bi; i < (bi + BLOCK_M); ++i) |
| # for(j = bj; j < (bj + BLOCK_N); ++j) |
| # for(k = bk; k < (bk + BLOCK_K); ++k) |
| # |
| # ===--- Multistage Kernel ---=== |
| # |
| # This kernel launches a single warp group (128 threads). The primary thread |
| # (pthread) requests load from TMA. Threads collectively wait for the data and |
| # perform mma operations. After completing the shape, threads together store |
| # first fragmented registers to shared memory, then from shared memory to global |
| # memory; this part is called the epilogue. |
| # |
| # Execution Timeline of Multistage Kernel with 3 stages: |
| # +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+ |
| # | |Prologue ----> |MainLoop ----> |Epilogue | |
| # +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+ |
| # |pthread|[tma-0,1,2] |[wait-0][mma][tma-2]|[wait-1][mma][tma-0]|[wait-2][mma][tma-1]| ... | [mma-wait] |[epilogue]| |
| # |wgroup | ........ |[wait-0][mma] |[wait-1][mma] |[wait-2][mma] | ... | [mma-wait] |[epilogue]| |
| # +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+ |
| # |
| # ===--- Warp Specialization Kernel ---=== |
| # |
| # This kernel launches 2 warp groups (2x128 threads) per CTA, specializing one |
| # as `producer warp group` and another as `consumer warp group`. The |
| # `producer warp group` is responsible for requesting TMA load, while the |
| # `consumer warp group` performs the mma operation. The epilogue section is |
| # handled by the `consumer warp group` as its threads own the fragmented registers. |
| # |
| # Execution Timeline of Warp Specialization Kernel with 2 stages: |
| # +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |
| # | |MainLoop ----> | 1st Epilogue | 2nd Epilogue | |
| # +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |
| # |pthread1|[tma-0] | [tma-1] | [tma-0] | [tma-1] | ..........................| ........... | [shmem->global] | |
| # |wgroup1 | .......| | | | | | [shmem->global] | |
| # +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |
| # |wgroup2 |[wait-0][mma], [wait-1][mma], [wait-0][mma], [wait-1][mma], ......| [reg->shmem] | [shmem->global]| |
| # +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |
| |
| import errno |
| import numpy as np |
| import subprocess |
| import ctypes |
| from tools import nvgpucompiler |
| from tools import matmulBuilder |
| import contextlib |
| import os |
| import sys |
| import pathlib |
| import ctypes |
| from mlir import runtime as rt |
| |
| |
| def generate_matmul( |
| input_type=np.float16, |
| output_type=np.float32, |
| M=4096, |
| N=4096, |
| K=4096, |
| BLOCK_M=128, |
| BLOCK_N=128, |
| BLOCK_K=64, |
| use_warp_specialization=True, |
| saveIR=False, |
| max_num_stages=3, |
| options=f"cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3", |
| ): |
| with matmulBuilder.ir.Context() as ctx, matmulBuilder.ir.Location.unknown(): |
| if use_warp_specialization: |
| mlir_nvgpu_module = matmulBuilder.generate_matmul_ws( |
| input_type, |
| output_type, |
| M, |
| N, |
| K, |
| BLOCK_M, |
| BLOCK_N, |
| BLOCK_K, |
| max_num_stages, |
| ) |
| else: |
| mlir_nvgpu_module = matmulBuilder.generate_matmul_multistage( |
| input_type, |
| output_type, |
| M, |
| N, |
| K, |
| BLOCK_M, |
| BLOCK_N, |
| BLOCK_K, |
| max_num_stages, |
| ) |
| |
| mlir_nvgpu_module.operation.verify() |
| |
| # Save generated IR |
| if saveIR: |
| # print(mlir_nvgpu_module) |
| original_stdout = sys.stdout |
| with open("gemm.mlir", "w") as f: |
| sys.stdout = f |
| print(mlir_nvgpu_module) |
| sys.stdout = original_stdout |
| |
| # Get compiler |
| support_lib = os.getenv("SUPPORT_LIB") |
| if not os.path.exists(support_lib): |
| raise FileNotFoundError( |
| errno.ENOENT, os.strerror(errno.ENOENT), support_lib |
| ) |
| compiler = nvgpucompiler.NvgpuCompiler( |
| options, opt_level=3, shared_libs=[support_lib] |
| ) |
| |
| # Compile |
| engine = compiler.compile_and_jit(mlir_nvgpu_module) |
| return engine |
| |
| |
| def matmul( |
| input_type=np.float16, |
| output_type=np.float32, |
| M=128, |
| N=128, |
| K=128, |
| BLOCK_M=128, |
| BLOCK_N=128, |
| BLOCK_K=64, |
| use_warp_specialization=True, |
| saveIR=False, |
| max_num_stages=3, |
| print_results=False, |
| no_verify=False, |
| ): |
| # Print the configuration |
| required_stages = (M * K + K * N) // (BLOCK_M * BLOCK_K + BLOCK_K * BLOCK_N) |
| num_stages = min(required_stages, max_num_stages) |
| ity = "f16" if input_type == np.float16 else "f32" |
| oty = "f16" if output_type == np.float16 else "f32" |
| gemmty = "Warp specialization" if use_warp_specialization else "Multistage" |
| print( |
| "===-- Running GEMM " |
| + gemmty |
| + " " |
| + oty |
| + " += " |
| + ity |
| + " * " |
| + ity |
| + ", Size " |
| + str(M) |
| + "x" |
| + str(N) |
| + "x" |
| + str(K) |
| + ", Tile " |
| + str(BLOCK_M) |
| + "x" |
| + str(BLOCK_N) |
| + "x" |
| + str(BLOCK_K) |
| + ", stages " |
| + str(num_stages) |
| + " --===" |
| ) |
| |
| # Build IR and compile |
| engine = generate_matmul( |
| input_type, |
| output_type, |
| M, |
| N, |
| K, |
| BLOCK_M, |
| BLOCK_N, |
| BLOCK_K, |
| use_warp_specialization, |
| saveIR, |
| num_stages, |
| ) |
| |
| # Allocate matrices and invoke the matmul |
| c = np.zeros((M, N), output_type) |
| a = np.random.randn(M, K).astype(input_type) |
| b = np.random.randn(K, N).astype(input_type) |
| mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) |
| mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) |
| mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c))) |
| kernelName = matmulBuilder.make_kernel_name( |
| input_type, |
| output_type, |
| M, |
| N, |
| K, |
| BLOCK_M, |
| BLOCK_N, |
| BLOCK_K, |
| num_stages, |
| use_warp_specialization, |
| ) |
| |
| # Launch the MLIR generated kernel |
| engine.invoke(kernelName, mem_a, mem_b, mem_c) |
| |
| float_formatter = "{:.2f}".format |
| np.set_printoptions(formatter={"float_kind": float_formatter}) |
| |
| if print_results: |
| print(c) |
| |
| # Verify the results |
| if not no_verify: |
| ref = a.astype(input_type) @ b.astype(input_type) |
| if print_results: |
| print(ref) |
| np.testing.assert_allclose(c, ref, rtol=5e-03, atol=1e-01) |
| |
| print("PASS ") |
| |
| |
| # Takes longer time to run |
| def test_long(): |
| for stages in range(1, 7): |
| for M in [128, 512, 1024, 4096, 8192]: |
| for N in [128, 512, 1024, 4096, 8192]: |
| for K in [64, 128, 512, 1024, 4096, 8192]: |
| matmul( |
| np.float16, |
| np.float32, |
| M, |
| N, |
| K, |
| max_num_stages=stages, |
| use_warp_specialization=False, |
| no_verify=True, |
| ) |
| matmul( |
| np.float16, |
| np.float32, |
| M, |
| N, |
| K, |
| max_num_stages=stages, |
| use_warp_specialization=True, |
| ) |
| |
| |
| def test_short(): |
| for stages in [1, 3]: |
| for M in [128, 512]: |
| for N in [128]: |
| for K in [64, 256]: |
| matmul( |
| np.float16, |
| np.float32, |
| M, |
| N, |
| K, |
| max_num_stages=stages, |
| use_warp_specialization=False, |
| ) |
| matmul( |
| np.float16, |
| np.float32, |
| M, |
| N, |
| K, |
| max_num_stages=stages, |
| use_warp_specialization=True, |
| ) |
| |
| |
| # CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 128x128x64, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 128x128x64, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 128x128x256, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 128x128x256, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 512x128x64, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 512x128x64, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 512x128x256, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 512x128x256, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 128x128x64, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 128x128x64, Tile 128x128x64, stages 1 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 128x128x256, Tile 128x128x64, stages 3 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 128x128x256, Tile 128x128x64, stages 3 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 512x128x64, Tile 128x128x64, stages 2 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 512x128x64, Tile 128x128x64, stages 2 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 512x128x256, Tile 128x128x64, stages 3 --=== |
| # CHECK: PASS |
| # CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 512x128x256, Tile 128x128x64, stages 3 --=== |
| # CHECK: PASS |
| |
| test_short() |