blob: 290b3c5df9592ebb50ed633146276d2105a714c3 [file] [log] [blame]
//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/PrettyDeclStackTrace.h"
#include "clang/Basic/Attributes.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/TimeProfiler.h"
using namespace clang;
/// ParseNamespace - We know that the current token is a namespace keyword. This
/// may either be a top level namespace or a block-level namespace alias. If
/// there was an inline keyword, it has already been parsed.
///
/// namespace-definition: [C++: namespace.def]
/// named-namespace-definition
/// unnamed-namespace-definition
/// nested-namespace-definition
///
/// named-namespace-definition:
/// 'inline'[opt] 'namespace' attributes[opt] identifier '{'
/// namespace-body '}'
///
/// unnamed-namespace-definition:
/// 'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}'
///
/// nested-namespace-definition:
/// 'namespace' enclosing-namespace-specifier '::' 'inline'[opt]
/// identifier '{' namespace-body '}'
///
/// enclosing-namespace-specifier:
/// identifier
/// enclosing-namespace-specifier '::' 'inline'[opt] identifier
///
/// namespace-alias-definition: [C++ 7.3.2: namespace.alias]
/// 'namespace' identifier '=' qualified-namespace-specifier ';'
///
Parser::DeclGroupPtrTy Parser::ParseNamespace(DeclaratorContext Context,
SourceLocation &DeclEnd,
SourceLocation InlineLoc) {
assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
SourceLocation NamespaceLoc = ConsumeToken(); // eat the 'namespace'.
ObjCDeclContextSwitch ObjCDC(*this);
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteNamespaceDecl(getCurScope());
cutOffParsing();
return nullptr;
}
SourceLocation IdentLoc;
IdentifierInfo *Ident = nullptr;
InnerNamespaceInfoList ExtraNSs;
SourceLocation FirstNestedInlineLoc;
ParsedAttributesWithRange attrs(AttrFactory);
SourceLocation attrLoc;
if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
? diag::warn_cxx14_compat_ns_enum_attribute
: diag::ext_ns_enum_attribute)
<< 0 /*namespace*/;
attrLoc = Tok.getLocation();
ParseCXX11Attributes(attrs);
}
if (Tok.is(tok::identifier)) {
Ident = Tok.getIdentifierInfo();
IdentLoc = ConsumeToken(); // eat the identifier.
while (Tok.is(tok::coloncolon) &&
(NextToken().is(tok::identifier) ||
(NextToken().is(tok::kw_inline) &&
GetLookAheadToken(2).is(tok::identifier)))) {
InnerNamespaceInfo Info;
Info.NamespaceLoc = ConsumeToken();
if (Tok.is(tok::kw_inline)) {
Info.InlineLoc = ConsumeToken();
if (FirstNestedInlineLoc.isInvalid())
FirstNestedInlineLoc = Info.InlineLoc;
}
Info.Ident = Tok.getIdentifierInfo();
Info.IdentLoc = ConsumeToken();
ExtraNSs.push_back(Info);
}
}
// A nested namespace definition cannot have attributes.
if (!ExtraNSs.empty() && attrLoc.isValid())
Diag(attrLoc, diag::err_unexpected_nested_namespace_attribute);
// Read label attributes, if present.
if (Tok.is(tok::kw___attribute)) {
attrLoc = Tok.getLocation();
ParseGNUAttributes(attrs);
}
if (Tok.is(tok::equal)) {
if (!Ident) {
Diag(Tok, diag::err_expected) << tok::identifier;
// Skip to end of the definition and eat the ';'.
SkipUntil(tok::semi);
return nullptr;
}
if (attrLoc.isValid())
Diag(attrLoc, diag::err_unexpected_namespace_attributes_alias);
if (InlineLoc.isValid())
Diag(InlineLoc, diag::err_inline_namespace_alias)
<< FixItHint::CreateRemoval(InlineLoc);
Decl *NSAlias = ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
return Actions.ConvertDeclToDeclGroup(NSAlias);
}
BalancedDelimiterTracker T(*this, tok::l_brace);
if (T.consumeOpen()) {
if (Ident)
Diag(Tok, diag::err_expected) << tok::l_brace;
else
Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
return nullptr;
}
if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() ||
getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() ||
getCurScope()->getFnParent()) {
Diag(T.getOpenLocation(), diag::err_namespace_nonnamespace_scope);
SkipUntil(tok::r_brace);
return nullptr;
}
if (ExtraNSs.empty()) {
// Normal namespace definition, not a nested-namespace-definition.
} else if (InlineLoc.isValid()) {
Diag(InlineLoc, diag::err_inline_nested_namespace_definition);
} else if (getLangOpts().CPlusPlus20) {
Diag(ExtraNSs[0].NamespaceLoc,
diag::warn_cxx14_compat_nested_namespace_definition);
if (FirstNestedInlineLoc.isValid())
Diag(FirstNestedInlineLoc,
diag::warn_cxx17_compat_inline_nested_namespace_definition);
} else if (getLangOpts().CPlusPlus17) {
Diag(ExtraNSs[0].NamespaceLoc,
diag::warn_cxx14_compat_nested_namespace_definition);
if (FirstNestedInlineLoc.isValid())
Diag(FirstNestedInlineLoc, diag::ext_inline_nested_namespace_definition);
} else {
TentativeParsingAction TPA(*this);
SkipUntil(tok::r_brace, StopBeforeMatch);
Token rBraceToken = Tok;
TPA.Revert();
if (!rBraceToken.is(tok::r_brace)) {
Diag(ExtraNSs[0].NamespaceLoc, diag::ext_nested_namespace_definition)
<< SourceRange(ExtraNSs.front().NamespaceLoc,
ExtraNSs.back().IdentLoc);
} else {
std::string NamespaceFix;
for (const auto &ExtraNS : ExtraNSs) {
NamespaceFix += " { ";
if (ExtraNS.InlineLoc.isValid())
NamespaceFix += "inline ";
NamespaceFix += "namespace ";
NamespaceFix += ExtraNS.Ident->getName();
}
std::string RBraces;
for (unsigned i = 0, e = ExtraNSs.size(); i != e; ++i)
RBraces += "} ";
Diag(ExtraNSs[0].NamespaceLoc, diag::ext_nested_namespace_definition)
<< FixItHint::CreateReplacement(
SourceRange(ExtraNSs.front().NamespaceLoc,
ExtraNSs.back().IdentLoc),
NamespaceFix)
<< FixItHint::CreateInsertion(rBraceToken.getLocation(), RBraces);
}
// Warn about nested inline namespaces.
if (FirstNestedInlineLoc.isValid())
Diag(FirstNestedInlineLoc, diag::ext_inline_nested_namespace_definition);
}
// If we're still good, complain about inline namespaces in non-C++0x now.
if (InlineLoc.isValid())
Diag(InlineLoc, getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_inline_namespace : diag::ext_inline_namespace);
// Enter a scope for the namespace.
ParseScope NamespaceScope(this, Scope::DeclScope);
UsingDirectiveDecl *ImplicitUsingDirectiveDecl = nullptr;
Decl *NamespcDecl = Actions.ActOnStartNamespaceDef(
getCurScope(), InlineLoc, NamespaceLoc, IdentLoc, Ident,
T.getOpenLocation(), attrs, ImplicitUsingDirectiveDecl);
PrettyDeclStackTraceEntry CrashInfo(Actions.Context, NamespcDecl,
NamespaceLoc, "parsing namespace");
// Parse the contents of the namespace. This includes parsing recovery on
// any improperly nested namespaces.
ParseInnerNamespace(ExtraNSs, 0, InlineLoc, attrs, T);
// Leave the namespace scope.
NamespaceScope.Exit();
DeclEnd = T.getCloseLocation();
Actions.ActOnFinishNamespaceDef(NamespcDecl, DeclEnd);
return Actions.ConvertDeclToDeclGroup(NamespcDecl,
ImplicitUsingDirectiveDecl);
}
/// ParseInnerNamespace - Parse the contents of a namespace.
void Parser::ParseInnerNamespace(const InnerNamespaceInfoList &InnerNSs,
unsigned int index, SourceLocation &InlineLoc,
ParsedAttributes &attrs,
BalancedDelimiterTracker &Tracker) {
if (index == InnerNSs.size()) {
while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
Tok.isNot(tok::eof)) {
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
ParseExternalDeclaration(attrs);
}
// The caller is what called check -- we are simply calling
// the close for it.
Tracker.consumeClose();
return;
}
// Handle a nested namespace definition.
// FIXME: Preserve the source information through to the AST rather than
// desugaring it here.
ParseScope NamespaceScope(this, Scope::DeclScope);
UsingDirectiveDecl *ImplicitUsingDirectiveDecl = nullptr;
Decl *NamespcDecl = Actions.ActOnStartNamespaceDef(
getCurScope(), InnerNSs[index].InlineLoc, InnerNSs[index].NamespaceLoc,
InnerNSs[index].IdentLoc, InnerNSs[index].Ident,
Tracker.getOpenLocation(), attrs, ImplicitUsingDirectiveDecl);
assert(!ImplicitUsingDirectiveDecl &&
"nested namespace definition cannot define anonymous namespace");
ParseInnerNamespace(InnerNSs, ++index, InlineLoc, attrs, Tracker);
NamespaceScope.Exit();
Actions.ActOnFinishNamespaceDef(NamespcDecl, Tracker.getCloseLocation());
}
/// ParseNamespaceAlias - Parse the part after the '=' in a namespace
/// alias definition.
///
Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
SourceLocation &DeclEnd) {
assert(Tok.is(tok::equal) && "Not equal token");
ConsumeToken(); // eat the '='.
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteNamespaceAliasDecl(getCurScope());
cutOffParsing();
return nullptr;
}
CXXScopeSpec SS;
// Parse (optional) nested-name-specifier.
ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false,
/*EnteringContext=*/false,
/*MayBePseudoDestructor=*/nullptr,
/*IsTypename=*/false,
/*LastII=*/nullptr,
/*OnlyNamespace=*/true);
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_namespace_name);
// Skip to end of the definition and eat the ';'.
SkipUntil(tok::semi);
return nullptr;
}
if (SS.isInvalid()) {
// Diagnostics have been emitted in ParseOptionalCXXScopeSpecifier.
// Skip to end of the definition and eat the ';'.
SkipUntil(tok::semi);
return nullptr;
}
// Parse identifier.
IdentifierInfo *Ident = Tok.getIdentifierInfo();
SourceLocation IdentLoc = ConsumeToken();
// Eat the ';'.
DeclEnd = Tok.getLocation();
if (ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name))
SkipUntil(tok::semi);
return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc,
Alias, SS, IdentLoc, Ident);
}
/// ParseLinkage - We know that the current token is a string_literal
/// and just before that, that extern was seen.
///
/// linkage-specification: [C++ 7.5p2: dcl.link]
/// 'extern' string-literal '{' declaration-seq[opt] '}'
/// 'extern' string-literal declaration
///
Decl *Parser::ParseLinkage(ParsingDeclSpec &DS, DeclaratorContext Context) {
assert(isTokenStringLiteral() && "Not a string literal!");
ExprResult Lang = ParseStringLiteralExpression(false);
ParseScope LinkageScope(this, Scope::DeclScope);
Decl *LinkageSpec =
Lang.isInvalid()
? nullptr
: Actions.ActOnStartLinkageSpecification(
getCurScope(), DS.getSourceRange().getBegin(), Lang.get(),
Tok.is(tok::l_brace) ? Tok.getLocation() : SourceLocation());
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
if (Tok.isNot(tok::l_brace)) {
// Reset the source range in DS, as the leading "extern"
// does not really belong to the inner declaration ...
DS.SetRangeStart(SourceLocation());
DS.SetRangeEnd(SourceLocation());
// ... but anyway remember that such an "extern" was seen.
DS.setExternInLinkageSpec(true);
ParseExternalDeclaration(attrs, &DS);
return LinkageSpec ? Actions.ActOnFinishLinkageSpecification(
getCurScope(), LinkageSpec, SourceLocation())
: nullptr;
}
DS.abort();
ProhibitAttributes(attrs);
BalancedDelimiterTracker T(*this, tok::l_brace);
T.consumeOpen();
unsigned NestedModules = 0;
while (true) {
switch (Tok.getKind()) {
case tok::annot_module_begin:
++NestedModules;
ParseTopLevelDecl();
continue;
case tok::annot_module_end:
if (!NestedModules)
break;
--NestedModules;
ParseTopLevelDecl();
continue;
case tok::annot_module_include:
ParseTopLevelDecl();
continue;
case tok::eof:
break;
case tok::r_brace:
if (!NestedModules)
break;
LLVM_FALLTHROUGH;
default:
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
ParseExternalDeclaration(attrs);
continue;
}
break;
}
T.consumeClose();
return LinkageSpec ? Actions.ActOnFinishLinkageSpecification(
getCurScope(), LinkageSpec, T.getCloseLocation())
: nullptr;
}
/// Parse a C++ Modules TS export-declaration.
///
/// export-declaration:
/// 'export' declaration
/// 'export' '{' declaration-seq[opt] '}'
///
Decl *Parser::ParseExportDeclaration() {
assert(Tok.is(tok::kw_export));
SourceLocation ExportLoc = ConsumeToken();
ParseScope ExportScope(this, Scope::DeclScope);
Decl *ExportDecl = Actions.ActOnStartExportDecl(
getCurScope(), ExportLoc,
Tok.is(tok::l_brace) ? Tok.getLocation() : SourceLocation());
if (Tok.isNot(tok::l_brace)) {
// FIXME: Factor out a ParseExternalDeclarationWithAttrs.
ParsedAttributesWithRange Attrs(AttrFactory);
MaybeParseCXX11Attributes(Attrs);
MaybeParseMicrosoftAttributes(Attrs);
ParseExternalDeclaration(Attrs);
return Actions.ActOnFinishExportDecl(getCurScope(), ExportDecl,
SourceLocation());
}
BalancedDelimiterTracker T(*this, tok::l_brace);
T.consumeOpen();
// The Modules TS draft says "An export-declaration shall declare at least one
// entity", but the intent is that it shall contain at least one declaration.
if (Tok.is(tok::r_brace) && getLangOpts().ModulesTS) {
Diag(ExportLoc, diag::err_export_empty)
<< SourceRange(ExportLoc, Tok.getLocation());
}
while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
Tok.isNot(tok::eof)) {
ParsedAttributesWithRange Attrs(AttrFactory);
MaybeParseCXX11Attributes(Attrs);
MaybeParseMicrosoftAttributes(Attrs);
ParseExternalDeclaration(Attrs);
}
T.consumeClose();
return Actions.ActOnFinishExportDecl(getCurScope(), ExportDecl,
T.getCloseLocation());
}
/// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
/// using-directive. Assumes that current token is 'using'.
Parser::DeclGroupPtrTy
Parser::ParseUsingDirectiveOrDeclaration(DeclaratorContext Context,
const ParsedTemplateInfo &TemplateInfo,
SourceLocation &DeclEnd,
ParsedAttributesWithRange &attrs) {
assert(Tok.is(tok::kw_using) && "Not using token");
ObjCDeclContextSwitch ObjCDC(*this);
// Eat 'using'.
SourceLocation UsingLoc = ConsumeToken();
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteUsing(getCurScope());
cutOffParsing();
return nullptr;
}
// Consume unexpected 'template' keywords.
while (Tok.is(tok::kw_template)) {
SourceLocation TemplateLoc = ConsumeToken();
Diag(TemplateLoc, diag::err_unexpected_template_after_using)
<< FixItHint::CreateRemoval(TemplateLoc);
}
// 'using namespace' means this is a using-directive.
if (Tok.is(tok::kw_namespace)) {
// Template parameters are always an error here.
if (TemplateInfo.Kind) {
SourceRange R = TemplateInfo.getSourceRange();
Diag(UsingLoc, diag::err_templated_using_directive_declaration)
<< 0 /* directive */ << R << FixItHint::CreateRemoval(R);
}
Decl *UsingDir = ParseUsingDirective(Context, UsingLoc, DeclEnd, attrs);
return Actions.ConvertDeclToDeclGroup(UsingDir);
}
// Otherwise, it must be a using-declaration or an alias-declaration.
// Using declarations can't have attributes.
ProhibitAttributes(attrs);
return ParseUsingDeclaration(Context, TemplateInfo, UsingLoc, DeclEnd,
AS_none);
}
/// ParseUsingDirective - Parse C++ using-directive, assumes
/// that current token is 'namespace' and 'using' was already parsed.
///
/// using-directive: [C++ 7.3.p4: namespace.udir]
/// 'using' 'namespace' ::[opt] nested-name-specifier[opt]
/// namespace-name ;
/// [GNU] using-directive:
/// 'using' 'namespace' ::[opt] nested-name-specifier[opt]
/// namespace-name attributes[opt] ;
///
Decl *Parser::ParseUsingDirective(DeclaratorContext Context,
SourceLocation UsingLoc,
SourceLocation &DeclEnd,
ParsedAttributes &attrs) {
assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
// Eat 'namespace'.
SourceLocation NamespcLoc = ConsumeToken();
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteUsingDirective(getCurScope());
cutOffParsing();
return nullptr;
}
CXXScopeSpec SS;
// Parse (optional) nested-name-specifier.
ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false,
/*EnteringContext=*/false,
/*MayBePseudoDestructor=*/nullptr,
/*IsTypename=*/false,
/*LastII=*/nullptr,
/*OnlyNamespace=*/true);
IdentifierInfo *NamespcName = nullptr;
SourceLocation IdentLoc = SourceLocation();
// Parse namespace-name.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_namespace_name);
// If there was invalid namespace name, skip to end of decl, and eat ';'.
SkipUntil(tok::semi);
// FIXME: Are there cases, when we would like to call ActOnUsingDirective?
return nullptr;
}
if (SS.isInvalid()) {
// Diagnostics have been emitted in ParseOptionalCXXScopeSpecifier.
// Skip to end of the definition and eat the ';'.
SkipUntil(tok::semi);
return nullptr;
}
// Parse identifier.
NamespcName = Tok.getIdentifierInfo();
IdentLoc = ConsumeToken();
// Parse (optional) attributes (most likely GNU strong-using extension).
bool GNUAttr = false;
if (Tok.is(tok::kw___attribute)) {
GNUAttr = true;
ParseGNUAttributes(attrs);
}
// Eat ';'.
DeclEnd = Tok.getLocation();
if (ExpectAndConsume(tok::semi,
GNUAttr ? diag::err_expected_semi_after_attribute_list
: diag::err_expected_semi_after_namespace_name))
SkipUntil(tok::semi);
return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS,
IdentLoc, NamespcName, attrs);
}
/// Parse a using-declarator (or the identifier in a C++11 alias-declaration).
///
/// using-declarator:
/// 'typename'[opt] nested-name-specifier unqualified-id
///
bool Parser::ParseUsingDeclarator(DeclaratorContext Context,
UsingDeclarator &D) {
D.clear();
// Ignore optional 'typename'.
// FIXME: This is wrong; we should parse this as a typename-specifier.
TryConsumeToken(tok::kw_typename, D.TypenameLoc);
if (Tok.is(tok::kw___super)) {
Diag(Tok.getLocation(), diag::err_super_in_using_declaration);
return true;
}
// Parse nested-name-specifier.
IdentifierInfo *LastII = nullptr;
if (ParseOptionalCXXScopeSpecifier(D.SS, /*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false,
/*EnteringContext=*/false,
/*MayBePseudoDtor=*/nullptr,
/*IsTypename=*/false,
/*LastII=*/&LastII,
/*OnlyNamespace=*/false,
/*InUsingDeclaration=*/true))
return true;
if (D.SS.isInvalid())
return true;
// Parse the unqualified-id. We allow parsing of both constructor and
// destructor names and allow the action module to diagnose any semantic
// errors.
//
// C++11 [class.qual]p2:
// [...] in a using-declaration that is a member-declaration, if the name
// specified after the nested-name-specifier is the same as the identifier
// or the simple-template-id's template-name in the last component of the
// nested-name-specifier, the name is [...] considered to name the
// constructor.
if (getLangOpts().CPlusPlus11 &&
Context == DeclaratorContext::MemberContext &&
Tok.is(tok::identifier) &&
(NextToken().is(tok::semi) || NextToken().is(tok::comma) ||
NextToken().is(tok::ellipsis)) &&
D.SS.isNotEmpty() && LastII == Tok.getIdentifierInfo() &&
!D.SS.getScopeRep()->getAsNamespace() &&
!D.SS.getScopeRep()->getAsNamespaceAlias()) {
SourceLocation IdLoc = ConsumeToken();
ParsedType Type =
Actions.getInheritingConstructorName(D.SS, IdLoc, *LastII);
D.Name.setConstructorName(Type, IdLoc, IdLoc);
} else {
if (ParseUnqualifiedId(
D.SS, /*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false, /*EnteringContext=*/false,
/*AllowDestructorName=*/true,
/*AllowConstructorName=*/
!(Tok.is(tok::identifier) && NextToken().is(tok::equal)),
/*AllowDeductionGuide=*/false, nullptr, D.Name))
return true;
}
if (TryConsumeToken(tok::ellipsis, D.EllipsisLoc))
Diag(Tok.getLocation(), getLangOpts().CPlusPlus17 ?
diag::warn_cxx17_compat_using_declaration_pack :
diag::ext_using_declaration_pack);
return false;
}
/// ParseUsingDeclaration - Parse C++ using-declaration or alias-declaration.
/// Assumes that 'using' was already seen.
///
/// using-declaration: [C++ 7.3.p3: namespace.udecl]
/// 'using' using-declarator-list[opt] ;
///
/// using-declarator-list: [C++1z]
/// using-declarator '...'[opt]
/// using-declarator-list ',' using-declarator '...'[opt]
///
/// using-declarator-list: [C++98-14]
/// using-declarator
///
/// alias-declaration: C++11 [dcl.dcl]p1
/// 'using' identifier attribute-specifier-seq[opt] = type-id ;
///
Parser::DeclGroupPtrTy
Parser::ParseUsingDeclaration(DeclaratorContext Context,
const ParsedTemplateInfo &TemplateInfo,
SourceLocation UsingLoc, SourceLocation &DeclEnd,
AccessSpecifier AS) {
// Check for misplaced attributes before the identifier in an
// alias-declaration.
ParsedAttributesWithRange MisplacedAttrs(AttrFactory);
MaybeParseCXX11Attributes(MisplacedAttrs);
UsingDeclarator D;
bool InvalidDeclarator = ParseUsingDeclarator(Context, D);
ParsedAttributesWithRange Attrs(AttrFactory);
MaybeParseGNUAttributes(Attrs);
MaybeParseCXX11Attributes(Attrs);
// Maybe this is an alias-declaration.
if (Tok.is(tok::equal)) {
if (InvalidDeclarator) {
SkipUntil(tok::semi);
return nullptr;
}
// If we had any misplaced attributes from earlier, this is where they
// should have been written.
if (MisplacedAttrs.Range.isValid()) {
Diag(MisplacedAttrs.Range.getBegin(), diag::err_attributes_not_allowed)
<< FixItHint::CreateInsertionFromRange(
Tok.getLocation(),
CharSourceRange::getTokenRange(MisplacedAttrs.Range))
<< FixItHint::CreateRemoval(MisplacedAttrs.Range);
Attrs.takeAllFrom(MisplacedAttrs);
}
Decl *DeclFromDeclSpec = nullptr;
Decl *AD = ParseAliasDeclarationAfterDeclarator(
TemplateInfo, UsingLoc, D, DeclEnd, AS, Attrs, &DeclFromDeclSpec);
return Actions.ConvertDeclToDeclGroup(AD, DeclFromDeclSpec);
}
// C++11 attributes are not allowed on a using-declaration, but GNU ones
// are.
ProhibitAttributes(MisplacedAttrs);
ProhibitAttributes(Attrs);
// Diagnose an attempt to declare a templated using-declaration.
// In C++11, alias-declarations can be templates:
// template <...> using id = type;
if (TemplateInfo.Kind) {
SourceRange R = TemplateInfo.getSourceRange();
Diag(UsingLoc, diag::err_templated_using_directive_declaration)
<< 1 /* declaration */ << R << FixItHint::CreateRemoval(R);
// Unfortunately, we have to bail out instead of recovering by
// ignoring the parameters, just in case the nested name specifier
// depends on the parameters.
return nullptr;
}
SmallVector<Decl *, 8> DeclsInGroup;
while (true) {
// Parse (optional) attributes (most likely GNU strong-using extension).
MaybeParseGNUAttributes(Attrs);
if (InvalidDeclarator)
SkipUntil(tok::comma, tok::semi, StopBeforeMatch);
else {
// "typename" keyword is allowed for identifiers only,
// because it may be a type definition.
if (D.TypenameLoc.isValid() &&
D.Name.getKind() != UnqualifiedIdKind::IK_Identifier) {
Diag(D.Name.getSourceRange().getBegin(),
diag::err_typename_identifiers_only)
<< FixItHint::CreateRemoval(SourceRange(D.TypenameLoc));
// Proceed parsing, but discard the typename keyword.
D.TypenameLoc = SourceLocation();
}
Decl *UD = Actions.ActOnUsingDeclaration(getCurScope(), AS, UsingLoc,
D.TypenameLoc, D.SS, D.Name,
D.EllipsisLoc, Attrs);
if (UD)
DeclsInGroup.push_back(UD);
}
if (!TryConsumeToken(tok::comma))
break;
// Parse another using-declarator.
Attrs.clear();
InvalidDeclarator = ParseUsingDeclarator(Context, D);
}
if (DeclsInGroup.size() > 1)
Diag(Tok.getLocation(), getLangOpts().CPlusPlus17 ?
diag::warn_cxx17_compat_multi_using_declaration :
diag::ext_multi_using_declaration);
// Eat ';'.
DeclEnd = Tok.getLocation();
if (ExpectAndConsume(tok::semi, diag::err_expected_after,
!Attrs.empty() ? "attributes list"
: "using declaration"))
SkipUntil(tok::semi);
return Actions.BuildDeclaratorGroup(DeclsInGroup);
}
Decl *Parser::ParseAliasDeclarationAfterDeclarator(
const ParsedTemplateInfo &TemplateInfo, SourceLocation UsingLoc,
UsingDeclarator &D, SourceLocation &DeclEnd, AccessSpecifier AS,
ParsedAttributes &Attrs, Decl **OwnedType) {
if (ExpectAndConsume(tok::equal)) {
SkipUntil(tok::semi);
return nullptr;
}
Diag(Tok.getLocation(), getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_alias_declaration :
diag::ext_alias_declaration);
// Type alias templates cannot be specialized.
int SpecKind = -1;
if (TemplateInfo.Kind == ParsedTemplateInfo::Template &&
D.Name.getKind() == UnqualifiedIdKind::IK_TemplateId)
SpecKind = 0;
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization)
SpecKind = 1;
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
SpecKind = 2;
if (SpecKind != -1) {
SourceRange Range;
if (SpecKind == 0)
Range = SourceRange(D.Name.TemplateId->LAngleLoc,
D.Name.TemplateId->RAngleLoc);
else
Range = TemplateInfo.getSourceRange();
Diag(Range.getBegin(), diag::err_alias_declaration_specialization)
<< SpecKind << Range;
SkipUntil(tok::semi);
return nullptr;
}
// Name must be an identifier.
if (D.Name.getKind() != UnqualifiedIdKind::IK_Identifier) {
Diag(D.Name.StartLocation, diag::err_alias_declaration_not_identifier);
// No removal fixit: can't recover from this.
SkipUntil(tok::semi);
return nullptr;
} else if (D.TypenameLoc.isValid())
Diag(D.TypenameLoc, diag::err_alias_declaration_not_identifier)
<< FixItHint::CreateRemoval(SourceRange(
D.TypenameLoc,
D.SS.isNotEmpty() ? D.SS.getEndLoc() : D.TypenameLoc));
else if (D.SS.isNotEmpty())
Diag(D.SS.getBeginLoc(), diag::err_alias_declaration_not_identifier)
<< FixItHint::CreateRemoval(D.SS.getRange());
if (D.EllipsisLoc.isValid())
Diag(D.EllipsisLoc, diag::err_alias_declaration_pack_expansion)
<< FixItHint::CreateRemoval(SourceRange(D.EllipsisLoc));
Decl *DeclFromDeclSpec = nullptr;
TypeResult TypeAlias = ParseTypeName(
nullptr,
TemplateInfo.Kind ? DeclaratorContext::AliasTemplateContext
: DeclaratorContext::AliasDeclContext,
AS, &DeclFromDeclSpec, &Attrs);
if (OwnedType)
*OwnedType = DeclFromDeclSpec;
// Eat ';'.
DeclEnd = Tok.getLocation();
if (ExpectAndConsume(tok::semi, diag::err_expected_after,
!Attrs.empty() ? "attributes list"
: "alias declaration"))
SkipUntil(tok::semi);
TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
MultiTemplateParamsArg TemplateParamsArg(
TemplateParams ? TemplateParams->data() : nullptr,
TemplateParams ? TemplateParams->size() : 0);
return Actions.ActOnAliasDeclaration(getCurScope(), AS, TemplateParamsArg,
UsingLoc, D.Name, Attrs, TypeAlias,
DeclFromDeclSpec);
}
/// ParseStaticAssertDeclaration - Parse C++0x or C11 static_assert-declaration.
///
/// [C++0x] static_assert-declaration:
/// static_assert ( constant-expression , string-literal ) ;
///
/// [C11] static_assert-declaration:
/// _Static_assert ( constant-expression , string-literal ) ;
///
Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
assert(Tok.isOneOf(tok::kw_static_assert, tok::kw__Static_assert) &&
"Not a static_assert declaration");
if (Tok.is(tok::kw__Static_assert) && !getLangOpts().C11)
Diag(Tok, diag::ext_c11_feature) << Tok.getName();
if (Tok.is(tok::kw_static_assert))
Diag(Tok, diag::warn_cxx98_compat_static_assert);
SourceLocation StaticAssertLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected) << tok::l_paren;
SkipMalformedDecl();
return nullptr;
}
EnterExpressionEvaluationContext ConstantEvaluated(
Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExprResult AssertExpr(ParseConstantExpressionInExprEvalContext());
if (AssertExpr.isInvalid()) {
SkipMalformedDecl();
return nullptr;
}
ExprResult AssertMessage;
if (Tok.is(tok::r_paren)) {
Diag(Tok, getLangOpts().CPlusPlus17
? diag::warn_cxx14_compat_static_assert_no_message
: diag::ext_static_assert_no_message)
<< (getLangOpts().CPlusPlus17
? FixItHint()
: FixItHint::CreateInsertion(Tok.getLocation(), ", \"\""));
} else {
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::semi);
return nullptr;
}
if (!isTokenStringLiteral()) {
Diag(Tok, diag::err_expected_string_literal)
<< /*Source='static_assert'*/1;
SkipMalformedDecl();
return nullptr;
}
AssertMessage = ParseStringLiteralExpression();
if (AssertMessage.isInvalid()) {
SkipMalformedDecl();
return nullptr;
}
}
T.consumeClose();
DeclEnd = Tok.getLocation();
ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert);
return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc,
AssertExpr.get(),
AssertMessage.get(),
T.getCloseLocation());
}
/// ParseDecltypeSpecifier - Parse a C++11 decltype specifier.
///
/// 'decltype' ( expression )
/// 'decltype' ( 'auto' ) [C++1y]
///
SourceLocation Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
assert(Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)
&& "Not a decltype specifier");
ExprResult Result;
SourceLocation StartLoc = Tok.getLocation();
SourceLocation EndLoc;
if (Tok.is(tok::annot_decltype)) {
Result = getExprAnnotation(Tok);
EndLoc = Tok.getAnnotationEndLoc();
ConsumeAnnotationToken();
if (Result.isInvalid()) {
DS.SetTypeSpecError();
return EndLoc;
}
} else {
if (Tok.getIdentifierInfo()->isStr("decltype"))
Diag(Tok, diag::warn_cxx98_compat_decltype);
ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after,
"decltype", tok::r_paren)) {
DS.SetTypeSpecError();
return T.getOpenLocation() == Tok.getLocation() ?
StartLoc : T.getOpenLocation();
}
// Check for C++1y 'decltype(auto)'.
if (Tok.is(tok::kw_auto)) {
// No need to disambiguate here: an expression can't start with 'auto',
// because the typename-specifier in a function-style cast operation can't
// be 'auto'.
Diag(Tok.getLocation(),
getLangOpts().CPlusPlus14
? diag::warn_cxx11_compat_decltype_auto_type_specifier
: diag::ext_decltype_auto_type_specifier);
ConsumeToken();
} else {
// Parse the expression
// C++11 [dcl.type.simple]p4:
// The operand of the decltype specifier is an unevaluated operand.
EnterExpressionEvaluationContext Unevaluated(
Actions, Sema::ExpressionEvaluationContext::Unevaluated, nullptr,
Sema::ExpressionEvaluationContextRecord::EK_Decltype);
Result = Actions.CorrectDelayedTyposInExpr(
ParseExpression(), /*InitDecl=*/nullptr,
/*RecoverUncorrectedTypos=*/false,
[](Expr *E) { return E->hasPlaceholderType() ? ExprError() : E; });
if (Result.isInvalid()) {
DS.SetTypeSpecError();
if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) {
EndLoc = ConsumeParen();
} else {
if (PP.isBacktrackEnabled() && Tok.is(tok::semi)) {
// Backtrack to get the location of the last token before the semi.
PP.RevertCachedTokens(2);
ConsumeToken(); // the semi.
EndLoc = ConsumeAnyToken();
assert(Tok.is(tok::semi));
} else {
EndLoc = Tok.getLocation();
}
}
return EndLoc;
}
Result = Actions.ActOnDecltypeExpression(Result.get());
}
// Match the ')'
T.consumeClose();
if (T.getCloseLocation().isInvalid()) {
DS.SetTypeSpecError();
// FIXME: this should return the location of the last token
// that was consumed (by "consumeClose()")
return T.getCloseLocation();
}
if (Result.isInvalid()) {
DS.SetTypeSpecError();
return T.getCloseLocation();
}
EndLoc = T.getCloseLocation();
}
assert(!Result.isInvalid());
const char *PrevSpec = nullptr;
unsigned DiagID;
const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
// Check for duplicate type specifiers (e.g. "int decltype(a)").
if (Result.get()
? DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
DiagID, Result.get(), Policy)
: DS.SetTypeSpecType(DeclSpec::TST_decltype_auto, StartLoc, PrevSpec,
DiagID, Policy)) {
Diag(StartLoc, DiagID) << PrevSpec;
DS.SetTypeSpecError();
}
return EndLoc;
}
void Parser::AnnotateExistingDecltypeSpecifier(const DeclSpec& DS,
SourceLocation StartLoc,
SourceLocation EndLoc) {
// make sure we have a token we can turn into an annotation token
if (PP.isBacktrackEnabled())
PP.RevertCachedTokens(1);
else
PP.EnterToken(Tok, /*IsReinject*/true);
Tok.setKind(tok::annot_decltype);
setExprAnnotation(Tok,
DS.getTypeSpecType() == TST_decltype ? DS.getRepAsExpr() :
DS.getTypeSpecType() == TST_decltype_auto ? ExprResult() :
ExprError());
Tok.setAnnotationEndLoc(EndLoc);
Tok.setLocation(StartLoc);
PP.AnnotateCachedTokens(Tok);
}
void Parser::ParseUnderlyingTypeSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw___underlying_type) &&
"Not an underlying type specifier");
SourceLocation StartLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after,
"__underlying_type", tok::r_paren)) {
return;
}
TypeResult Result = ParseTypeName();
if (Result.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// Match the ')'
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return;
const char *PrevSpec = nullptr;
unsigned DiagID;
if (DS.SetTypeSpecType(DeclSpec::TST_underlyingType, StartLoc, PrevSpec,
DiagID, Result.get(),
Actions.getASTContext().getPrintingPolicy()))
Diag(StartLoc, DiagID) << PrevSpec;
DS.setTypeofParensRange(T.getRange());
}
/// ParseBaseTypeSpecifier - Parse a C++ base-type-specifier which is either a
/// class name or decltype-specifier. Note that we only check that the result
/// names a type; semantic analysis will need to verify that the type names a
/// class. The result is either a type or null, depending on whether a type
/// name was found.
///
/// base-type-specifier: [C++11 class.derived]
/// class-or-decltype
/// class-or-decltype: [C++11 class.derived]
/// nested-name-specifier[opt] class-name
/// decltype-specifier
/// class-name: [C++ class.name]
/// identifier
/// simple-template-id
///
/// In C++98, instead of base-type-specifier, we have:
///
/// ::[opt] nested-name-specifier[opt] class-name
TypeResult Parser::ParseBaseTypeSpecifier(SourceLocation &BaseLoc,
SourceLocation &EndLocation) {
// Ignore attempts to use typename
if (Tok.is(tok::kw_typename)) {
Diag(Tok, diag::err_expected_class_name_not_template)
<< FixItHint::CreateRemoval(Tok.getLocation());
ConsumeToken();
}
// Parse optional nested-name-specifier
CXXScopeSpec SS;
if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false,
/*EnteringContext=*/false))
return true;
BaseLoc = Tok.getLocation();
// Parse decltype-specifier
// tok == kw_decltype is just error recovery, it can only happen when SS
// isn't empty
if (Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
if (SS.isNotEmpty())
Diag(SS.getBeginLoc(), diag::err_unexpected_scope_on_base_decltype)
<< FixItHint::CreateRemoval(SS.getRange());
// Fake up a Declarator to use with ActOnTypeName.
DeclSpec DS(AttrFactory);
EndLocation = ParseDecltypeSpecifier(DS);
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
// Check whether we have a template-id that names a type.
if (Tok.is(tok::annot_template_id)) {
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
if (TemplateId->mightBeType()) {
AnnotateTemplateIdTokenAsType(SS, /*IsClassName*/true);
assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
TypeResult Type = getTypeAnnotation(Tok);
EndLocation = Tok.getAnnotationEndLoc();
ConsumeAnnotationToken();
return Type;
}
// Fall through to produce an error below.
}
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_class_name);
return true;
}
IdentifierInfo *Id = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();
if (Tok.is(tok::less)) {
// It looks the user intended to write a template-id here, but the
// template-name was wrong. Try to fix that.
// FIXME: Invoke ParseOptionalCXXScopeSpecifier in a "'template' is neither
// required nor permitted" mode, and do this there.
TemplateNameKind TNK = TNK_Non_template;
TemplateTy Template;
if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(),
&SS, Template, TNK)) {
Diag(IdLoc, diag::err_unknown_template_name)
<< Id;
}
// Form the template name
UnqualifiedId TemplateName;
TemplateName.setIdentifier(Id, IdLoc);
// Parse the full template-id, then turn it into a type.
if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
TemplateName))
return true;
if (Tok.is(tok::annot_template_id) &&
takeTemplateIdAnnotation(Tok)->mightBeType())
AnnotateTemplateIdTokenAsType(SS, /*IsClassName*/true);
// If we didn't end up with a typename token, there's nothing more we
// can do.
if (Tok.isNot(tok::annot_typename))
return true;
// Retrieve the type from the annotation token, consume that token, and
// return.
EndLocation = Tok.getAnnotationEndLoc();
TypeResult Type = getTypeAnnotation(Tok);
ConsumeAnnotationToken();
return Type;
}
// We have an identifier; check whether it is actually a type.
IdentifierInfo *CorrectedII = nullptr;
ParsedType Type = Actions.getTypeName(
*Id, IdLoc, getCurScope(), &SS, /*isClassName=*/true, false, nullptr,
/*IsCtorOrDtorName=*/false,
/*WantNontrivialTypeSourceInfo=*/true,
/*IsClassTemplateDeductionContext*/ false, &CorrectedII);
if (!Type) {
Diag(IdLoc, diag::err_expected_class_name);
return true;
}
// Consume the identifier.
EndLocation = IdLoc;
// Fake up a Declarator to use with ActOnTypeName.
DeclSpec DS(AttrFactory);
DS.SetRangeStart(IdLoc);
DS.SetRangeEnd(EndLocation);
DS.getTypeSpecScope() = SS;
const char *PrevSpec = nullptr;
unsigned DiagID;
DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type,
Actions.getASTContext().getPrintingPolicy());
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
void Parser::ParseMicrosoftInheritanceClassAttributes(ParsedAttributes &attrs) {
while (Tok.isOneOf(tok::kw___single_inheritance,
tok::kw___multiple_inheritance,
tok::kw___virtual_inheritance)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::AS_Keyword);
}
}
/// Determine whether the following tokens are valid after a type-specifier
/// which could be a standalone declaration. This will conservatively return
/// true if there's any doubt, and is appropriate for insert-';' fixits.
bool Parser::isValidAfterTypeSpecifier(bool CouldBeBitfield) {
// This switch enumerates the valid "follow" set for type-specifiers.
switch (Tok.getKind()) {
default: break;
case tok::semi: // struct foo {...} ;
case tok::star: // struct foo {...} * P;
case tok::amp: // struct foo {...} & R = ...
case tok::ampamp: // struct foo {...} && R = ...
case tok::identifier: // struct foo {...} V ;
case tok::r_paren: //(struct foo {...} ) {4}
case tok::coloncolon: // struct foo {...} :: a::b;
case tok::annot_cxxscope: // struct foo {...} a:: b;
case tok::annot_typename: // struct foo {...} a ::b;
case tok::annot_template_id: // struct foo {...} a<int> ::b;
case tok::kw_decltype: // struct foo {...} decltype (a)::b;
case tok::l_paren: // struct foo {...} ( x);
case tok::comma: // __builtin_offsetof(struct foo{...} ,
case tok::kw_operator: // struct foo operator ++() {...}
case tok::kw___declspec: // struct foo {...} __declspec(...)
case tok::l_square: // void f(struct f [ 3])
case tok::ellipsis: // void f(struct f ... [Ns])
// FIXME: we should emit semantic diagnostic when declaration
// attribute is in type attribute position.
case tok::kw___attribute: // struct foo __attribute__((used)) x;
case tok::annot_pragma_pack: // struct foo {...} _Pragma(pack(pop));
// struct foo {...} _Pragma(section(...));
case tok::annot_pragma_ms_pragma:
// struct foo {...} _Pragma(vtordisp(pop));
case tok::annot_pragma_ms_vtordisp:
// struct foo {...} _Pragma(pointers_to_members(...));
case tok::annot_pragma_ms_pointers_to_members:
return true;
case tok::colon:
return CouldBeBitfield || // enum E { ... } : 2;
ColonIsSacred; // _Generic(..., enum E : 2);
// Microsoft compatibility
case tok::kw___cdecl: // struct foo {...} __cdecl x;
case tok::kw___fastcall: // struct foo {...} __fastcall x;
case tok::kw___stdcall: // struct foo {...} __stdcall x;
case tok::kw___thiscall: // struct foo {...} __thiscall x;
case tok::kw___vectorcall: // struct foo {...} __vectorcall x;
// We will diagnose these calling-convention specifiers on non-function
// declarations later, so claim they are valid after a type specifier.
return getLangOpts().MicrosoftExt;
// Type qualifiers
case tok::kw_const: // struct foo {...} const x;
case tok::kw_volatile: // struct foo {...} volatile x;
case tok::kw_restrict: // struct foo {...} restrict x;
case tok::kw__Atomic: // struct foo {...} _Atomic x;
case tok::kw___unaligned: // struct foo {...} __unaligned *x;
// Function specifiers
// Note, no 'explicit'. An explicit function must be either a conversion
// operator or a constructor. Either way, it can't have a return type.
case tok::kw_inline: // struct foo inline f();
case tok::kw_virtual: // struct foo virtual f();
case tok::kw_friend: // struct foo friend f();
// Storage-class specifiers
case tok::kw_static: // struct foo {...} static x;
case tok::kw_extern: // struct foo {...} extern x;
case tok::kw_typedef: // struct foo {...} typedef x;
case tok::kw_register: // struct foo {...} register x;
case tok::kw_auto: // struct foo {...} auto x;
case tok::kw_mutable: // struct foo {...} mutable x;
case tok::kw_thread_local: // struct foo {...} thread_local x;
case tok::kw_constexpr: // struct foo {...} constexpr x;
case tok::kw_consteval: // struct foo {...} consteval x;
case tok::kw_constinit: // struct foo {...} constinit x;
// As shown above, type qualifiers and storage class specifiers absolutely
// can occur after class specifiers according to the grammar. However,
// almost no one actually writes code like this. If we see one of these,
// it is much more likely that someone missed a semi colon and the
// type/storage class specifier we're seeing is part of the *next*
// intended declaration, as in:
//
// struct foo { ... }
// typedef int X;
//
// We'd really like to emit a missing semicolon error instead of emitting
// an error on the 'int' saying that you can't have two type specifiers in
// the same declaration of X. Because of this, we look ahead past this
// token to see if it's a type specifier. If so, we know the code is
// otherwise invalid, so we can produce the expected semi error.
if (!isKnownToBeTypeSpecifier(NextToken()))
return true;
break;
case tok::r_brace: // struct bar { struct foo {...} }
// Missing ';' at end of struct is accepted as an extension in C mode.
if (!getLangOpts().CPlusPlus)
return true;
break;
case tok::greater:
// template<class T = class X>
return getLangOpts().CPlusPlus;
}
return false;
}
/// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
/// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
/// until we reach the start of a definition or see a token that
/// cannot start a definition.
///
/// class-specifier: [C++ class]
/// class-head '{' member-specification[opt] '}'
/// class-head '{' member-specification[opt] '}' attributes[opt]
/// class-head:
/// class-key identifier[opt] base-clause[opt]
/// class-key nested-name-specifier identifier base-clause[opt]
/// class-key nested-name-specifier[opt] simple-template-id
/// base-clause[opt]
/// [GNU] class-key attributes[opt] identifier[opt] base-clause[opt]
/// [GNU] class-key attributes[opt] nested-name-specifier
/// identifier base-clause[opt]
/// [GNU] class-key attributes[opt] nested-name-specifier[opt]
/// simple-template-id base-clause[opt]
/// class-key:
/// 'class'
/// 'struct'
/// 'union'
///
/// elaborated-type-specifier: [C++ dcl.type.elab]
/// class-key ::[opt] nested-name-specifier[opt] identifier
/// class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
/// simple-template-id
///
/// Note that the C++ class-specifier and elaborated-type-specifier,
/// together, subsume the C99 struct-or-union-specifier:
///
/// struct-or-union-specifier: [C99 6.7.2.1]
/// struct-or-union identifier[opt] '{' struct-contents '}'
/// struct-or-union identifier
/// [GNU] struct-or-union attributes[opt] identifier[opt] '{' struct-contents
/// '}' attributes[opt]
/// [GNU] struct-or-union attributes[opt] identifier
/// struct-or-union:
/// 'struct'
/// 'union'
void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
SourceLocation StartLoc, DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS,
bool EnteringContext, DeclSpecContext DSC,
ParsedAttributesWithRange &Attributes) {
DeclSpec::TST TagType;
if (TagTokKind == tok::kw_struct)
TagType = DeclSpec::TST_struct;
else if (TagTokKind == tok::kw___interface)
TagType = DeclSpec::TST_interface;
else if (TagTokKind == tok::kw_class)
TagType = DeclSpec::TST_class;
else {
assert(TagTokKind == tok::kw_union && "Not a class specifier");
TagType = DeclSpec::TST_union;
}
if (Tok.is(tok::code_completion)) {
// Code completion for a struct, class, or union name.
Actions.CodeCompleteTag(getCurScope(), TagType);
return cutOffParsing();
}
// C++03 [temp.explicit] 14.7.2/8:
// The usual access checking rules do not apply to names used to specify
// explicit instantiations.
//
// As an extension we do not perform access checking on the names used to
// specify explicit specializations either. This is important to allow
// specializing traits classes for private types.
//
// Note that we don't suppress if this turns out to be an elaborated
// type specifier.
bool shouldDelayDiagsInTag =
(TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
ParsedAttributesWithRange attrs(AttrFactory);
// If attributes exist after tag, parse them.
MaybeParseGNUAttributes(attrs);
MaybeParseMicrosoftDeclSpecs(attrs);
// Parse inheritance specifiers.
if (Tok.isOneOf(tok::kw___single_inheritance,
tok::kw___multiple_inheritance,
tok::kw___virtual_inheritance))
ParseMicrosoftInheritanceClassAttributes(attrs);
// If C++0x attributes exist here, parse them.
// FIXME: Are we consistent with the ordering of parsing of different
// styles of attributes?
MaybeParseCXX11Attributes(attrs);
// Source location used by FIXIT to insert misplaced
// C++11 attributes
SourceLocation AttrFixitLoc = Tok.getLocation();
if (TagType == DeclSpec::TST_struct &&
Tok.isNot(tok::identifier) &&
!Tok.isAnnotation() &&
Tok.getIdentifierInfo() &&
Tok.isOneOf(tok::kw___is_abstract,
tok::kw___is_aggregate,
tok::kw___is_arithmetic,
tok::kw___is_array,
tok::kw___is_assignable,
tok::kw___is_base_of,
tok::kw___is_class,
tok::kw___is_complete_type,
tok::kw___is_compound,
tok::kw___is_const,
tok::kw___is_constructible,
tok::kw___is_convertible,
tok::kw___is_convertible_to,
tok::kw___is_destructible,
tok::kw___is_empty,
tok::kw___is_enum,
tok::kw___is_floating_point,
tok::kw___is_final,
tok::kw___is_function,
tok::kw___is_fundamental,
tok::kw___is_integral,
tok::kw___is_interface_class,
tok::kw___is_literal,
tok::kw___is_lvalue_expr,
tok::kw___is_lvalue_reference,
tok::kw___is_member_function_pointer,
tok::kw___is_member_object_pointer,
tok::kw___is_member_pointer,
tok::kw___is_nothrow_assignable,
tok::kw___is_nothrow_constructible,
tok::kw___is_nothrow_destructible,
tok::kw___is_object,
tok::kw___is_pod,
tok::kw___is_pointer,
tok::kw___is_polymorphic,
tok::kw___is_reference,
tok::kw___is_rvalue_expr,
tok::kw___is_rvalue_reference,
tok::kw___is_same,
tok::kw___is_scalar,
tok::kw___is_sealed,
tok::kw___is_signed,
tok::kw___is_standard_layout,
tok::kw___is_trivial,
tok::kw___is_trivially_assignable,
tok::kw___is_trivially_constructible,
tok::kw___is_trivially_copyable,
tok::kw___is_union,
tok::kw___is_unsigned,
tok::kw___is_void,
tok::kw___is_volatile))
// GNU libstdc++ 4.2 and libc++ use certain intrinsic names as the
// name of struct templates, but some are keywords in GCC >= 4.3
// and Clang. Therefore, when we see the token sequence "struct
// X", make X into a normal identifier rather than a keyword, to
// allow libstdc++ 4.2 and libc++ to work properly.
TryKeywordIdentFallback(true);
struct PreserveAtomicIdentifierInfoRAII {
PreserveAtomicIdentifierInfoRAII(Token &Tok, bool Enabled)
: AtomicII(nullptr) {
if (!Enabled)
return;
assert(Tok.is(tok::kw__Atomic));
AtomicII = Tok.getIdentifierInfo();
AtomicII->revertTokenIDToIdentifier();
Tok.setKind(tok::identifier);
}
~PreserveAtomicIdentifierInfoRAII() {
if (!AtomicII)
return;
AtomicII->revertIdentifierToTokenID(tok::kw__Atomic);
}
IdentifierInfo *AtomicII;
};
// HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
// implementation for VS2013 uses _Atomic as an identifier for one of the
// classes in <atomic>. When we are parsing 'struct _Atomic', don't consider
// '_Atomic' to be a keyword. We are careful to undo this so that clang can
// use '_Atomic' in its own header files.
bool ShouldChangeAtomicToIdentifier = getLangOpts().MSVCCompat &&
Tok.is(tok::kw__Atomic) &&
TagType == DeclSpec::TST_struct;
PreserveAtomicIdentifierInfoRAII AtomicTokenGuard(
Tok, ShouldChangeAtomicToIdentifier);
// Parse the (optional) nested-name-specifier.
CXXScopeSpec &SS = DS.getTypeSpecScope();
if (getLangOpts().CPlusPlus) {
// "FOO : BAR" is not a potential typo for "FOO::BAR". In this context it
// is a base-specifier-list.
ColonProtectionRAIIObject X(*this);
CXXScopeSpec Spec;
bool HasValidSpec = true;
if (ParseOptionalCXXScopeSpecifier(Spec, /*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false,
EnteringContext)) {
DS.SetTypeSpecError();
HasValidSpec = false;
}
if (Spec.isSet())
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id)) {
Diag(Tok, diag::err_expected) << tok::identifier;
HasValidSpec = false;
}
if (HasValidSpec)
SS = Spec;
}
TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
auto RecoverFromUndeclaredTemplateName = [&](IdentifierInfo *Name,
SourceLocation NameLoc,
SourceRange TemplateArgRange,
bool KnownUndeclared) {
Diag(NameLoc, diag::err_explicit_spec_non_template)
<< (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
<< TagTokKind << Name << TemplateArgRange << KnownUndeclared;
// Strip off the last template parameter list if it was empty, since
// we've removed its template argument list.
if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) {
if (TemplateParams->size() > 1) {
TemplateParams->pop_back();
} else {
TemplateParams = nullptr;
const_cast<ParsedTemplateInfo &>(TemplateInfo).Kind =
ParsedTemplateInfo::NonTemplate;
}
} else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
// Pretend this is just a forward declaration.
TemplateParams = nullptr;
const_cast<ParsedTemplateInfo &>(TemplateInfo).Kind =
ParsedTemplateInfo::NonTemplate;
const_cast<ParsedTemplateInfo &>(TemplateInfo).TemplateLoc =
SourceLocation();
const_cast<ParsedTemplateInfo &>(TemplateInfo).ExternLoc =
SourceLocation();
}
};
// Parse the (optional) class name or simple-template-id.
IdentifierInfo *Name = nullptr;
SourceLocation NameLoc;
TemplateIdAnnotation *TemplateId = nullptr;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
if (Tok.is(tok::less) && getLangOpts().CPlusPlus) {
// The name was supposed to refer to a template, but didn't.
// Eat the template argument list and try to continue parsing this as
// a class (or template thereof).
TemplateArgList TemplateArgs;
SourceLocation LAngleLoc, RAngleLoc;
if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs,
RAngleLoc)) {
// We couldn't parse the template argument list at all, so don't
// try to give any location information for the list.
LAngleLoc = RAngleLoc = SourceLocation();
}
RecoverFromUndeclaredTemplateName(
Name, NameLoc, SourceRange(LAngleLoc, RAngleLoc), false);
}
} else if (Tok.is(tok::annot_template_id)) {
TemplateId = takeTemplateIdAnnotation(Tok);
NameLoc = ConsumeAnnotationToken();
if (TemplateId->Kind == TNK_Undeclared_template) {
// Try to resolve the template name to a type template. May update Kind.
Actions.ActOnUndeclaredTypeTemplateName(
getCurScope(), TemplateId->Template, TemplateId->Kind, NameLoc, Name);
if (TemplateId->Kind == TNK_Undeclared_template) {
RecoverFromUndeclaredTemplateName(
Name, NameLoc,
SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc), true);
TemplateId = nullptr;
}
}
if (TemplateId && !TemplateId->mightBeType()) {
// The template-name in the simple-template-id refers to
// something other than a type template. Give an appropriate
// error message and skip to the ';'.
SourceRange Range(NameLoc);
if (SS.isNotEmpty())
Range.setBegin(SS.getBeginLoc());
// FIXME: Name may be null here.
Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
<< TemplateId->Name << static_cast<int>(TemplateId->Kind) << Range;
DS.SetTypeSpecError();
SkipUntil(tok::semi, StopBeforeMatch);
return;
}
}
// There are four options here.
// - If we are in a trailing return type, this is always just a reference,
// and we must not try to parse a definition. For instance,
// [] () -> struct S { };
// does not define a type.
// - If we have 'struct foo {...', 'struct foo :...',
// 'struct foo final :' or 'struct foo final {', then this is a definition.
// - If we have 'struct foo;', then this is either a forward declaration
// or a friend declaration, which have to be treated differently.
// - Otherwise we have something like 'struct foo xyz', a reference.
//
// We also detect these erroneous cases to provide better diagnostic for
// C++11 attributes parsing.
// - attributes follow class name:
// struct foo [[]] {};
// - attributes appear before or after 'final':
// struct foo [[]] final [[]] {};
//
// However, in type-specifier-seq's, things look like declarations but are
// just references, e.g.
// new struct s;
// or
// &T::operator struct s;
// For these, DSC is DeclSpecContext::DSC_type_specifier or
// DeclSpecContext::DSC_alias_declaration.
// If there are attributes after class name, parse them.
MaybeParseCXX11Attributes(Attributes);
const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
Sema::TagUseKind TUK;
if (isDefiningTypeSpecifierContext(DSC) == AllowDefiningTypeSpec::No ||
(getLangOpts().OpenMP && OpenMPDirectiveParsing))
TUK = Sema::TUK_Reference;
else if (Tok.is(tok::l_brace) ||
(getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
(isCXX11FinalKeyword() &&
(NextToken().is(tok::l_brace) || NextToken().is(tok::colon)))) {
if (DS.isFriendSpecified()) {
// C++ [class.friend]p2:
// A class shall not be defined in a friend declaration.
Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
<< SourceRange(DS.getFriendSpecLoc());
// Skip everything up to the semicolon, so that this looks like a proper
// friend class (or template thereof) declaration.
SkipUntil(tok::semi, StopBeforeMatch);
TUK = Sema::TUK_Friend;
} else {
// Okay, this is a class definition.
TUK = Sema::TUK_Definition;
}
} else if (isCXX11FinalKeyword() && (NextToken().is(tok::l_square) ||
NextToken().is(tok::kw_alignas))) {
// We can't tell if this is a definition or reference
// until we skipped the 'final' and C++11 attribute specifiers.
TentativeParsingAction PA(*this);
// Skip the 'final' keyword.
ConsumeToken();
// Skip C++11 attribute specifiers.
while (true) {
if (Tok.is(tok::l_square) && NextToken().is(tok::l_square)) {
ConsumeBracket();
if (!SkipUntil(tok::r_square, StopAtSemi))
break;
} else if (Tok.is(tok::kw_alignas) && NextToken().is(tok::l_paren)) {
ConsumeToken();
ConsumeParen();
if (!SkipUntil(tok::r_paren, StopAtSemi))
break;
} else {
break;
}
}
if (Tok.isOneOf(tok::l_brace, tok::colon))
TUK = Sema::TUK_Definition;
else
TUK = Sema::TUK_Reference;
PA.Revert();
} else if (!isTypeSpecifier(DSC) &&
(Tok.is(tok::semi) ||
(Tok.isAtStartOfLine() && !isValidAfterTypeSpecifier(false)))) {
TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
if (Tok.isNot(tok::semi)) {
const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
// A semicolon was missing after this declaration. Diagnose and recover.
ExpectAndConsume(tok::semi, diag::err_expected_after,
DeclSpec::getSpecifierName(TagType, PPol));
PP.EnterToken(Tok, /*IsReinject*/true);
Tok.setKind(tok::semi);
}
} else
TUK = Sema::TUK_Reference;
// Forbid misplaced attributes. In cases of a reference, we pass attributes
// to caller to handle.
if (TUK != Sema::TUK_Reference) {
// If this is not a reference, then the only possible
// valid place for C++11 attributes to appear here
// is between class-key and class-name. If there are
// any attributes after class-name, we try a fixit to move
// them to the right place.
SourceRange AttrRange = Attributes.Range;
if (AttrRange.isValid()) {
Diag(AttrRange.getBegin(), diag::err_attributes_not_allowed)
<< AttrRange
<< FixItHint::CreateInsertionFromRange(AttrFixitLoc,
CharSourceRange(AttrRange, true))
<< FixItHint::CreateRemoval(AttrRange);
// Recover by adding misplaced attributes to the attribute list
// of the class so they can be applied on the class later.
attrs.takeAllFrom(Attributes);
}
}
// If this is an elaborated type specifier, and we delayed
// diagnostics before, just merge them into the current pool.
if (shouldDelayDiagsInTag) {
diagsFromTag.done();
if (TUK == Sema::TUK_Reference)
diagsFromTag.redelay();
}
if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error ||
TUK != Sema::TUK_Definition)) {
if (DS.getTypeSpecType() != DeclSpec::TST_error) {
// We have a declaration or reference to an anonymous class.
Diag(StartLoc, diag::err_anon_type_definition)
<< DeclSpec::getSpecifierName(TagType, Policy);
}
// If we are parsing a definition and stop at a base-clause, continue on
// until the semicolon. Continuing from the comma will just trick us into
// thinking we are seeing a variable declaration.
if (TUK == Sema::TUK_Definition && Tok.is(tok::colon))
SkipUntil(tok::semi, StopBeforeMatch);
else
SkipUntil(tok::comma, StopAtSemi);
return;
}
// Create the tag portion of the class or class template.
DeclResult TagOrTempResult = true; // invalid
TypeResult TypeResult = true; // invalid
bool Owned = false;
Sema::SkipBodyInfo SkipBody;
if (TemplateId) {
// Explicit specialization, class template partial specialization,
// or explicit instantiation.
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
TemplateId->NumArgs);
if (TemplateId->isInvalid()) {
// Can't build the declaration.
} else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
TUK == Sema::TUK_Declaration) {
// This is an explicit instantiation of a class template.
ProhibitAttributes(attrs);
TagOrTempResult = Actions.ActOnExplicitInstantiation(
getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc,
TagType, StartLoc, SS, TemplateId->Template,
TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr,
TemplateId->RAngleLoc, attrs);
// Friend template-ids are treated as references unless
// they have template headers, in which case they're ill-formed
// (FIXME: "template <class T> friend class A<T>::B<int>;").
// We diagnose this error in ActOnClassTemplateSpecialization.
} else if (TUK == Sema::TUK_Reference ||
(TUK == Sema::TUK_Friend &&
TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) {
ProhibitAttributes(attrs);
TypeResult = Actions.ActOnTagTemplateIdType(TUK, TagType, StartLoc,
SS,
TemplateId->TemplateKWLoc,
TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc);
} else {
// This is an explicit specialization or a class template
// partial specialization.
TemplateParameterLists FakedParamLists;
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
// This looks like an explicit instantiation, because we have
// something like
//
// template class Foo<X>
//
// but it actually has a definition. Most likely, this was
// meant to be an explicit specialization, but the user forgot
// the '<>' after 'template'.
// It this is friend declaration however, since it cannot have a
// template header, it is most likely that the user meant to
// remove the 'template' keyword.
assert((TUK == Sema::TUK_Definition || TUK == Sema::TUK_Friend) &&
"Expected a definition here");
if (TUK == Sema::TUK_Friend) {
Diag(DS.getFriendSpecLoc(), diag::err_friend_explicit_instantiation);
TemplateParams = nullptr;
} else {
SourceLocation LAngleLoc =
PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
Diag(TemplateId->TemplateNameLoc,
diag::err_explicit_instantiation_with_definition)
<< SourceRange(TemplateInfo.TemplateLoc)
<< FixItHint::CreateInsertion(LAngleLoc, "<>");
// Create a fake template parameter list that contains only
// "template<>", so that we treat this construct as a class
// template specialization.
FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
LAngleLoc, nullptr));
TemplateParams = &FakedParamLists;
}
}
// Build the class template specialization.
TagOrTempResult = Actions.ActOnClassTemplateSpecialization(
getCurScope(), TagType, TUK, StartLoc, DS.getModulePrivateSpecLoc(),
SS, *TemplateId, attrs,
MultiTemplateParamsArg(TemplateParams ? &(*TemplateParams)[0]
: nullptr,
TemplateParams ? TemplateParams->size() : 0),
&SkipBody);
}
} else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
TUK == Sema::TUK_Declaration) {
// Explicit instantiation of a member of a class template
// specialization, e.g.,
//
// template struct Outer<int>::Inner;
//
ProhibitAttributes(attrs);
TagOrTempResult = Actions.ActOnExplicitInstantiation(
getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc,
TagType, StartLoc, SS, Name, NameLoc, attrs);
} else if (TUK == Sema::TUK_Friend &&
TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) {
ProhibitAttributes(attrs);
TagOrTempResult = Actions.ActOnTemplatedFriendTag(
getCurScope(), DS.getFriendSpecLoc(), TagType, StartLoc, SS, Name,
NameLoc, attrs,
MultiTemplateParamsArg(TemplateParams ? &(*TemplateParams)[0] : nullptr,
TemplateParams ? TemplateParams->size() : 0));
} else {
if (TUK != Sema::TUK_Declaration && TUK != Sema::TUK_Definition)
ProhibitAttributes(attrs);
if (TUK == Sema::TUK_Definition &&
TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
// If the declarator-id is not a template-id, issue a diagnostic and
// recover by ignoring the 'template' keyword.
Diag(Tok, diag::err_template_defn_explicit_instantiation)
<< 1 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
TemplateParams = nullptr;
}
bool IsDependent = false;
// Don't pass down template parameter lists if this is just a tag
// reference. For example, we don't need the template parameters here:
// template <class T> class A *makeA(T t);
MultiTemplateParamsArg TParams;
if (TUK != Sema::TUK_Reference && TemplateParams)
TParams =
MultiTemplateParamsArg(&(*TemplateParams)[0], TemplateParams->size());
stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
// Declaration or definition of a class type
TagOrTempResult = Actions.ActOnTag(
getCurScope(), TagType, TUK, StartLoc, SS, Name, NameLoc, attrs, AS,
DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent,
SourceLocation(), false, clang::TypeResult(),
DSC == DeclSpecContext::DSC_type_specifier,
DSC == DeclSpecContext::DSC_template_param ||
DSC == DeclSpecContext::DSC_template_type_arg,
&SkipBody);
// If ActOnTag said the type was dependent, try again with the
// less common call.
if (IsDependent) {
assert(TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend);
TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK,
SS, Name, StartLoc, NameLoc);
}
}
// If there is a body, parse it and inform the actions module.
if (TUK == Sema::TUK_Definition) {
assert(Tok.is(tok::l_brace) ||
(getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
isCXX11FinalKeyword());
if (SkipBody.ShouldSkip)
SkipCXXMemberSpecification(StartLoc, AttrFixitLoc, TagType,
TagOrTempResult.get());
else if (getLangOpts().CPlusPlus)
ParseCXXMemberSpecification(StartLoc, AttrFixitLoc, attrs, TagType,
TagOrTempResult.get());
else {
Decl *D =
SkipBody.CheckSameAsPrevious ? SkipBody.New : TagOrTempResult.get();
// Parse the definition body.
ParseStructUnionBody(StartLoc, TagType, cast<RecordDecl>(D));
if (SkipBody.CheckSameAsPrevious &&
!Actions.ActOnDuplicateDefinition(DS, TagOrTempResult.get(),
SkipBody)) {
DS.SetTypeSpecError();
return;
}
}
}
if (!TagOrTempResult.isInvalid())
// Delayed processing of attributes.
Actions.ProcessDeclAttributeDelayed(TagOrTempResult.get(), attrs);
const char *PrevSpec = nullptr;
unsigned DiagID;
bool Result;
if (!TypeResult.isInvalid()) {
Result = DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, TypeResult.get(), Policy);
} else if (!TagOrTempResult.isInvalid()) {
Result = DS.SetTypeSpecType(TagType, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, TagOrTempResult.get(), Owned,
Policy);
} else {
DS.SetTypeSpecError();
return;
}
if (Result)
Diag(StartLoc, DiagID) << PrevSpec;
// At this point, we've successfully parsed a class-specifier in 'definition'
// form (e.g. "struct foo { int x; }". While we could just return here, we're
// going to look at what comes after it to improve error recovery. If an
// impossible token occurs next, we assume that the programmer forgot a ; at
// the end of the declaration and recover that way.
//
// Also enforce C++ [temp]p3:
// In a template-declaration which defines a class, no declarator
// is permitted.
//
// After a type-specifier, we don't expect a semicolon. This only happens in
// C, since definitions are not permitted in this context in C++.
if (TUK == Sema::TUK_Definition &&
(getLangOpts().CPlusPlus || !isTypeSpecifier(DSC)) &&
(TemplateInfo.Kind || !isValidAfterTypeSpecifier(false))) {
if (Tok.isNot(tok::semi)) {
const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
ExpectAndConsume(tok::semi, diag::err_expected_after,
DeclSpec::getSpecifierName(TagType, PPol));
// Push this token back into the preprocessor and change our current token
// to ';' so that the rest of the code recovers as though there were an
// ';' after the definition.
PP.EnterToken(Tok, /*IsReinject=*/true);
Tok.setKind(tok::semi);
}
}
}
/// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
///
/// base-clause : [C++ class.derived]
/// ':' base-specifier-list
/// base-specifier-list:
/// base-specifier '...'[opt]
/// base-specifier-list ',' base-specifier '...'[opt]
void Parser::ParseBaseClause(Decl *ClassDecl) {
assert(Tok.is(tok::colon) && "Not a base clause");
ConsumeToken();
// Build up an array of parsed base specifiers.
SmallVector<CXXBaseSpecifier *, 8> BaseInfo;
while (true) {
// Parse a base-specifier.
BaseResult Result = ParseBaseSpecifier(ClassDecl);
if (Result.isInvalid()) {
// Skip the rest of this base specifier, up until the comma or
// opening brace.
SkipUntil(tok::comma, tok::l_brace, StopAtSemi | StopBeforeMatch);
} else {
// Add this to our array of base specifiers.
BaseInfo.push_back(Result.get());
}
// If the next token is a comma, consume it and keep reading
// base-specifiers.
if (!TryConsumeToken(tok::comma))
break;
}
// Attach the base specifiers
Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo);
}
/// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
/// one entry in the base class list of a class specifier, for example:
/// class foo : public bar, virtual private baz {
/// 'public bar' and 'virtual private baz' are each base-specifiers.
///
/// base-specifier: [C++ class.derived]
/// attribute-specifier-seq[opt] base-type-specifier
/// attribute-specifier-seq[opt] 'virtual' access-specifier[opt]
/// base-type-specifier
/// attribute-specifier-seq[opt] access-specifier 'virtual'[opt]
/// base-type-specifier
BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) {
bool IsVirtual = false;
SourceLocation StartLoc = Tok.getLocation();
ParsedAttributesWithRange Attributes(AttrFactory);
MaybeParseCXX11Attributes(Attributes);
// Parse the 'virtual' keyword.
if (TryConsumeToken(tok::kw_virtual))
IsVirtual = true;
CheckMisplacedCXX11Attribute(Attributes, StartLoc);
// Parse an (optional) access specifier.
AccessSpecifier Access = getAccessSpecifierIfPresent();
if (Access != AS_none)
ConsumeToken();
CheckMisplacedCXX11Attribute(Attributes, StartLoc);
// Parse the 'virtual' keyword (again!), in case it came after the
// access specifier.
if (Tok.is(tok::kw_virtual)) {
SourceLocation VirtualLoc = ConsumeToken();
if (IsVirtual) {
// Complain about duplicate 'virtual'
Diag(VirtualLoc, diag::err_dup_virtual)
<< FixItHint::CreateRemoval(VirtualLoc);
}
IsVirtual = true;
}
CheckMisplacedCXX11Attribute(Attributes, StartLoc);
// Parse the class-name.
// HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
// implementation for VS2013 uses _Atomic as an identifier for one of the
// classes in <atomic>. Treat '_Atomic' to be an identifier when we are
// parsing the class-name for a base specifier.
if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
NextToken().is(tok::less))
Tok.setKind(tok::identifier);
SourceLocation EndLocation;
SourceLocation BaseLoc;
TypeResult BaseType = ParseBaseTypeSpecifier(BaseLoc, EndLocation);
if (BaseType.isInvalid())
return true;
// Parse the optional ellipsis (for a pack expansion). The ellipsis is
// actually part of the base-specifier-list grammar productions, but we
// parse it here for convenience.
SourceLocation EllipsisLoc;
TryConsumeToken(tok::ellipsis, EllipsisLoc);
// Find the complete source range for the base-specifier.
SourceRange Range(StartLoc, EndLocation);
// Notify semantic analysis that we have parsed a complete
// base-specifier.
return Actions.ActOnBaseSpecifier(ClassDecl, Range, Attributes, IsVirtual,
Access, BaseType.get(), BaseLoc,
EllipsisLoc);
}
/// getAccessSpecifierIfPresent - Determine whether the next token is
/// a C++ access-specifier.
///
/// access-specifier: [C++ class.derived]
/// 'private'
/// 'protected'
/// 'public'
AccessSpecifier Parser::getAccessSpecifierIfPresent() const {
switch (Tok.getKind()) {
default: return AS_none;
case tok::kw_private: return AS_private;
case tok::kw_protected: return AS_protected;
case tok::kw_public: return AS_public;
}
}
/// If the given declarator has any parts for which parsing has to be
/// delayed, e.g., default arguments or an exception-specification, create a
/// late-parsed method declaration record to handle the parsing at the end of
/// the class definition.
void Parser::HandleMemberFunctionDeclDelays(Declarator& DeclaratorInfo,
Decl *ThisDecl) {
DeclaratorChunk::FunctionTypeInfo &FTI
= DeclaratorInfo.getFunctionTypeInfo();
// If there was a late-parsed exception-specification, we'll need a
// late parse
bool NeedLateParse = FTI.getExceptionSpecType() == EST_Unparsed;
if (!NeedLateParse) {
// Look ahead to see if there are any default args
for (unsigned ParamIdx = 0; ParamIdx < FTI.NumParams; ++ParamIdx) {
auto Param = cast<ParmVarDecl>(FTI.Params[ParamIdx].Param);
if (Param->hasUnparsedDefaultArg()) {
NeedLateParse = true;
break;
}
}
}
if (NeedLateParse) {
// Push this method onto the stack of late-parsed method
// declarations.
auto LateMethod = new LateParsedMethodDeclaration(this, ThisDecl);
getCurrentClass().LateParsedDeclarations.push_back(LateMethod);
// Stash the exception-specification tokens in the late-pased method.
LateMethod->ExceptionSpecTokens = FTI.ExceptionSpecTokens;
FTI.ExceptionSpecTokens = nullptr;
// Push tokens for each parameter. Those that do not have
// defaults will be NULL.
LateMethod->DefaultArgs.reserve(FTI.NumParams);
for (unsigned ParamIdx = 0; ParamIdx < FTI.NumParams; ++ParamIdx)
LateMethod->DefaultArgs.push_back(LateParsedDefaultArgument(
FTI.Params[ParamIdx].Param,
std::move(FTI.Params[ParamIdx].DefaultArgTokens)));
}
}
/// isCXX11VirtSpecifier - Determine whether the given token is a C++11
/// virt-specifier.
///
/// virt-specifier:
/// override
/// final
/// __final
VirtSpecifiers::Specifier Parser::isCXX11VirtSpecifier(const Token &Tok) const {
if (!getLangOpts().CPlusPlus || Tok.isNot(tok::identifier))
return VirtSpecifiers::VS_None;
IdentifierInfo *II = Tok.getIdentifierInfo();
// Initialize the contextual keywords.
if (!Ident_final) {
Ident_final = &PP.getIdentifierTable().get("final");
if (getLangOpts().GNUKeywords)
Ident_GNU_final = &PP.getIdentifierTable().get("__final");
if (getLangOpts().MicrosoftExt)
Ident_sealed = &PP.getIdentifierTable().get("sealed");
Ident_override = &PP.getIdentifierTable().get("override");
}
if (II == Ident_override)
return VirtSpecifiers::VS_Override;
if (II == Ident_sealed)
return VirtSpecifiers::VS_Sealed;
if (II == Ident_final)
return VirtSpecifiers::VS_Final;
if (II == Ident_GNU_final)
return VirtSpecifiers::VS_GNU_Final;
return VirtSpecifiers::VS_None;
}
/// ParseOptionalCXX11VirtSpecifierSeq - Parse a virt-specifier-seq.
///
/// virt-specifier-seq:
/// virt-specifier
/// virt-specifier-seq virt-specifier
void Parser::ParseOptionalCXX11VirtSpecifierSeq(VirtSpecifiers &VS,
bool IsInterface,
SourceLocation FriendLoc) {
while (true) {
VirtSpecifiers::Specifier Specifier = isCXX11VirtSpecifier();
if (Specifier == VirtSpecifiers::VS_None)
return;
if (FriendLoc.isValid()) {
Diag(Tok.getLocation(), diag::err_friend_decl_spec)
<< VirtSpecifiers::getSpecifierName(Specifier)
<< FixItHint::CreateRemoval(Tok.getLocation())
<< SourceRange(FriendLoc, FriendLoc);
ConsumeToken();
continue;
}
// C++ [class.mem]p8:
// A virt-specifier-seq shall contain at most one of each virt-specifier.
const char *PrevSpec = nullptr;
if (VS.SetSpecifier(Specifier, Tok.getLocation(), PrevSpec))
Diag(Tok.getLocation(), diag::err_duplicate_virt_specifier)
<< PrevSpec
<< FixItHint::CreateRemoval(Tok.getLocation());
if (IsInterface && (Specifier == VirtSpecifiers::VS_Final ||
Specifier == VirtSpecifiers::VS_Sealed)) {
Diag(Tok.getLocation(), diag::err_override_control_interface)
<< VirtSpecifiers::getSpecifierName(Specifier);
} else if (Specifier == VirtSpecifiers::VS_Sealed) {
Diag(Tok.getLocation(), diag::ext_ms_sealed_keyword);
} else if (Specifier == VirtSpecifiers::VS_GNU_Final) {
Diag(Tok.getLocation(), diag::ext_warn_gnu_final);
} else {
Diag(Tok.getLocation(),
getLangOpts().CPlusPlus11
? diag::warn_cxx98_compat_override_control_keyword
: diag::ext_override_control_keyword)
<< VirtSpecifiers::getSpecifierName(Specifier);
}
ConsumeToken();
}
}
/// isCXX11FinalKeyword - Determine whether the next token is a C++11
/// 'final' or Microsoft 'sealed' contextual keyword.
bool Parser::isCXX11FinalKeyword() const {
VirtSpecifiers::Specifier Specifier = isCXX11VirtSpecifier();
return Specifier == VirtSpecifiers::VS_Final ||
Specifier == VirtSpecifiers::VS_GNU_Final ||
Specifier == VirtSpecifiers::VS_Sealed;
}
/// Parse a C++ member-declarator up to, but not including, the optional
/// brace-or-equal-initializer or pure-specifier.
bool Parser::ParseCXXMemberDeclaratorBeforeInitializer(
Declarator &DeclaratorInfo, VirtSpecifiers &VS, ExprResult &BitfieldSize,
LateParsedAttrList &LateParsedAttrs) {
// member-declarator:
// declarator pure-specifier[opt]
// declarator requires-clause
// declarator brace-or-equal-initializer[opt]
// identifier[opt] ':' constant-expression
if (Tok.isNot(tok::colon))
ParseDeclarator(DeclaratorInfo);
else
DeclaratorInfo.SetIdentifier(nullptr, Tok.getLocation());
if (!DeclaratorInfo.isFunctionDeclarator() && TryConsumeToken(tok::colon)) {
assert(DeclaratorInfo.isPastIdentifier() &&
"don't know where identifier would go yet?");
BitfieldSize = ParseConstantExpression();
if (BitfieldSize.isInvalid())
SkipUntil(tok::comma, StopAtSemi | StopBeforeMatch);
} else if (Tok.is(tok::kw_requires)) {
ParseTrailingRequiresClause(DeclaratorInfo);
} else {
ParseOptionalCXX11VirtSpecifierSeq(
VS, getCurrentClass().IsInterface,
DeclaratorInfo.getDeclSpec().getFriendSpecLoc());
if (!VS.isUnset())
MaybeParseAndDiagnoseDeclSpecAfterCXX11VirtSpecifierSeq(DeclaratorInfo, VS);
}
// If a simple-asm-expr is present, parse it.
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
if (AsmLabel.isInvalid())
SkipUntil(tok::comma, StopAtSemi | StopBeforeMatch);
DeclaratorInfo.setAsmLabel(AsmLabel.get());
DeclaratorInfo.SetRangeEnd(Loc);
}
// If attributes exist after the declarator, but before an '{', parse them.
MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
// For compatibility with code written to older Clang, also accept a
// virt-specifier *after* the GNU attributes.
if (BitfieldSize.isUnset() && VS.isUnset()) {
ParseOptionalCXX11VirtSpecifierSeq(
VS, getCurrentClass().IsInterface,
DeclaratorInfo.getDeclSpec().getFriendSpecLoc());
if (!VS.isUnset()) {
// If we saw any GNU-style attributes that are known to GCC followed by a
// virt-specifier, issue a GCC-compat warning.
for (const ParsedAttr &AL : DeclaratorInfo.getAttributes())
if (AL.isKnownToGCC() && !AL.isCXX11Attribute())
Diag(AL.getLoc(), diag::warn_gcc_attribute_location);
MaybeParseAndDiagnoseDeclSpecAfterCXX11VirtSpecifierSeq(DeclaratorInfo, VS);
}
}
// If this has neither a name nor a bit width, something has gone seriously
// wrong. Skip until the semi-colon or }.
if (!DeclaratorInfo.hasName() && BitfieldSize.isUnset()) {
// If so, skip until the semi-colon or a }.
SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
return true;
}
return false;
}
/// Look for declaration specifiers possibly occurring after C++11
/// virt-specifier-seq and diagnose them.
void Parser::MaybeParseAndDiagnoseDeclSpecAfterCXX11VirtSpecifierSeq(
Declarator &D,
VirtSpecifiers &VS) {
DeclSpec DS(AttrFactory);
// GNU-style and C++11 attributes are not allowed here, but they will be
// handled by the caller. Diagnose everything else.
ParseTypeQualifierListOpt(
DS, AR_NoAttributesParsed, false,
/*IdentifierRequired=*/false, llvm::function_ref<void()>([&]() {
Actions.CodeCompleteFunctionQualifiers(DS, D, &VS);
}));
D.ExtendWithDeclSpec(DS);
if (D.isFunctionDeclarator()) {
auto &Function = D.getFunctionTypeInfo();
if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
auto DeclSpecCheck = [&](DeclSpec::TQ TypeQual, StringRef FixItName,
SourceLocation SpecLoc) {
FixItHint Insertion;
auto &MQ = Function.getOrCreateMethodQualifiers();
if (!(MQ.getTypeQualifiers() & TypeQual)) {
std::string Name(FixItName.data());
Name += " ";
Insertion = FixItHint::CreateInsertion(VS.getFirstLocation(), Name);
MQ.SetTypeQual(TypeQual, SpecLoc);
}
Diag(SpecLoc, diag::err_declspec_after_virtspec)
<< FixItName
<< VirtSpecifiers::getSpecifierName(VS.getLastSpecifier())
<< FixItHint::CreateRemoval(SpecLoc) << Insertion;
};
DS.forEachQualifier(DeclSpecCheck);
}
// Parse ref-qualifiers.
bool RefQualifierIsLValueRef = true;
SourceLocation RefQualifierLoc;
if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc)) {
const char *Name = (RefQualifierIsLValueRef ? "& " : "&& ");
FixItHint Insertion = FixItHint::CreateInsertion(VS.getFirstLocation(), Name);
Function.RefQualifierIsLValueRef = RefQualifierIsLValueRef;
Function.RefQualifierLoc = RefQualifierLoc.getRawEncoding();
Diag(RefQualifierLoc, diag::err_declspec_after_virtspec)
<< (RefQualifierIsLValueRef ? "&" : "&&")
<< VirtSpecifiers::getSpecifierName(VS.getLastSpecifier())
<< FixItHint::CreateRemoval(RefQualifierLoc)
<< Insertion;
D.SetRangeEnd(RefQualifierLoc);
}
}
}
/// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
///
/// member-declaration:
/// decl-specifier-seq[opt] member-declarator-list[opt] ';'
/// function-definition ';'[opt]
/// ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
/// using-declaration [TODO]
/// [C++0x] static_assert-declaration
/// template-declaration
/// [GNU] '__extension__' member-declaration
///
/// member-declarator-list:
/// member-declarator
/// member-declarator-list ',' member-declarator
///
/// member-declarator:
/// declarator virt-specifier-seq[opt] pure-specifier[opt]
/// [C++2a] declarator requires-clause
/// declarator constant-initializer[opt]
/// [C++11] declarator brace-or-equal-initializer[opt]
/// identifier[opt] ':' constant-expression
///
/// virt-specifier-seq:
/// virt-specifier
/// virt-specifier-seq virt-specifier
///
/// virt-specifier:
/// override
/// final
/// [MS] sealed
///
/// pure-specifier:
/// '= 0'
///
/// constant-initializer:
/// '=' constant-expression
///
Parser::DeclGroupPtrTy
Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS,
ParsedAttributes &AccessAttrs,
const ParsedTemplateInfo &TemplateInfo,
ParsingDeclRAIIObject *TemplateDiags) {
if (Tok.is(tok::at)) {
if (getLangOpts().ObjC && NextToken().isObjCAtKeyword(tok::objc_defs))
Diag(Tok, diag::err_at_defs_cxx);
else
Diag(Tok, diag::err_at_in_class);
ConsumeToken();
SkipUntil(tok::r_brace, StopAtSemi);
return nullptr;
}
// Turn on colon protection early, while parsing declspec, although there is
// nothing to protect there. It prevents from false errors if error recovery
// incorrectly determines where the declspec ends, as in the example:
// struct A { enum class B { C }; };
// const int C = 4;
// struct D { A::B : C; };
ColonProtectionRAIIObject X(*this);
// Access declarations.
bool MalformedTypeSpec = false;
if (!TemplateInfo.Kind &&
Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw___super)) {
if (TryAnnotateCXXScopeToken())
MalformedTypeSpec = true;
bool isAccessDecl;
if (Tok.isNot(tok::annot_cxxscope))
isAccessDecl = false;
else if (NextToken().is(tok::identifier))
isAccessDecl = GetLookAheadToken(2).is(tok::semi);
else
isAccessDecl = NextToken().is(tok::kw_operator);
if (isAccessDecl) {
// Collect the scope specifier token we annotated earlier.
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false,
/*EnteringContext=*/false);
if (SS.isInvalid()) {
SkipUntil(tok::semi);
return nullptr;
}
// Try to parse an unqualified-id.
SourceLocation TemplateKWLoc;
UnqualifiedId Name;
if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false, false, true, true,
false, &TemplateKWLoc, Name)) {
SkipUntil(tok::semi);
return nullptr;
}
// TODO: recover from mistakenly-qualified operator declarations.
if (ExpectAndConsume(tok::semi, diag::err_expected_after,
"access declaration")) {
SkipUntil(tok::semi);
return nullptr;
}
// FIXME: We should do something with the 'template' keyword here.
return DeclGroupPtrTy::make(DeclGroupRef(Actions.ActOnUsingDeclaration(
getCurScope(), AS, /*UsingLoc*/ SourceLocation(),
/*TypenameLoc*/ SourceLocation(), SS, Name,
/*EllipsisLoc*/ SourceLocation(),
/*AttrList*/ ParsedAttributesView())));
}
}
// static_assert-declaration. A templated static_assert declaration is
// diagnosed in Parser::ParseSingleDeclarationAfterTemplate.
if (!TemplateInfo.Kind &&
Tok.isOneOf(tok::kw_static_assert, tok::kw__Static_assert)) {
SourceLocation DeclEnd;
return DeclGroupPtrTy::make(
DeclGroupRef(ParseStaticAssertDeclaration(DeclEnd)));
}
if (Tok.is(tok::kw_template)) {
assert(!TemplateInfo.TemplateParams &&
"Nested template improperly parsed?");
ObjCDeclContextSwitch ObjCDC(*this);
SourceLocation DeclEnd;
return DeclGroupPtrTy::make(
DeclGroupRef(ParseTemplateDeclarationOrSpecialization(
DeclaratorContext::MemberContext, DeclEnd, AccessAttrs, AS)));
}
// Handle: member-declaration ::= '__extension__' member-declaration
if (Tok.is(tok::kw___extension__)) {
// __extension__ silences extension warnings in the subexpression.
ExtensionRAIIObject O(Diags); // Use RAII to do this.
ConsumeToken();
return ParseCXXClassMemberDeclaration(AS, AccessAttrs,
TemplateInfo, TemplateDiags);
}
ParsedAttributesWithRange attrs(AttrFactory);
ParsedAttributesViewWithRange FnAttrs;
// Optional C++11 attribute-specifier
MaybeParseCXX11Attributes(attrs);
// We need to keep these attributes for future diagnostic
// before they are taken over by declaration specifier.
FnAttrs.addAll(attrs.begin(), attrs.end());
FnAttrs.Range = attrs.Range;
MaybeParseMicrosoftAttributes(attrs);
if (Tok.is(tok::kw_using)) {
ProhibitAttributes(attrs);
// Eat 'using'.
SourceLocation UsingLoc = ConsumeToken();
// Consume unexpected 'template' keywords.
while (Tok.is(tok::kw_template)) {
SourceLocation TemplateLoc = ConsumeToken();
Diag(TemplateLoc, diag::err_unexpected_template_after_using)
<< FixItHint::CreateRemoval(TemplateLoc);
}
if (Tok.is(tok::kw_namespace)) {
Diag(UsingLoc, diag::err_using_namespace_in_class);
SkipUntil(tok::semi, StopBeforeMatch);
return nullptr;
}
SourceLocation DeclEnd;
// Otherwise, it must be a using-declaration or an alias-declaration.
return ParseUsingDeclaration(DeclaratorContext::MemberContext, TemplateInfo,
UsingLoc, DeclEnd, AS);
}
// Hold late-parsed attributes so we can attach a Decl to them later.
LateParsedAttrList CommonLateParsedAttrs;
// decl-specifier-seq:
// Parse the common declaration-specifiers piece.
ParsingDeclSpec DS(*this, TemplateDiags);
DS.takeAttributesFrom(attrs);
if (MalformedTypeSpec)
DS.SetTypeSpecError();
ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DeclSpecContext::DSC_class,
&CommonLateParsedAttrs);
// Turn off colon protection that was set for declspec.
X.restore();
// If we had a free-standing type definition with a missing semicolon, we
// may get this far before the problem becomes obvious.
if (DS.hasTagDefinition() &&
TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate &&
DiagnoseMissingSemiAfterTagDefinition(DS, AS, DeclSpecContext::DSC_class,
&CommonLateParsedAttrs))
return nullptr;
MultiTemplateParamsArg TemplateParams(
TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data()
: nullptr,
TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
if (TryConsumeToken(tok::semi)) {
if (DS.isFriendSpecified())
ProhibitAttributes(FnAttrs);
RecordDecl *AnonRecord = nullptr;
Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
getCurScope(), AS, DS, TemplateParams, false, AnonRecord);
DS.complete(TheDecl);
if (AnonRecord) {
Decl* decls[] = {AnonRecord, TheDecl};
return Actions.BuildDeclaratorGroup(decls);
}
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
ParsingDeclarator DeclaratorInfo(*this, DS, DeclaratorContext::MemberContext);
if (TemplateInfo.TemplateParams)
DeclaratorInfo.setTemplateParameterLists(TemplateParams);
VirtSpecifiers VS;
// Hold late-parsed attributes so we can attach a Decl to them later.
LateParsedAttrList LateParsedAttrs;
SourceLocation EqualLoc;
SourceLocation PureSpecLoc;
auto TryConsumePureSpecifier = [&] (bool AllowDefinition) {
if (Tok.isNot(tok::equal))
return false;
auto &Zero = NextToken();
SmallString<8> Buffer;
if (Zero.isNot(tok::numeric_constant) ||
PP.getSpelling(Zero, Buffer) != "0")
return false;
auto &After = GetLookAheadToken(2);
if (!After.isOneOf(tok::semi, tok::comma) &&
!(AllowDefinition &&
After.isOneOf(tok::l_brace, tok::colon, tok::kw_try)))
return false;
EqualLoc = ConsumeToken();
PureSpecLoc = ConsumeToken();
return true;
};
SmallVector<Decl *, 8> DeclsInGroup;
ExprResult BitfieldSize;
ExprResult TrailingRequiresClause;
bool ExpectSemi = true;
// Parse the first declarator.
if (ParseCXXMemberDeclaratorBeforeInitializer(
DeclaratorInfo, VS, BitfieldSize, LateParsedAttrs)) {
TryConsumeToken(tok::semi);
return nullptr;
}
// Check for a member function definition.
if (BitfieldSize.isUnset()) {
// MSVC permits pure specifier on inline functions defined at class scope.
// Hence check for =0 before checking for function definition.
if (getLangOpts().MicrosoftExt && DeclaratorInfo.isDeclarationOfFunction())
TryConsumePureSpecifier(/*AllowDefinition*/ true);
FunctionDefinitionKind DefinitionKind = FDK_Declaration;
// function-definition:
//
// In C++11, a non-function declarator followed by an open brace is a
// braced-init-list for an in-class member initialization, not an
// erroneous function definition.
if (Tok.is(tok::l_brace) && !getLangOpts().CPlusPlus11) {
DefinitionKind = FDK_Definition;
} else if (DeclaratorInfo.isFunctionDeclarator()) {
if (Tok.isOneOf(tok::l_brace, tok::colon, tok::kw_try)) {
DefinitionKind = FDK_Definition;
} else if (Tok.is(tok::equal)) {
const Token &KW = NextToken();
if (KW.is(tok::kw_default))
DefinitionKind = FDK_Defaulted;
else if (KW.is(tok::kw_delete))
DefinitionKind = FDK_Deleted;
else if (KW.is(tok::code_completion)) {
Actions.CodeCompleteAfterFunctionEquals(DeclaratorInfo);
cutOffParsing();
return nullptr;
}
}
}
DeclaratorInfo.setFunctionDefinitionKind(DefinitionKind);
// C++11 [dcl.attr.grammar] p4: If an attribute-specifier-seq appertains
// to a friend declaration, that declaration shall be a definition.
if (DeclaratorInfo.isFunctionDeclarator() &&
DefinitionKind == FDK_Declaration && DS.isFriendSpecified()) {
// Diagnose attributes that appear before decl specifier:
// [[]] friend int foo();
ProhibitAttributes(FnAttrs);
}
if (DefinitionKind != FDK_Declaration) {
if (!DeclaratorInfo.isFunctionDeclarator()) {
Diag(DeclaratorInfo.getIdentifierLoc(), diag::err_func_def_no_params);
ConsumeBrace();
SkipUntil(tok::r_brace);
// Consume the optional ';'
TryConsumeToken(tok::semi);
return nullptr;
}
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
Diag(DeclaratorInfo.getIdentifierLoc(),
diag::err_function_declared_typedef);
// Recover by treating the 'typedef' as spurious.
DS.ClearStorageClassSpecs();
}
Decl *FunDecl =
ParseCXXInlineMethodDef(AS, AccessAttrs, DeclaratorInfo, TemplateInfo,
VS, PureSpecLoc);
if (FunDecl) {
for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
CommonLateParsedAttrs[i]->addDecl(FunDecl);
}
for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
LateParsedAttrs[i]->addDecl(FunDecl);
}
}
LateParsedAttrs.clear();
// Consume the ';' - it's optional unless we have a delete or default
if (Tok.is(tok::semi))
ConsumeExtraSemi(AfterMemberFunctionDefinition);
return DeclGroupPtrTy::make(DeclGroupRef(FunDecl));
}
}
// member-declarator-list:
// member-declarator
// member-declarator-list ',' member-declarator
while (1) {
InClassInitStyle HasInClassInit = ICIS_NoInit;
bool HasStaticInitializer = false;
if (Tok.isOneOf(tok::equal, tok::l_brace) && PureSpecLoc.isInvalid()) {
if (DeclaratorInfo.isDeclarationOfFunction()) {
// It's a pure-specifier.
if (!TryConsumePureSpecifier(/*AllowFunctionDefinition*/ false))
// Parse it as an expression so that Sema can diagnose it.
HasStaticInitializer = true;
} else if (DeclaratorInfo.getDeclSpec().getStorageClassSpec() !=
DeclSpec::SCS_static &&
DeclaratorInfo.getDeclSpec().getStorageClassSpec() !=
DeclSpec::SCS_typedef &&
!DS.isFriendSpecified()) {
// It's a default member initializer.
if (BitfieldSize.get())
Diag(Tok, getLangOpts().CPlusPlus20
? diag::warn_cxx17_compat_bitfield_member_init
: diag::ext_bitfield_member_init);
HasInClassInit = Tok.is(tok::equal) ? ICIS_CopyInit : ICIS_ListInit;
} else {
HasStaticInitializer = true;
}
}
// NOTE: If Sema is the Action module and declarator is an instance field,
// this call will *not* return the created decl; It will return null.
// See Sema::ActOnCXXMemberDeclarator for details.
NamedDecl *ThisDecl = nullptr;
if (DS.isFriendSpecified()) {
// C++11 [dcl.attr.grammar] p4: If an attribute-specifier-seq appertains
// to a friend declaration, that declaration shall be a definition.
//
// Diagnose attributes that appear in a friend member function declarator:
// friend int foo [[]] ();
SmallVector<SourceRange, 4> Ranges;
DeclaratorInfo.getCXX11AttributeRanges(Ranges);
for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
E = Ranges.end(); I != E; ++I)
Diag((*I).getBegin(), diag::err_attributes_not_allowed) << *I;
ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo,
TemplateParams);
} else {
ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS,
DeclaratorInfo,
TemplateParams,
BitfieldSize.get(),
VS, HasInClassInit);
if (VarTemplateDecl *VT =
ThisDecl ? dyn_cast<VarTemplateDecl>(ThisDecl) : nullptr)
// Re-direct this decl to refer to the templated decl so that we can
// initialize it.
ThisDecl = VT->getTemplatedDecl();
if (ThisDecl)
Actions.ProcessDeclAttributeList(getCurScope(), ThisDecl, AccessAttrs);
}
// Error recovery might have converted a non-static member into a static
// member.
if (HasInClassInit != ICIS_NoInit