| //===- ThreadSafetyCommon.cpp ---------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of the interfaces declared in ThreadSafetyCommon.h |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclGroup.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/OperationKinds.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/OperatorKinds.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/Casting.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <string> |
| #include <utility> |
| |
| using namespace clang; |
| using namespace threadSafety; |
| |
| // From ThreadSafetyUtil.h |
| std::string threadSafety::getSourceLiteralString(const Expr *CE) { |
| switch (CE->getStmtClass()) { |
| case Stmt::IntegerLiteralClass: |
| return cast<IntegerLiteral>(CE)->getValue().toString(10, true); |
| case Stmt::StringLiteralClass: { |
| std::string ret("\""); |
| ret += cast<StringLiteral>(CE)->getString(); |
| ret += "\""; |
| return ret; |
| } |
| case Stmt::CharacterLiteralClass: |
| case Stmt::CXXNullPtrLiteralExprClass: |
| case Stmt::GNUNullExprClass: |
| case Stmt::CXXBoolLiteralExprClass: |
| case Stmt::FloatingLiteralClass: |
| case Stmt::ImaginaryLiteralClass: |
| case Stmt::ObjCStringLiteralClass: |
| default: |
| return "#lit"; |
| } |
| } |
| |
| // Return true if E is a variable that points to an incomplete Phi node. |
| static bool isIncompletePhi(const til::SExpr *E) { |
| if (const auto *Ph = dyn_cast<til::Phi>(E)) |
| return Ph->status() == til::Phi::PH_Incomplete; |
| return false; |
| } |
| |
| using CallingContext = SExprBuilder::CallingContext; |
| |
| til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { |
| auto It = SMap.find(S); |
| if (It != SMap.end()) |
| return It->second; |
| return nullptr; |
| } |
| |
| til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { |
| Walker.walk(*this); |
| return Scfg; |
| } |
| |
| static bool isCalleeArrow(const Expr *E) { |
| const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); |
| return ME ? ME->isArrow() : false; |
| } |
| |
| /// Translate a clang expression in an attribute to a til::SExpr. |
| /// Constructs the context from D, DeclExp, and SelfDecl. |
| /// |
| /// \param AttrExp The expression to translate. |
| /// \param D The declaration to which the attribute is attached. |
| /// \param DeclExp An expression involving the Decl to which the attribute |
| /// is attached. E.g. the call to a function. |
| CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, |
| const NamedDecl *D, |
| const Expr *DeclExp, |
| VarDecl *SelfDecl) { |
| // If we are processing a raw attribute expression, with no substitutions. |
| if (!DeclExp) |
| return translateAttrExpr(AttrExp, nullptr); |
| |
| CallingContext Ctx(nullptr, D); |
| |
| // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute |
| // for formal parameters when we call buildMutexID later. |
| if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) { |
| Ctx.SelfArg = ME->getBase(); |
| Ctx.SelfArrow = ME->isArrow(); |
| } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) { |
| Ctx.SelfArg = CE->getImplicitObjectArgument(); |
| Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); |
| Ctx.NumArgs = CE->getNumArgs(); |
| Ctx.FunArgs = CE->getArgs(); |
| } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) { |
| Ctx.NumArgs = CE->getNumArgs(); |
| Ctx.FunArgs = CE->getArgs(); |
| } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) { |
| Ctx.SelfArg = nullptr; // Will be set below |
| Ctx.NumArgs = CE->getNumArgs(); |
| Ctx.FunArgs = CE->getArgs(); |
| } else if (D && isa<CXXDestructorDecl>(D)) { |
| // There's no such thing as a "destructor call" in the AST. |
| Ctx.SelfArg = DeclExp; |
| } |
| |
| // Hack to handle constructors, where self cannot be recovered from |
| // the expression. |
| if (SelfDecl && !Ctx.SelfArg) { |
| DeclRefExpr SelfDRE(SelfDecl->getASTContext(), SelfDecl, false, |
| SelfDecl->getType(), VK_LValue, |
| SelfDecl->getLocation()); |
| Ctx.SelfArg = &SelfDRE; |
| |
| // If the attribute has no arguments, then assume the argument is "this". |
| if (!AttrExp) |
| return translateAttrExpr(Ctx.SelfArg, nullptr); |
| else // For most attributes. |
| return translateAttrExpr(AttrExp, &Ctx); |
| } |
| |
| // If the attribute has no arguments, then assume the argument is "this". |
| if (!AttrExp) |
| return translateAttrExpr(Ctx.SelfArg, nullptr); |
| else // For most attributes. |
| return translateAttrExpr(AttrExp, &Ctx); |
| } |
| |
| /// Translate a clang expression in an attribute to a til::SExpr. |
| // This assumes a CallingContext has already been created. |
| CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, |
| CallingContext *Ctx) { |
| if (!AttrExp) |
| return CapabilityExpr(nullptr, false); |
| |
| if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { |
| if (SLit->getString() == StringRef("*")) |
| // The "*" expr is a universal lock, which essentially turns off |
| // checks until it is removed from the lockset. |
| return CapabilityExpr(new (Arena) til::Wildcard(), false); |
| else |
| // Ignore other string literals for now. |
| return CapabilityExpr(nullptr, false); |
| } |
| |
| bool Neg = false; |
| if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { |
| if (OE->getOperator() == OO_Exclaim) { |
| Neg = true; |
| AttrExp = OE->getArg(0); |
| } |
| } |
| else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { |
| if (UO->getOpcode() == UO_LNot) { |
| Neg = true; |
| AttrExp = UO->getSubExpr(); |
| } |
| } |
| |
| til::SExpr *E = translate(AttrExp, Ctx); |
| |
| // Trap mutex expressions like nullptr, or 0. |
| // Any literal value is nonsense. |
| if (!E || isa<til::Literal>(E)) |
| return CapabilityExpr(nullptr, false); |
| |
| // Hack to deal with smart pointers -- strip off top-level pointer casts. |
| if (const auto *CE = dyn_cast_or_null<til::Cast>(E)) { |
| if (CE->castOpcode() == til::CAST_objToPtr) |
| return CapabilityExpr(CE->expr(), Neg); |
| } |
| return CapabilityExpr(E, Neg); |
| } |
| |
| // Translate a clang statement or expression to a TIL expression. |
| // Also performs substitution of variables; Ctx provides the context. |
| // Dispatches on the type of S. |
| til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { |
| if (!S) |
| return nullptr; |
| |
| // Check if S has already been translated and cached. |
| // This handles the lookup of SSA names for DeclRefExprs here. |
| if (til::SExpr *E = lookupStmt(S)) |
| return E; |
| |
| switch (S->getStmtClass()) { |
| case Stmt::DeclRefExprClass: |
| return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); |
| case Stmt::CXXThisExprClass: |
| return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); |
| case Stmt::MemberExprClass: |
| return translateMemberExpr(cast<MemberExpr>(S), Ctx); |
| case Stmt::ObjCIvarRefExprClass: |
| return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx); |
| case Stmt::CallExprClass: |
| return translateCallExpr(cast<CallExpr>(S), Ctx); |
| case Stmt::CXXMemberCallExprClass: |
| return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); |
| case Stmt::CXXOperatorCallExprClass: |
| return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); |
| case Stmt::UnaryOperatorClass: |
| return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); |
| case Stmt::BinaryOperatorClass: |
| case Stmt::CompoundAssignOperatorClass: |
| return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); |
| |
| case Stmt::ArraySubscriptExprClass: |
| return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); |
| case Stmt::ConditionalOperatorClass: |
| return translateAbstractConditionalOperator( |
| cast<ConditionalOperator>(S), Ctx); |
| case Stmt::BinaryConditionalOperatorClass: |
| return translateAbstractConditionalOperator( |
| cast<BinaryConditionalOperator>(S), Ctx); |
| |
| // We treat these as no-ops |
| case Stmt::ConstantExprClass: |
| return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx); |
| case Stmt::ParenExprClass: |
| return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); |
| case Stmt::ExprWithCleanupsClass: |
| return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); |
| case Stmt::CXXBindTemporaryExprClass: |
| return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); |
| case Stmt::MaterializeTemporaryExprClass: |
| return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx); |
| |
| // Collect all literals |
| case Stmt::CharacterLiteralClass: |
| case Stmt::CXXNullPtrLiteralExprClass: |
| case Stmt::GNUNullExprClass: |
| case Stmt::CXXBoolLiteralExprClass: |
| case Stmt::FloatingLiteralClass: |
| case Stmt::ImaginaryLiteralClass: |
| case Stmt::IntegerLiteralClass: |
| case Stmt::StringLiteralClass: |
| case Stmt::ObjCStringLiteralClass: |
| return new (Arena) til::Literal(cast<Expr>(S)); |
| |
| case Stmt::DeclStmtClass: |
| return translateDeclStmt(cast<DeclStmt>(S), Ctx); |
| default: |
| break; |
| } |
| if (const auto *CE = dyn_cast<CastExpr>(S)) |
| return translateCastExpr(CE, Ctx); |
| |
| return new (Arena) til::Undefined(S); |
| } |
| |
| til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, |
| CallingContext *Ctx) { |
| const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); |
| |
| // Function parameters require substitution and/or renaming. |
| if (const auto *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { |
| unsigned I = PV->getFunctionScopeIndex(); |
| const DeclContext *D = PV->getDeclContext(); |
| if (Ctx && Ctx->FunArgs) { |
| const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl(); |
| if (isa<FunctionDecl>(D) |
| ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical) |
| : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) { |
| // Substitute call arguments for references to function parameters |
| assert(I < Ctx->NumArgs); |
| return translate(Ctx->FunArgs[I], Ctx->Prev); |
| } |
| } |
| // Map the param back to the param of the original function declaration |
| // for consistent comparisons. |
| VD = isa<FunctionDecl>(D) |
| ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I) |
| : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I); |
| } |
| |
| // For non-local variables, treat it as a reference to a named object. |
| return new (Arena) til::LiteralPtr(VD); |
| } |
| |
| til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, |
| CallingContext *Ctx) { |
| // Substitute for 'this' |
| if (Ctx && Ctx->SelfArg) |
| return translate(Ctx->SelfArg, Ctx->Prev); |
| assert(SelfVar && "We have no variable for 'this'!"); |
| return SelfVar; |
| } |
| |
| static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { |
| if (const auto *V = dyn_cast<til::Variable>(E)) |
| return V->clangDecl(); |
| if (const auto *Ph = dyn_cast<til::Phi>(E)) |
| return Ph->clangDecl(); |
| if (const auto *P = dyn_cast<til::Project>(E)) |
| return P->clangDecl(); |
| if (const auto *L = dyn_cast<til::LiteralPtr>(E)) |
| return L->clangDecl(); |
| return nullptr; |
| } |
| |
| static bool hasAnyPointerType(const til::SExpr *E) { |
| auto *VD = getValueDeclFromSExpr(E); |
| if (VD && VD->getType()->isAnyPointerType()) |
| return true; |
| if (const auto *C = dyn_cast<til::Cast>(E)) |
| return C->castOpcode() == til::CAST_objToPtr; |
| |
| return false; |
| } |
| |
| // Grab the very first declaration of virtual method D |
| static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { |
| while (true) { |
| D = D->getCanonicalDecl(); |
| auto OverriddenMethods = D->overridden_methods(); |
| if (OverriddenMethods.begin() == OverriddenMethods.end()) |
| return D; // Method does not override anything |
| // FIXME: this does not work with multiple inheritance. |
| D = *OverriddenMethods.begin(); |
| } |
| return nullptr; |
| } |
| |
| til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, |
| CallingContext *Ctx) { |
| til::SExpr *BE = translate(ME->getBase(), Ctx); |
| til::SExpr *E = new (Arena) til::SApply(BE); |
| |
| const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); |
| if (const auto *VD = dyn_cast<CXXMethodDecl>(D)) |
| D = getFirstVirtualDecl(VD); |
| |
| til::Project *P = new (Arena) til::Project(E, D); |
| if (hasAnyPointerType(BE)) |
| P->setArrow(true); |
| return P; |
| } |
| |
| til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE, |
| CallingContext *Ctx) { |
| til::SExpr *BE = translate(IVRE->getBase(), Ctx); |
| til::SExpr *E = new (Arena) til::SApply(BE); |
| |
| const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl()); |
| |
| til::Project *P = new (Arena) til::Project(E, D); |
| if (hasAnyPointerType(BE)) |
| P->setArrow(true); |
| return P; |
| } |
| |
| til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, |
| CallingContext *Ctx, |
| const Expr *SelfE) { |
| if (CapabilityExprMode) { |
| // Handle LOCK_RETURNED |
| if (const FunctionDecl *FD = CE->getDirectCallee()) { |
| FD = FD->getMostRecentDecl(); |
| if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) { |
| CallingContext LRCallCtx(Ctx); |
| LRCallCtx.AttrDecl = CE->getDirectCallee(); |
| LRCallCtx.SelfArg = SelfE; |
| LRCallCtx.NumArgs = CE->getNumArgs(); |
| LRCallCtx.FunArgs = CE->getArgs(); |
| return const_cast<til::SExpr *>( |
| translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); |
| } |
| } |
| } |
| |
| til::SExpr *E = translate(CE->getCallee(), Ctx); |
| for (const auto *Arg : CE->arguments()) { |
| til::SExpr *A = translate(Arg, Ctx); |
| E = new (Arena) til::Apply(E, A); |
| } |
| return new (Arena) til::Call(E, CE); |
| } |
| |
| til::SExpr *SExprBuilder::translateCXXMemberCallExpr( |
| const CXXMemberCallExpr *ME, CallingContext *Ctx) { |
| if (CapabilityExprMode) { |
| // Ignore calls to get() on smart pointers. |
| if (ME->getMethodDecl()->getNameAsString() == "get" && |
| ME->getNumArgs() == 0) { |
| auto *E = translate(ME->getImplicitObjectArgument(), Ctx); |
| return new (Arena) til::Cast(til::CAST_objToPtr, E); |
| // return E; |
| } |
| } |
| return translateCallExpr(cast<CallExpr>(ME), Ctx, |
| ME->getImplicitObjectArgument()); |
| } |
| |
| til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( |
| const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { |
| if (CapabilityExprMode) { |
| // Ignore operator * and operator -> on smart pointers. |
| OverloadedOperatorKind k = OCE->getOperator(); |
| if (k == OO_Star || k == OO_Arrow) { |
| auto *E = translate(OCE->getArg(0), Ctx); |
| return new (Arena) til::Cast(til::CAST_objToPtr, E); |
| // return E; |
| } |
| } |
| return translateCallExpr(cast<CallExpr>(OCE), Ctx); |
| } |
| |
| til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, |
| CallingContext *Ctx) { |
| switch (UO->getOpcode()) { |
| case UO_PostInc: |
| case UO_PostDec: |
| case UO_PreInc: |
| case UO_PreDec: |
| return new (Arena) til::Undefined(UO); |
| |
| case UO_AddrOf: |
| if (CapabilityExprMode) { |
| // interpret &Graph::mu_ as an existential. |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { |
| if (DRE->getDecl()->isCXXInstanceMember()) { |
| // This is a pointer-to-member expression, e.g. &MyClass::mu_. |
| // We interpret this syntax specially, as a wildcard. |
| auto *W = new (Arena) til::Wildcard(); |
| return new (Arena) til::Project(W, DRE->getDecl()); |
| } |
| } |
| } |
| // otherwise, & is a no-op |
| return translate(UO->getSubExpr(), Ctx); |
| |
| // We treat these as no-ops |
| case UO_Deref: |
| case UO_Plus: |
| return translate(UO->getSubExpr(), Ctx); |
| |
| case UO_Minus: |
| return new (Arena) |
| til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); |
| case UO_Not: |
| return new (Arena) |
| til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); |
| case UO_LNot: |
| return new (Arena) |
| til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); |
| |
| // Currently unsupported |
| case UO_Real: |
| case UO_Imag: |
| case UO_Extension: |
| case UO_Coawait: |
| return new (Arena) til::Undefined(UO); |
| } |
| return new (Arena) til::Undefined(UO); |
| } |
| |
| til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, |
| const BinaryOperator *BO, |
| CallingContext *Ctx, bool Reverse) { |
| til::SExpr *E0 = translate(BO->getLHS(), Ctx); |
| til::SExpr *E1 = translate(BO->getRHS(), Ctx); |
| if (Reverse) |
| return new (Arena) til::BinaryOp(Op, E1, E0); |
| else |
| return new (Arena) til::BinaryOp(Op, E0, E1); |
| } |
| |
| til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, |
| const BinaryOperator *BO, |
| CallingContext *Ctx, |
| bool Assign) { |
| const Expr *LHS = BO->getLHS(); |
| const Expr *RHS = BO->getRHS(); |
| til::SExpr *E0 = translate(LHS, Ctx); |
| til::SExpr *E1 = translate(RHS, Ctx); |
| |
| const ValueDecl *VD = nullptr; |
| til::SExpr *CV = nullptr; |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) { |
| VD = DRE->getDecl(); |
| CV = lookupVarDecl(VD); |
| } |
| |
| if (!Assign) { |
| til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); |
| E1 = new (Arena) til::BinaryOp(Op, Arg, E1); |
| E1 = addStatement(E1, nullptr, VD); |
| } |
| if (VD && CV) |
| return updateVarDecl(VD, E1); |
| return new (Arena) til::Store(E0, E1); |
| } |
| |
| til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, |
| CallingContext *Ctx) { |
| switch (BO->getOpcode()) { |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| return new (Arena) til::Undefined(BO); |
| |
| case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); |
| case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); |
| case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); |
| case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); |
| case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); |
| case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); |
| case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); |
| case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); |
| case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); |
| case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); |
| case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); |
| case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); |
| case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); |
| case BO_Cmp: return translateBinOp(til::BOP_Cmp, BO, Ctx); |
| case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); |
| case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); |
| case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); |
| case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); |
| case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); |
| |
| case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); |
| case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); |
| case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); |
| case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); |
| case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); |
| case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); |
| case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); |
| case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); |
| case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); |
| case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); |
| case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); |
| |
| case BO_Comma: |
| // The clang CFG should have already processed both sides. |
| return translate(BO->getRHS(), Ctx); |
| } |
| return new (Arena) til::Undefined(BO); |
| } |
| |
| til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, |
| CallingContext *Ctx) { |
| CastKind K = CE->getCastKind(); |
| switch (K) { |
| case CK_LValueToRValue: { |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { |
| til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); |
| if (E0) |
| return E0; |
| } |
| til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); |
| return E0; |
| // FIXME!! -- get Load working properly |
| // return new (Arena) til::Load(E0); |
| } |
| case CK_NoOp: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: { |
| til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); |
| return E0; |
| } |
| default: { |
| // FIXME: handle different kinds of casts. |
| til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); |
| if (CapabilityExprMode) |
| return E0; |
| return new (Arena) til::Cast(til::CAST_none, E0); |
| } |
| } |
| } |
| |
| til::SExpr * |
| SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, |
| CallingContext *Ctx) { |
| til::SExpr *E0 = translate(E->getBase(), Ctx); |
| til::SExpr *E1 = translate(E->getIdx(), Ctx); |
| return new (Arena) til::ArrayIndex(E0, E1); |
| } |
| |
| til::SExpr * |
| SExprBuilder::translateAbstractConditionalOperator( |
| const AbstractConditionalOperator *CO, CallingContext *Ctx) { |
| auto *C = translate(CO->getCond(), Ctx); |
| auto *T = translate(CO->getTrueExpr(), Ctx); |
| auto *E = translate(CO->getFalseExpr(), Ctx); |
| return new (Arena) til::IfThenElse(C, T, E); |
| } |
| |
| til::SExpr * |
| SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { |
| DeclGroupRef DGrp = S->getDeclGroup(); |
| for (auto I : DGrp) { |
| if (auto *VD = dyn_cast_or_null<VarDecl>(I)) { |
| Expr *E = VD->getInit(); |
| til::SExpr* SE = translate(E, Ctx); |
| |
| // Add local variables with trivial type to the variable map |
| QualType T = VD->getType(); |
| if (T.isTrivialType(VD->getASTContext())) |
| return addVarDecl(VD, SE); |
| else { |
| // TODO: add alloca |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| // If (E) is non-trivial, then add it to the current basic block, and |
| // update the statement map so that S refers to E. Returns a new variable |
| // that refers to E. |
| // If E is trivial returns E. |
| til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, |
| const ValueDecl *VD) { |
| if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) |
| return E; |
| if (VD) |
| E = new (Arena) til::Variable(E, VD); |
| CurrentInstructions.push_back(E); |
| if (S) |
| insertStmt(S, E); |
| return E; |
| } |
| |
| // Returns the current value of VD, if known, and nullptr otherwise. |
| til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { |
| auto It = LVarIdxMap.find(VD); |
| if (It != LVarIdxMap.end()) { |
| assert(CurrentLVarMap[It->second].first == VD); |
| return CurrentLVarMap[It->second].second; |
| } |
| return nullptr; |
| } |
| |
| // if E is a til::Variable, update its clangDecl. |
| static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { |
| if (!E) |
| return; |
| if (auto *V = dyn_cast<til::Variable>(E)) { |
| if (!V->clangDecl()) |
| V->setClangDecl(VD); |
| } |
| } |
| |
| // Adds a new variable declaration. |
| til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { |
| maybeUpdateVD(E, VD); |
| LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); |
| CurrentLVarMap.makeWritable(); |
| CurrentLVarMap.push_back(std::make_pair(VD, E)); |
| return E; |
| } |
| |
| // Updates a current variable declaration. (E.g. by assignment) |
| til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { |
| maybeUpdateVD(E, VD); |
| auto It = LVarIdxMap.find(VD); |
| if (It == LVarIdxMap.end()) { |
| til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); |
| til::SExpr *St = new (Arena) til::Store(Ptr, E); |
| return St; |
| } |
| CurrentLVarMap.makeWritable(); |
| CurrentLVarMap.elem(It->second).second = E; |
| return E; |
| } |
| |
| // Make a Phi node in the current block for the i^th variable in CurrentVarMap. |
| // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. |
| // If E == null, this is a backedge and will be set later. |
| void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { |
| unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; |
| assert(ArgIndex > 0 && ArgIndex < NPreds); |
| |
| til::SExpr *CurrE = CurrentLVarMap[i].second; |
| if (CurrE->block() == CurrentBB) { |
| // We already have a Phi node in the current block, |
| // so just add the new variable to the Phi node. |
| auto *Ph = dyn_cast<til::Phi>(CurrE); |
| assert(Ph && "Expecting Phi node."); |
| if (E) |
| Ph->values()[ArgIndex] = E; |
| return; |
| } |
| |
| // Make a new phi node: phi(..., E) |
| // All phi args up to the current index are set to the current value. |
| til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); |
| Ph->values().setValues(NPreds, nullptr); |
| for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) |
| Ph->values()[PIdx] = CurrE; |
| if (E) |
| Ph->values()[ArgIndex] = E; |
| Ph->setClangDecl(CurrentLVarMap[i].first); |
| // If E is from a back-edge, or either E or CurrE are incomplete, then |
| // mark this node as incomplete; we may need to remove it later. |
| if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) |
| Ph->setStatus(til::Phi::PH_Incomplete); |
| |
| // Add Phi node to current block, and update CurrentLVarMap[i] |
| CurrentArguments.push_back(Ph); |
| if (Ph->status() == til::Phi::PH_Incomplete) |
| IncompleteArgs.push_back(Ph); |
| |
| CurrentLVarMap.makeWritable(); |
| CurrentLVarMap.elem(i).second = Ph; |
| } |
| |
| // Merge values from Map into the current variable map. |
| // This will construct Phi nodes in the current basic block as necessary. |
| void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { |
| assert(CurrentBlockInfo && "Not processing a block!"); |
| |
| if (!CurrentLVarMap.valid()) { |
| // Steal Map, using copy-on-write. |
| CurrentLVarMap = std::move(Map); |
| return; |
| } |
| if (CurrentLVarMap.sameAs(Map)) |
| return; // Easy merge: maps from different predecessors are unchanged. |
| |
| unsigned NPreds = CurrentBB->numPredecessors(); |
| unsigned ESz = CurrentLVarMap.size(); |
| unsigned MSz = Map.size(); |
| unsigned Sz = std::min(ESz, MSz); |
| |
| for (unsigned i = 0; i < Sz; ++i) { |
| if (CurrentLVarMap[i].first != Map[i].first) { |
| // We've reached the end of variables in common. |
| CurrentLVarMap.makeWritable(); |
| CurrentLVarMap.downsize(i); |
| break; |
| } |
| if (CurrentLVarMap[i].second != Map[i].second) |
| makePhiNodeVar(i, NPreds, Map[i].second); |
| } |
| if (ESz > MSz) { |
| CurrentLVarMap.makeWritable(); |
| CurrentLVarMap.downsize(Map.size()); |
| } |
| } |
| |
| // Merge a back edge into the current variable map. |
| // This will create phi nodes for all variables in the variable map. |
| void SExprBuilder::mergeEntryMapBackEdge() { |
| // We don't have definitions for variables on the backedge, because we |
| // haven't gotten that far in the CFG. Thus, when encountering a back edge, |
| // we conservatively create Phi nodes for all variables. Unnecessary Phi |
| // nodes will be marked as incomplete, and stripped out at the end. |
| // |
| // An Phi node is unnecessary if it only refers to itself and one other |
| // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. |
| |
| assert(CurrentBlockInfo && "Not processing a block!"); |
| |
| if (CurrentBlockInfo->HasBackEdges) |
| return; |
| CurrentBlockInfo->HasBackEdges = true; |
| |
| CurrentLVarMap.makeWritable(); |
| unsigned Sz = CurrentLVarMap.size(); |
| unsigned NPreds = CurrentBB->numPredecessors(); |
| |
| for (unsigned i = 0; i < Sz; ++i) |
| makePhiNodeVar(i, NPreds, nullptr); |
| } |
| |
| // Update the phi nodes that were initially created for a back edge |
| // once the variable definitions have been computed. |
| // I.e., merge the current variable map into the phi nodes for Blk. |
| void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { |
| til::BasicBlock *BB = lookupBlock(Blk); |
| unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; |
| assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); |
| |
| for (til::SExpr *PE : BB->arguments()) { |
| auto *Ph = dyn_cast_or_null<til::Phi>(PE); |
| assert(Ph && "Expecting Phi Node."); |
| assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); |
| |
| til::SExpr *E = lookupVarDecl(Ph->clangDecl()); |
| assert(E && "Couldn't find local variable for Phi node."); |
| Ph->values()[ArgIndex] = E; |
| } |
| } |
| |
| void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, |
| const CFGBlock *First) { |
| // Perform initial setup operations. |
| unsigned NBlocks = Cfg->getNumBlockIDs(); |
| Scfg = new (Arena) til::SCFG(Arena, NBlocks); |
| |
| // allocate all basic blocks immediately, to handle forward references. |
| BBInfo.resize(NBlocks); |
| BlockMap.resize(NBlocks, nullptr); |
| // create map from clang blockID to til::BasicBlocks |
| for (auto *B : *Cfg) { |
| auto *BB = new (Arena) til::BasicBlock(Arena); |
| BB->reserveInstructions(B->size()); |
| BlockMap[B->getBlockID()] = BB; |
| } |
| |
| CurrentBB = lookupBlock(&Cfg->getEntry()); |
| auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() |
| : cast<FunctionDecl>(D)->parameters(); |
| for (auto *Pm : Parms) { |
| QualType T = Pm->getType(); |
| if (!T.isTrivialType(Pm->getASTContext())) |
| continue; |
| |
| // Add parameters to local variable map. |
| // FIXME: right now we emulate params with loads; that should be fixed. |
| til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); |
| til::SExpr *Ld = new (Arena) til::Load(Lp); |
| til::SExpr *V = addStatement(Ld, nullptr, Pm); |
| addVarDecl(Pm, V); |
| } |
| } |
| |
| void SExprBuilder::enterCFGBlock(const CFGBlock *B) { |
| // Initialize TIL basic block and add it to the CFG. |
| CurrentBB = lookupBlock(B); |
| CurrentBB->reservePredecessors(B->pred_size()); |
| Scfg->add(CurrentBB); |
| |
| CurrentBlockInfo = &BBInfo[B->getBlockID()]; |
| |
| // CurrentLVarMap is moved to ExitMap on block exit. |
| // FIXME: the entry block will hold function parameters. |
| // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); |
| } |
| |
| void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { |
| // Compute CurrentLVarMap on entry from ExitMaps of predecessors |
| |
| CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); |
| BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; |
| assert(PredInfo->UnprocessedSuccessors > 0); |
| |
| if (--PredInfo->UnprocessedSuccessors == 0) |
| mergeEntryMap(std::move(PredInfo->ExitMap)); |
| else |
| mergeEntryMap(PredInfo->ExitMap.clone()); |
| |
| ++CurrentBlockInfo->ProcessedPredecessors; |
| } |
| |
| void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { |
| mergeEntryMapBackEdge(); |
| } |
| |
| void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { |
| // The merge*() methods have created arguments. |
| // Push those arguments onto the basic block. |
| CurrentBB->arguments().reserve( |
| static_cast<unsigned>(CurrentArguments.size()), Arena); |
| for (auto *A : CurrentArguments) |
| CurrentBB->addArgument(A); |
| } |
| |
| void SExprBuilder::handleStatement(const Stmt *S) { |
| til::SExpr *E = translate(S, nullptr); |
| addStatement(E, S); |
| } |
| |
| void SExprBuilder::handleDestructorCall(const VarDecl *VD, |
| const CXXDestructorDecl *DD) { |
| til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); |
| til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); |
| til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); |
| til::SExpr *E = new (Arena) til::Call(Ap); |
| addStatement(E, nullptr); |
| } |
| |
| void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { |
| CurrentBB->instructions().reserve( |
| static_cast<unsigned>(CurrentInstructions.size()), Arena); |
| for (auto *V : CurrentInstructions) |
| CurrentBB->addInstruction(V); |
| |
| // Create an appropriate terminator |
| unsigned N = B->succ_size(); |
| auto It = B->succ_begin(); |
| if (N == 1) { |
| til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; |
| // TODO: set index |
| unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; |
| auto *Tm = new (Arena) til::Goto(BB, Idx); |
| CurrentBB->setTerminator(Tm); |
| } |
| else if (N == 2) { |
| til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); |
| til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; |
| ++It; |
| til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; |
| // FIXME: make sure these aren't critical edges. |
| auto *Tm = new (Arena) til::Branch(C, BB1, BB2); |
| CurrentBB->setTerminator(Tm); |
| } |
| } |
| |
| void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { |
| ++CurrentBlockInfo->UnprocessedSuccessors; |
| } |
| |
| void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { |
| mergePhiNodesBackEdge(Succ); |
| ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; |
| } |
| |
| void SExprBuilder::exitCFGBlock(const CFGBlock *B) { |
| CurrentArguments.clear(); |
| CurrentInstructions.clear(); |
| CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); |
| CurrentBB = nullptr; |
| CurrentBlockInfo = nullptr; |
| } |
| |
| void SExprBuilder::exitCFG(const CFGBlock *Last) { |
| for (auto *Ph : IncompleteArgs) { |
| if (Ph->status() == til::Phi::PH_Incomplete) |
| simplifyIncompleteArg(Ph); |
| } |
| |
| CurrentArguments.clear(); |
| CurrentInstructions.clear(); |
| IncompleteArgs.clear(); |
| } |
| |
| /* |
| namespace { |
| |
| class TILPrinter : |
| public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; |
| |
| } // namespace |
| |
| namespace clang { |
| namespace threadSafety { |
| |
| void printSCFG(CFGWalker &Walker) { |
| llvm::BumpPtrAllocator Bpa; |
| til::MemRegionRef Arena(&Bpa); |
| SExprBuilder SxBuilder(Arena); |
| til::SCFG *Scfg = SxBuilder.buildCFG(Walker); |
| TILPrinter::print(Scfg, llvm::errs()); |
| } |
| |
| } // namespace threadSafety |
| } // namespace clang |
| */ |