blob: 312aefc0936c286b40abd7d7d96f9997fd3a8f60 [file] [log] [blame]
//===- CodegenEnv.cpp - Code generation environment class ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CodegenEnv.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Code generation environment helper functions
//===----------------------------------------------------------------------===//
/// Returns true if tensor materializes uninitialized into the computation.
static bool isMaterializing(Value val) {
return val.getDefiningOp<tensor::EmptyOp>() ||
val.getDefiningOp<bufferization::AllocTensorOp>();
}
/// Sorts the dependent loops such that it is ordered in the same sequence in
/// which loops will be generated.
static void sortDependentLoops(std::vector<LoopCoeffPair> &target) {
std::sort(target.begin(), target.end(),
[](const LoopCoeffPair &l, const LoopCoeffPair &r) {
assert(std::addressof(l) == std::addressof(r) || l != r);
return l.first < r.first;
});
}
//===----------------------------------------------------------------------===//
// Code generation environment constructor and general methods
//===----------------------------------------------------------------------===//
CodegenEnv::CodegenEnv(linalg::GenericOp linop, SparsificationOptions opts,
unsigned numTensors, unsigned numLoops, unsigned maxRank)
: linalgOp(linop), sparseOptions(opts),
latticeMerger(numTensors, numLoops, maxRank), loopEmitter(),
sparseOut(nullptr), outerParNest(-1u), insChain(), expValues(),
expFilled(), expAdded(), expCount(), redVal(), redExp(detail::kInvalidId),
redCustom(detail::kInvalidId), redValidLexInsert() {}
LogicalResult CodegenEnv::initTensorExp() {
// Builds the tensor expression for the Linalg operation in SSA form.
std::optional<ExprId> optExp = latticeMerger.buildTensorExpFromLinalg(op());
if (!optExp || !isAdmissibleTensorExp(*optExp))
return failure();
tensorExp = *optExp;
return success();
}
void CodegenEnv::startEmit() {
assert(insChain == nullptr && "must only start emitting once");
if (sparseOut) {
insChain = sparseOut->get();
latticeMerger.setHasSparseOut(true);
}
// Sort the related loop array such that they are in the same order as they
// appears on the topoOrder.
// TODO: since we only handle affine addition for slice based codegen, and
// addition is assoicative, the order how we evaluate the expression does
// not matter. However, to support multiplication, the order of the loop
// index should match the evaluation order to the affine expression AST.
// Initialize loop emitter.
SmallVector<Value> tensors; // input tensors passed to loop emitter
for (OpOperand &t : linalgOp->getOpOperands()) {
tensors.push_back(t.get());
const TensorId tid = makeTensorId(t.getOperandNumber());
const Level lvlRank = linalgOp.getMatchingIndexingMap(&t).getNumResults();
const auto enc = getSparseTensorEncoding(t.get().getType());
(void)enc;
assert(!enc || lvlRank == enc.getLvlRank());
for (Level lvl = 0; lvl < lvlRank; lvl++)
sortDependentLoops(latticeMerger.getDependentLoops(tid, lvl));
}
loopEmitter.initialize(
tensors,
StringAttr::get(linalgOp.getContext(),
linalg::GenericOp::getOperationName()),
/*hasOutput=*/true,
/*isSparseOut=*/sparseOut != nullptr, /*numLoops=*/getLoopNum(),
// TODO: compute the map and pass it to loop emitter directly instead of
// passing in a callback.
/*dependentLvlGetter=*/
[this](TensorId t,
Level lvl) -> std::vector<std::pair<TensorLevel, unsigned>> {
// Translates from a list of loop indices to a list of [tid, lvl] pair.
std::vector<LoopCoeffPair> &rLoops = merger().getDependentLoops(t, lvl);
std::vector<std::pair<TensorLevel, unsigned>> ret;
ret.reserve(rLoops.size());
for (auto [loop, coeff] : rLoops) {
TensorLevel tl = makeTensorLevel(merger().getLoopDefiningLvl(loop));
ret.emplace_back(tl, coeff);
};
return ret;
});
}
std::optional<Operation *> CodegenEnv::genLoopBoundary(
function_ref<std::optional<Operation *>(MutableArrayRef<Value> parameters)>
callback) {
SmallVector<Value> params;
if (isReduc()) {
params.push_back(redVal);
if (redValidLexInsert)
params.push_back(redValidLexInsert);
} else {
assert(!redValidLexInsert);
}
if (isExpand())
params.push_back(expCount);
if (insChain != nullptr)
params.push_back(insChain);
auto r = callback(params); // may update parameters
unsigned i = 0;
if (isReduc()) {
updateReduc(params[i++]);
if (redValidLexInsert)
setValidLexInsert(params[i++]);
}
if (isExpand())
updateExpandCount(params[i++]);
if (insChain != nullptr)
updateInsertionChain(params[i]);
return r;
}
//===----------------------------------------------------------------------===//
// Code generation environment verify functions.
//===----------------------------------------------------------------------===//
bool CodegenEnv::isAdmissibleTensorExp(ExprId exp) {
// We reject any expression that makes a reduction from `-outTensor`, as those
// expressions create a dependency between the current iteration (i) and the
// previous iteration (i-1). It would require iterating over the whole
// coordinate space, which prevent exploiting sparsity for faster code.
for (utils::IteratorType it : linalgOp.getIteratorTypesArray()) {
if (it == utils::IteratorType::reduction) {
if (latticeMerger.hasNegateOnOut(exp))
return false;
break;
}
}
OpOperand *lhs = linalgOp.getDpsInitOperand(0);
const TensorId tensor = makeTensorId(lhs->getOperandNumber());
// An non-annotated output tensor is assumed dense, and becomes a random
// access n-dim memref. Admissible since insertions cannot occur.
if (getSparseTensorType(lhs->get()).isAllDense())
return true;
// A tensor expression with a sparse output tensor that changes its values
// but not its nonzero structure, an operation called "simply dynamic" in
// [Bik96,Ch9], is also admissible without special env.
if (latticeMerger.isSingleCondition(tensor, exp))
return true;
// Accept "truly dynamic" if the output tensor materializes uninitialized
// into the computation and insertions occur in lexicographic index order.
sparseOut = lhs;
// Find the outermost parallel nest to determine whether compress/expand is
// needed.
outerParNest = 0;
const auto iteratorTypes = linalgOp.getIteratorTypesArray();
for (unsigned i = 0, e = getLoopNum(); i < e; i++) {
if (linalg::isReductionIterator(iteratorTypes[i]))
break; // terminate at first reduction
outerParNest++;
}
// Inadmissible kernel should have already been rejected by the previous
// path during loop scheduling.
assert(static_cast<int64_t>(outerParNest) >=
linalgOp.getRank(linalgOp.getDpsInitOperand(0)) - 1);
return isMaterializing(lhs->get());
}
//===----------------------------------------------------------------------===//
// Code generation environment topological sort methods
//===----------------------------------------------------------------------===//
Value CodegenEnv::getLoopVar(LoopId i) const {
return loopEmitter.getLoopIV(i);
}
//===----------------------------------------------------------------------===//
// Code generation environment sparse tensor output and expansion methods
//===----------------------------------------------------------------------===//
void CodegenEnv::updateInsertionChain(Value chain) {
assert(sparseOut != nullptr && insChain != nullptr);
insChain = chain;
}
bool CodegenEnv::atExpandLevel(OpOperand *o, unsigned rank, LoopId n) const {
return sparseOut == o && outerParNest == static_cast<LoopId>(rank - 1) &&
outerParNest == n;
}
void CodegenEnv::startExpand(Value values, Value filled, Value added,
Value count) {
assert(sparseOut != nullptr && expValues == nullptr);
expValues = values;
expFilled = filled;
expAdded = added;
expCount = count;
}
void CodegenEnv::updateExpandCount(Value count) {
assert(sparseOut != nullptr && expValues != nullptr);
expCount = count;
}
void CodegenEnv::endExpand() {
assert(sparseOut != nullptr && expValues != nullptr);
expValues = expFilled = expAdded = expCount = Value();
}
//===----------------------------------------------------------------------===//
// Code generation environment reduction methods
//===----------------------------------------------------------------------===//
void CodegenEnv::startReduc(ExprId exp, Value val) {
assert(!isReduc() && exp != detail::kInvalidId);
redExp = exp;
redVal = val;
latticeMerger.setExprValue(exp, val);
}
void CodegenEnv::updateReduc(Value val) {
assert(isReduc());
redVal = val;
latticeMerger.clearExprValue(redExp);
latticeMerger.setExprValue(redExp, val);
}
Value CodegenEnv::endReduc() {
assert(isReduc());
Value val = redVal;
redVal = val;
latticeMerger.clearExprValue(redExp);
redExp = detail::kInvalidId;
return val;
}
void CodegenEnv::setValidLexInsert(Value val) {
assert(isReduc() && val);
redValidLexInsert = val;
}
void CodegenEnv::clearValidLexInsert() {
assert(!isReduc());
redValidLexInsert = Value();
}
void CodegenEnv::startCustomReduc(ExprId exp) {
assert(!isCustomReduc() && exp != detail::kInvalidId);
redCustom = exp;
}
Value CodegenEnv::getCustomRedId() {
assert(isCustomReduc());
return dyn_cast<sparse_tensor::ReduceOp>(exp(redCustom).op).getIdentity();
}
void CodegenEnv::endCustomReduc() {
assert(isCustomReduc());
redCustom = detail::kInvalidId;
}