| //===--- TargetInfo.cpp - Information about Target machine ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TargetInfo and TargetInfoImpl interfaces. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/AddressSpaces.h" |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/TargetParser.h" |
| #include <cstdlib> |
| using namespace clang; |
| |
| static const LangASMap DefaultAddrSpaceMap = {0}; |
| |
| // TargetInfo Constructor. |
| TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { |
| // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or |
| // SPARC. These should be overridden by concrete targets as needed. |
| BigEndian = !T.isLittleEndian(); |
| TLSSupported = true; |
| VLASupported = true; |
| NoAsmVariants = false; |
| HasLegalHalfType = false; |
| HasFloat128 = false; |
| HasFloat16 = false; |
| HasBFloat16 = false; |
| HasStrictFP = false; |
| PointerWidth = PointerAlign = 32; |
| BoolWidth = BoolAlign = 8; |
| IntWidth = IntAlign = 32; |
| LongWidth = LongAlign = 32; |
| LongLongWidth = LongLongAlign = 64; |
| |
| // Fixed point default bit widths |
| ShortAccumWidth = ShortAccumAlign = 16; |
| AccumWidth = AccumAlign = 32; |
| LongAccumWidth = LongAccumAlign = 64; |
| ShortFractWidth = ShortFractAlign = 8; |
| FractWidth = FractAlign = 16; |
| LongFractWidth = LongFractAlign = 32; |
| |
| // Fixed point default integral and fractional bit sizes |
| // We give the _Accum 1 fewer fractional bits than their corresponding _Fract |
| // types by default to have the same number of fractional bits between _Accum |
| // and _Fract types. |
| PaddingOnUnsignedFixedPoint = false; |
| ShortAccumScale = 7; |
| AccumScale = 15; |
| LongAccumScale = 31; |
| |
| SuitableAlign = 64; |
| DefaultAlignForAttributeAligned = 128; |
| MinGlobalAlign = 0; |
| // From the glibc documentation, on GNU systems, malloc guarantees 16-byte |
| // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See |
| // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. |
| // This alignment guarantee also applies to Windows and Android. |
| if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) |
| NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; |
| else |
| NewAlign = 0; // Infer from basic type alignment. |
| HalfWidth = 16; |
| HalfAlign = 16; |
| FloatWidth = 32; |
| FloatAlign = 32; |
| DoubleWidth = 64; |
| DoubleAlign = 64; |
| LongDoubleWidth = 64; |
| LongDoubleAlign = 64; |
| Float128Align = 128; |
| LargeArrayMinWidth = 0; |
| LargeArrayAlign = 0; |
| MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; |
| MaxVectorAlign = 0; |
| MaxTLSAlign = 0; |
| SimdDefaultAlign = 0; |
| SizeType = UnsignedLong; |
| PtrDiffType = SignedLong; |
| IntMaxType = SignedLongLong; |
| IntPtrType = SignedLong; |
| WCharType = SignedInt; |
| WIntType = SignedInt; |
| Char16Type = UnsignedShort; |
| Char32Type = UnsignedInt; |
| Int64Type = SignedLongLong; |
| SigAtomicType = SignedInt; |
| ProcessIDType = SignedInt; |
| UseSignedCharForObjCBool = true; |
| UseBitFieldTypeAlignment = true; |
| UseZeroLengthBitfieldAlignment = false; |
| UseExplicitBitFieldAlignment = true; |
| ZeroLengthBitfieldBoundary = 0; |
| HalfFormat = &llvm::APFloat::IEEEhalf(); |
| FloatFormat = &llvm::APFloat::IEEEsingle(); |
| DoubleFormat = &llvm::APFloat::IEEEdouble(); |
| LongDoubleFormat = &llvm::APFloat::IEEEdouble(); |
| Float128Format = &llvm::APFloat::IEEEquad(); |
| MCountName = "mcount"; |
| RegParmMax = 0; |
| SSERegParmMax = 0; |
| HasAlignMac68kSupport = false; |
| HasBuiltinMSVaList = false; |
| IsRenderScriptTarget = false; |
| HasAArch64SVETypes = false; |
| ARMCDECoprocMask = 0; |
| |
| // Default to no types using fpret. |
| RealTypeUsesObjCFPRet = 0; |
| |
| // Default to not using fp2ret for __Complex long double |
| ComplexLongDoubleUsesFP2Ret = false; |
| |
| // Set the C++ ABI based on the triple. |
| TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() |
| ? TargetCXXABI::Microsoft |
| : TargetCXXABI::GenericItanium); |
| |
| // Default to an empty address space map. |
| AddrSpaceMap = &DefaultAddrSpaceMap; |
| UseAddrSpaceMapMangling = false; |
| |
| // Default to an unknown platform name. |
| PlatformName = "unknown"; |
| PlatformMinVersion = VersionTuple(); |
| |
| MaxOpenCLWorkGroupSize = 1024; |
| } |
| |
| // Out of line virtual dtor for TargetInfo. |
| TargetInfo::~TargetInfo() {} |
| |
| void TargetInfo::resetDataLayout(StringRef DL) { |
| DataLayout.reset(new llvm::DataLayout(DL)); |
| } |
| |
| bool |
| TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { |
| Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; |
| return false; |
| } |
| |
| bool |
| TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { |
| Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; |
| return false; |
| } |
| |
| /// getTypeName - Return the user string for the specified integer type enum. |
| /// For example, SignedShort -> "short". |
| const char *TargetInfo::getTypeName(IntType T) { |
| switch (T) { |
| default: llvm_unreachable("not an integer!"); |
| case SignedChar: return "signed char"; |
| case UnsignedChar: return "unsigned char"; |
| case SignedShort: return "short"; |
| case UnsignedShort: return "unsigned short"; |
| case SignedInt: return "int"; |
| case UnsignedInt: return "unsigned int"; |
| case SignedLong: return "long int"; |
| case UnsignedLong: return "long unsigned int"; |
| case SignedLongLong: return "long long int"; |
| case UnsignedLongLong: return "long long unsigned int"; |
| } |
| } |
| |
| /// getTypeConstantSuffix - Return the constant suffix for the specified |
| /// integer type enum. For example, SignedLong -> "L". |
| const char *TargetInfo::getTypeConstantSuffix(IntType T) const { |
| switch (T) { |
| default: llvm_unreachable("not an integer!"); |
| case SignedChar: |
| case SignedShort: |
| case SignedInt: return ""; |
| case SignedLong: return "L"; |
| case SignedLongLong: return "LL"; |
| case UnsignedChar: |
| if (getCharWidth() < getIntWidth()) |
| return ""; |
| LLVM_FALLTHROUGH; |
| case UnsignedShort: |
| if (getShortWidth() < getIntWidth()) |
| return ""; |
| LLVM_FALLTHROUGH; |
| case UnsignedInt: return "U"; |
| case UnsignedLong: return "UL"; |
| case UnsignedLongLong: return "ULL"; |
| } |
| } |
| |
| /// getTypeFormatModifier - Return the printf format modifier for the |
| /// specified integer type enum. For example, SignedLong -> "l". |
| |
| const char *TargetInfo::getTypeFormatModifier(IntType T) { |
| switch (T) { |
| default: llvm_unreachable("not an integer!"); |
| case SignedChar: |
| case UnsignedChar: return "hh"; |
| case SignedShort: |
| case UnsignedShort: return "h"; |
| case SignedInt: |
| case UnsignedInt: return ""; |
| case SignedLong: |
| case UnsignedLong: return "l"; |
| case SignedLongLong: |
| case UnsignedLongLong: return "ll"; |
| } |
| } |
| |
| /// getTypeWidth - Return the width (in bits) of the specified integer type |
| /// enum. For example, SignedInt -> getIntWidth(). |
| unsigned TargetInfo::getTypeWidth(IntType T) const { |
| switch (T) { |
| default: llvm_unreachable("not an integer!"); |
| case SignedChar: |
| case UnsignedChar: return getCharWidth(); |
| case SignedShort: |
| case UnsignedShort: return getShortWidth(); |
| case SignedInt: |
| case UnsignedInt: return getIntWidth(); |
| case SignedLong: |
| case UnsignedLong: return getLongWidth(); |
| case SignedLongLong: |
| case UnsignedLongLong: return getLongLongWidth(); |
| }; |
| } |
| |
| TargetInfo::IntType TargetInfo::getIntTypeByWidth( |
| unsigned BitWidth, bool IsSigned) const { |
| if (getCharWidth() == BitWidth) |
| return IsSigned ? SignedChar : UnsignedChar; |
| if (getShortWidth() == BitWidth) |
| return IsSigned ? SignedShort : UnsignedShort; |
| if (getIntWidth() == BitWidth) |
| return IsSigned ? SignedInt : UnsignedInt; |
| if (getLongWidth() == BitWidth) |
| return IsSigned ? SignedLong : UnsignedLong; |
| if (getLongLongWidth() == BitWidth) |
| return IsSigned ? SignedLongLong : UnsignedLongLong; |
| return NoInt; |
| } |
| |
| TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, |
| bool IsSigned) const { |
| if (getCharWidth() >= BitWidth) |
| return IsSigned ? SignedChar : UnsignedChar; |
| if (getShortWidth() >= BitWidth) |
| return IsSigned ? SignedShort : UnsignedShort; |
| if (getIntWidth() >= BitWidth) |
| return IsSigned ? SignedInt : UnsignedInt; |
| if (getLongWidth() >= BitWidth) |
| return IsSigned ? SignedLong : UnsignedLong; |
| if (getLongLongWidth() >= BitWidth) |
| return IsSigned ? SignedLongLong : UnsignedLongLong; |
| return NoInt; |
| } |
| |
| TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth, |
| bool ExplicitIEEE) const { |
| if (getFloatWidth() == BitWidth) |
| return Float; |
| if (getDoubleWidth() == BitWidth) |
| return Double; |
| |
| switch (BitWidth) { |
| case 96: |
| if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) |
| return LongDouble; |
| break; |
| case 128: |
| // The caller explicitly asked for an IEEE compliant type but we still |
| // have to check if the target supports it. |
| if (ExplicitIEEE) |
| return hasFloat128Type() ? Float128 : NoFloat; |
| if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || |
| &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) |
| return LongDouble; |
| if (hasFloat128Type()) |
| return Float128; |
| break; |
| } |
| |
| return NoFloat; |
| } |
| |
| /// getTypeAlign - Return the alignment (in bits) of the specified integer type |
| /// enum. For example, SignedInt -> getIntAlign(). |
| unsigned TargetInfo::getTypeAlign(IntType T) const { |
| switch (T) { |
| default: llvm_unreachable("not an integer!"); |
| case SignedChar: |
| case UnsignedChar: return getCharAlign(); |
| case SignedShort: |
| case UnsignedShort: return getShortAlign(); |
| case SignedInt: |
| case UnsignedInt: return getIntAlign(); |
| case SignedLong: |
| case UnsignedLong: return getLongAlign(); |
| case SignedLongLong: |
| case UnsignedLongLong: return getLongLongAlign(); |
| }; |
| } |
| |
| /// isTypeSigned - Return whether an integer types is signed. Returns true if |
| /// the type is signed; false otherwise. |
| bool TargetInfo::isTypeSigned(IntType T) { |
| switch (T) { |
| default: llvm_unreachable("not an integer!"); |
| case SignedChar: |
| case SignedShort: |
| case SignedInt: |
| case SignedLong: |
| case SignedLongLong: |
| return true; |
| case UnsignedChar: |
| case UnsignedShort: |
| case UnsignedInt: |
| case UnsignedLong: |
| case UnsignedLongLong: |
| return false; |
| }; |
| } |
| |
| /// adjust - Set forced language options. |
| /// Apply changes to the target information with respect to certain |
| /// language options which change the target configuration and adjust |
| /// the language based on the target options where applicable. |
| void TargetInfo::adjust(LangOptions &Opts) { |
| if (Opts.NoBitFieldTypeAlign) |
| UseBitFieldTypeAlignment = false; |
| |
| switch (Opts.WCharSize) { |
| default: llvm_unreachable("invalid wchar_t width"); |
| case 0: break; |
| case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; |
| case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; |
| case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; |
| } |
| |
| if (Opts.AlignDouble) { |
| DoubleAlign = LongLongAlign = 64; |
| LongDoubleAlign = 64; |
| } |
| |
| if (Opts.OpenCL) { |
| // OpenCL C requires specific widths for types, irrespective of |
| // what these normally are for the target. |
| // We also define long long and long double here, although the |
| // OpenCL standard only mentions these as "reserved". |
| IntWidth = IntAlign = 32; |
| LongWidth = LongAlign = 64; |
| LongLongWidth = LongLongAlign = 128; |
| HalfWidth = HalfAlign = 16; |
| FloatWidth = FloatAlign = 32; |
| |
| // Embedded 32-bit targets (OpenCL EP) might have double C type |
| // defined as float. Let's not override this as it might lead |
| // to generating illegal code that uses 64bit doubles. |
| if (DoubleWidth != FloatWidth) { |
| DoubleWidth = DoubleAlign = 64; |
| DoubleFormat = &llvm::APFloat::IEEEdouble(); |
| } |
| LongDoubleWidth = LongDoubleAlign = 128; |
| |
| unsigned MaxPointerWidth = getMaxPointerWidth(); |
| assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); |
| bool Is32BitArch = MaxPointerWidth == 32; |
| SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; |
| PtrDiffType = Is32BitArch ? SignedInt : SignedLong; |
| IntPtrType = Is32BitArch ? SignedInt : SignedLong; |
| |
| IntMaxType = SignedLongLong; |
| Int64Type = SignedLong; |
| |
| HalfFormat = &llvm::APFloat::IEEEhalf(); |
| FloatFormat = &llvm::APFloat::IEEEsingle(); |
| LongDoubleFormat = &llvm::APFloat::IEEEquad(); |
| } |
| |
| if (Opts.DoubleSize) { |
| if (Opts.DoubleSize == 32) { |
| DoubleWidth = 32; |
| LongDoubleWidth = 32; |
| DoubleFormat = &llvm::APFloat::IEEEsingle(); |
| LongDoubleFormat = &llvm::APFloat::IEEEsingle(); |
| } else if (Opts.DoubleSize == 64) { |
| DoubleWidth = 64; |
| LongDoubleWidth = 64; |
| DoubleFormat = &llvm::APFloat::IEEEdouble(); |
| LongDoubleFormat = &llvm::APFloat::IEEEdouble(); |
| } |
| } |
| |
| if (Opts.LongDoubleSize) { |
| if (Opts.LongDoubleSize == DoubleWidth) { |
| LongDoubleWidth = DoubleWidth; |
| LongDoubleAlign = DoubleAlign; |
| LongDoubleFormat = DoubleFormat; |
| } else if (Opts.LongDoubleSize == 128) { |
| LongDoubleWidth = LongDoubleAlign = 128; |
| LongDoubleFormat = &llvm::APFloat::IEEEquad(); |
| } |
| } |
| |
| if (Opts.NewAlignOverride) |
| NewAlign = Opts.NewAlignOverride * getCharWidth(); |
| |
| // Each unsigned fixed point type has the same number of fractional bits as |
| // its corresponding signed type. |
| PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; |
| CheckFixedPointBits(); |
| } |
| |
| bool TargetInfo::initFeatureMap( |
| llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, |
| const std::vector<std::string> &FeatureVec) const { |
| for (const auto &F : FeatureVec) { |
| StringRef Name = F; |
| // Apply the feature via the target. |
| bool Enabled = Name[0] == '+'; |
| setFeatureEnabled(Features, Name.substr(1), Enabled); |
| } |
| return true; |
| } |
| |
| TargetInfo::CallingConvKind |
| TargetInfo::getCallingConvKind(bool ClangABICompat4) const { |
| if (getCXXABI() != TargetCXXABI::Microsoft && |
| (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) |
| return CCK_ClangABI4OrPS4; |
| return CCK_Default; |
| } |
| |
| LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { |
| switch (TK) { |
| case OCLTK_Image: |
| case OCLTK_Pipe: |
| return LangAS::opencl_global; |
| |
| case OCLTK_Sampler: |
| return LangAS::opencl_constant; |
| |
| default: |
| return LangAS::Default; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| |
| |
| static StringRef removeGCCRegisterPrefix(StringRef Name) { |
| if (Name[0] == '%' || Name[0] == '#') |
| Name = Name.substr(1); |
| |
| return Name; |
| } |
| |
| /// isValidClobber - Returns whether the passed in string is |
| /// a valid clobber in an inline asm statement. This is used by |
| /// Sema. |
| bool TargetInfo::isValidClobber(StringRef Name) const { |
| return (isValidGCCRegisterName(Name) || |
| Name == "memory" || Name == "cc"); |
| } |
| |
| /// isValidGCCRegisterName - Returns whether the passed in string |
| /// is a valid register name according to GCC. This is used by Sema for |
| /// inline asm statements. |
| bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { |
| if (Name.empty()) |
| return false; |
| |
| // Get rid of any register prefix. |
| Name = removeGCCRegisterPrefix(Name); |
| if (Name.empty()) |
| return false; |
| |
| ArrayRef<const char *> Names = getGCCRegNames(); |
| |
| // If we have a number it maps to an entry in the register name array. |
| if (isDigit(Name[0])) { |
| unsigned n; |
| if (!Name.getAsInteger(0, n)) |
| return n < Names.size(); |
| } |
| |
| // Check register names. |
| if (llvm::is_contained(Names, Name)) |
| return true; |
| |
| // Check any additional names that we have. |
| for (const AddlRegName &ARN : getGCCAddlRegNames()) |
| for (const char *AN : ARN.Names) { |
| if (!AN) |
| break; |
| // Make sure the register that the additional name is for is within |
| // the bounds of the register names from above. |
| if (AN == Name && ARN.RegNum < Names.size()) |
| return true; |
| } |
| |
| // Now check aliases. |
| for (const GCCRegAlias &GRA : getGCCRegAliases()) |
| for (const char *A : GRA.Aliases) { |
| if (!A) |
| break; |
| if (A == Name) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, |
| bool ReturnCanonical) const { |
| assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); |
| |
| // Get rid of any register prefix. |
| Name = removeGCCRegisterPrefix(Name); |
| |
| ArrayRef<const char *> Names = getGCCRegNames(); |
| |
| // First, check if we have a number. |
| if (isDigit(Name[0])) { |
| unsigned n; |
| if (!Name.getAsInteger(0, n)) { |
| assert(n < Names.size() && "Out of bounds register number!"); |
| return Names[n]; |
| } |
| } |
| |
| // Check any additional names that we have. |
| for (const AddlRegName &ARN : getGCCAddlRegNames()) |
| for (const char *AN : ARN.Names) { |
| if (!AN) |
| break; |
| // Make sure the register that the additional name is for is within |
| // the bounds of the register names from above. |
| if (AN == Name && ARN.RegNum < Names.size()) |
| return ReturnCanonical ? Names[ARN.RegNum] : Name; |
| } |
| |
| // Now check aliases. |
| for (const GCCRegAlias &RA : getGCCRegAliases()) |
| for (const char *A : RA.Aliases) { |
| if (!A) |
| break; |
| if (A == Name) |
| return RA.Register; |
| } |
| |
| return Name; |
| } |
| |
| bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { |
| const char *Name = Info.getConstraintStr().c_str(); |
| // An output constraint must start with '=' or '+' |
| if (*Name != '=' && *Name != '+') |
| return false; |
| |
| if (*Name == '+') |
| Info.setIsReadWrite(); |
| |
| Name++; |
| while (*Name) { |
| switch (*Name) { |
| default: |
| if (!validateAsmConstraint(Name, Info)) { |
| // FIXME: We temporarily return false |
| // so we can add more constraints as we hit it. |
| // Eventually, an unknown constraint should just be treated as 'g'. |
| return false; |
| } |
| break; |
| case '&': // early clobber. |
| Info.setEarlyClobber(); |
| break; |
| case '%': // commutative. |
| // FIXME: Check that there is a another register after this one. |
| break; |
| case 'r': // general register. |
| Info.setAllowsRegister(); |
| break; |
| case 'm': // memory operand. |
| case 'o': // offsetable memory operand. |
| case 'V': // non-offsetable memory operand. |
| case '<': // autodecrement memory operand. |
| case '>': // autoincrement memory operand. |
| Info.setAllowsMemory(); |
| break; |
| case 'g': // general register, memory operand or immediate integer. |
| case 'X': // any operand. |
| Info.setAllowsRegister(); |
| Info.setAllowsMemory(); |
| break; |
| case ',': // multiple alternative constraint. Pass it. |
| // Handle additional optional '=' or '+' modifiers. |
| if (Name[1] == '=' || Name[1] == '+') |
| Name++; |
| break; |
| case '#': // Ignore as constraint. |
| while (Name[1] && Name[1] != ',') |
| Name++; |
| break; |
| case '?': // Disparage slightly code. |
| case '!': // Disparage severely. |
| case '*': // Ignore for choosing register preferences. |
| case 'i': // Ignore i,n,E,F as output constraints (match from the other |
| // chars) |
| case 'n': |
| case 'E': |
| case 'F': |
| break; // Pass them. |
| } |
| |
| Name++; |
| } |
| |
| // Early clobber with a read-write constraint which doesn't permit registers |
| // is invalid. |
| if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) |
| return false; |
| |
| // If a constraint allows neither memory nor register operands it contains |
| // only modifiers. Reject it. |
| return Info.allowsMemory() || Info.allowsRegister(); |
| } |
| |
| bool TargetInfo::resolveSymbolicName(const char *&Name, |
| ArrayRef<ConstraintInfo> OutputConstraints, |
| unsigned &Index) const { |
| assert(*Name == '[' && "Symbolic name did not start with '['"); |
| Name++; |
| const char *Start = Name; |
| while (*Name && *Name != ']') |
| Name++; |
| |
| if (!*Name) { |
| // Missing ']' |
| return false; |
| } |
| |
| std::string SymbolicName(Start, Name - Start); |
| |
| for (Index = 0; Index != OutputConstraints.size(); ++Index) |
| if (SymbolicName == OutputConstraints[Index].getName()) |
| return true; |
| |
| return false; |
| } |
| |
| bool TargetInfo::validateInputConstraint( |
| MutableArrayRef<ConstraintInfo> OutputConstraints, |
| ConstraintInfo &Info) const { |
| const char *Name = Info.ConstraintStr.c_str(); |
| |
| if (!*Name) |
| return false; |
| |
| while (*Name) { |
| switch (*Name) { |
| default: |
| // Check if we have a matching constraint |
| if (*Name >= '0' && *Name <= '9') { |
| const char *DigitStart = Name; |
| while (Name[1] >= '0' && Name[1] <= '9') |
| Name++; |
| const char *DigitEnd = Name; |
| unsigned i; |
| if (StringRef(DigitStart, DigitEnd - DigitStart + 1) |
| .getAsInteger(10, i)) |
| return false; |
| |
| // Check if matching constraint is out of bounds. |
| if (i >= OutputConstraints.size()) return false; |
| |
| // A number must refer to an output only operand. |
| if (OutputConstraints[i].isReadWrite()) |
| return false; |
| |
| // If the constraint is already tied, it must be tied to the |
| // same operand referenced to by the number. |
| if (Info.hasTiedOperand() && Info.getTiedOperand() != i) |
| return false; |
| |
| // The constraint should have the same info as the respective |
| // output constraint. |
| Info.setTiedOperand(i, OutputConstraints[i]); |
| } else if (!validateAsmConstraint(Name, Info)) { |
| // FIXME: This error return is in place temporarily so we can |
| // add more constraints as we hit it. Eventually, an unknown |
| // constraint should just be treated as 'g'. |
| return false; |
| } |
| break; |
| case '[': { |
| unsigned Index = 0; |
| if (!resolveSymbolicName(Name, OutputConstraints, Index)) |
| return false; |
| |
| // If the constraint is already tied, it must be tied to the |
| // same operand referenced to by the number. |
| if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) |
| return false; |
| |
| // A number must refer to an output only operand. |
| if (OutputConstraints[Index].isReadWrite()) |
| return false; |
| |
| Info.setTiedOperand(Index, OutputConstraints[Index]); |
| break; |
| } |
| case '%': // commutative |
| // FIXME: Fail if % is used with the last operand. |
| break; |
| case 'i': // immediate integer. |
| break; |
| case 'n': // immediate integer with a known value. |
| Info.setRequiresImmediate(); |
| break; |
| case 'I': // Various constant constraints with target-specific meanings. |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'O': |
| case 'P': |
| if (!validateAsmConstraint(Name, Info)) |
| return false; |
| break; |
| case 'r': // general register. |
| Info.setAllowsRegister(); |
| break; |
| case 'm': // memory operand. |
| case 'o': // offsettable memory operand. |
| case 'V': // non-offsettable memory operand. |
| case '<': // autodecrement memory operand. |
| case '>': // autoincrement memory operand. |
| Info.setAllowsMemory(); |
| break; |
| case 'g': // general register, memory operand or immediate integer. |
| case 'X': // any operand. |
| Info.setAllowsRegister(); |
| Info.setAllowsMemory(); |
| break; |
| case 'E': // immediate floating point. |
| case 'F': // immediate floating point. |
| case 'p': // address operand. |
| break; |
| case ',': // multiple alternative constraint. Ignore comma. |
| break; |
| case '#': // Ignore as constraint. |
| while (Name[1] && Name[1] != ',') |
| Name++; |
| break; |
| case '?': // Disparage slightly code. |
| case '!': // Disparage severely. |
| case '*': // Ignore for choosing register preferences. |
| break; // Pass them. |
| } |
| |
| Name++; |
| } |
| |
| return true; |
| } |
| |
| void TargetInfo::CheckFixedPointBits() const { |
| // Check that the number of fractional and integral bits (and maybe sign) can |
| // fit into the bits given for a fixed point type. |
| assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); |
| assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); |
| assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); |
| assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= |
| ShortAccumWidth); |
| assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); |
| assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= |
| LongAccumWidth); |
| |
| assert(getShortFractScale() + 1 <= ShortFractWidth); |
| assert(getFractScale() + 1 <= FractWidth); |
| assert(getLongFractScale() + 1 <= LongFractWidth); |
| assert(getUnsignedShortFractScale() <= ShortFractWidth); |
| assert(getUnsignedFractScale() <= FractWidth); |
| assert(getUnsignedLongFractScale() <= LongFractWidth); |
| |
| // Each unsigned fract type has either the same number of fractional bits |
| // as, or one more fractional bit than, its corresponding signed fract type. |
| assert(getShortFractScale() == getUnsignedShortFractScale() || |
| getShortFractScale() == getUnsignedShortFractScale() - 1); |
| assert(getFractScale() == getUnsignedFractScale() || |
| getFractScale() == getUnsignedFractScale() - 1); |
| assert(getLongFractScale() == getUnsignedLongFractScale() || |
| getLongFractScale() == getUnsignedLongFractScale() - 1); |
| |
| // When arranged in order of increasing rank (see 6.3.1.3a), the number of |
| // fractional bits is nondecreasing for each of the following sets of |
| // fixed-point types: |
| // - signed fract types |
| // - unsigned fract types |
| // - signed accum types |
| // - unsigned accum types. |
| assert(getLongFractScale() >= getFractScale() && |
| getFractScale() >= getShortFractScale()); |
| assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && |
| getUnsignedFractScale() >= getUnsignedShortFractScale()); |
| assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); |
| assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && |
| getUnsignedAccumScale() >= getUnsignedShortAccumScale()); |
| |
| // When arranged in order of increasing rank (see 6.3.1.3a), the number of |
| // integral bits is nondecreasing for each of the following sets of |
| // fixed-point types: |
| // - signed accum types |
| // - unsigned accum types |
| assert(getLongAccumIBits() >= getAccumIBits() && |
| getAccumIBits() >= getShortAccumIBits()); |
| assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && |
| getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); |
| |
| // Each signed accum type has at least as many integral bits as its |
| // corresponding unsigned accum type. |
| assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); |
| assert(getAccumIBits() >= getUnsignedAccumIBits()); |
| assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); |
| } |
| |
| void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { |
| auto *Target = static_cast<TransferrableTargetInfo*>(this); |
| auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); |
| *Target = *Src; |
| } |