blob: edc86c41c3b99ba4daf00561c9a46b7122abcd9b [file] [log] [blame]
//===- CFG.cpp - Classes for representing and building CFGs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the CFG and CFGBuilder classes for representing and
// building Control-Flow Graphs (CFGs) from ASTs.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/CFG.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/ConstructionContext.h"
#include "clang/Analysis/Support/BumpVector.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/JsonSupport.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace clang;
static SourceLocation GetEndLoc(Decl *D) {
if (VarDecl *VD = dyn_cast<VarDecl>(D))
if (Expr *Ex = VD->getInit())
return Ex->getSourceRange().getEnd();
return D->getLocation();
}
/// Returns true on constant values based around a single IntegerLiteral.
/// Allow for use of parentheses, integer casts, and negative signs.
static bool IsIntegerLiteralConstantExpr(const Expr *E) {
// Allow parentheses
E = E->IgnoreParens();
// Allow conversions to different integer kind.
if (const auto *CE = dyn_cast<CastExpr>(E)) {
if (CE->getCastKind() != CK_IntegralCast)
return false;
E = CE->getSubExpr();
}
// Allow negative numbers.
if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
if (UO->getOpcode() != UO_Minus)
return false;
E = UO->getSubExpr();
}
return isa<IntegerLiteral>(E);
}
/// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
/// constant expression or EnumConstantDecl from the given Expr. If it fails,
/// returns nullptr.
static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
E = E->IgnoreParens();
if (IsIntegerLiteralConstantExpr(E))
return E;
if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
return nullptr;
}
/// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
/// NumExpr is an integer literal or an enum constant.
///
/// If this fails, at least one of the returned DeclRefExpr or Expr will be
/// null.
static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
tryNormalizeBinaryOperator(const BinaryOperator *B) {
BinaryOperatorKind Op = B->getOpcode();
const Expr *MaybeDecl = B->getLHS();
const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
// Expr looked like `0 == Foo` instead of `Foo == 0`
if (Constant == nullptr) {
// Flip the operator
if (Op == BO_GT)
Op = BO_LT;
else if (Op == BO_GE)
Op = BO_LE;
else if (Op == BO_LT)
Op = BO_GT;
else if (Op == BO_LE)
Op = BO_GE;
MaybeDecl = B->getRHS();
Constant = tryTransformToIntOrEnumConstant(B->getLHS());
}
return std::make_tuple(MaybeDecl, Op, Constant);
}
/// For an expression `x == Foo && x == Bar`, this determines whether the
/// `Foo` and `Bar` are either of the same enumeration type, or both integer
/// literals.
///
/// It's an error to pass this arguments that are not either IntegerLiterals
/// or DeclRefExprs (that have decls of type EnumConstantDecl)
static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
// User intent isn't clear if they're mixing int literals with enum
// constants.
if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
return false;
// Integer literal comparisons, regardless of literal type, are acceptable.
if (!isa<DeclRefExpr>(E1))
return true;
// IntegerLiterals are handled above and only EnumConstantDecls are expected
// beyond this point
assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
const DeclContext *DC1 = Decl1->getDeclContext();
const DeclContext *DC2 = Decl2->getDeclContext();
assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
return DC1 == DC2;
}
namespace {
class CFGBuilder;
/// The CFG builder uses a recursive algorithm to build the CFG. When
/// we process an expression, sometimes we know that we must add the
/// subexpressions as block-level expressions. For example:
///
/// exp1 || exp2
///
/// When processing the '||' expression, we know that exp1 and exp2
/// need to be added as block-level expressions, even though they
/// might not normally need to be. AddStmtChoice records this
/// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
/// the builder has an option not to add a subexpression as a
/// block-level expression.
class AddStmtChoice {
public:
enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
bool alwaysAdd(CFGBuilder &builder,
const Stmt *stmt) const;
/// Return a copy of this object, except with the 'always-add' bit
/// set as specified.
AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
}
private:
Kind kind;
};
/// LocalScope - Node in tree of local scopes created for C++ implicit
/// destructor calls generation. It contains list of automatic variables
/// declared in the scope and link to position in previous scope this scope
/// began in.
///
/// The process of creating local scopes is as follows:
/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
/// - Before processing statements in scope (e.g. CompoundStmt) create
/// LocalScope object using CFGBuilder::ScopePos as link to previous scope
/// and set CFGBuilder::ScopePos to the end of new scope,
/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
/// at this VarDecl,
/// - For every normal (without jump) end of scope add to CFGBlock destructors
/// for objects in the current scope,
/// - For every jump add to CFGBlock destructors for objects
/// between CFGBuilder::ScopePos and local scope position saved for jump
/// target. Thanks to C++ restrictions on goto jumps we can be sure that
/// jump target position will be on the path to root from CFGBuilder::ScopePos
/// (adding any variable that doesn't need constructor to be called to
/// LocalScope can break this assumption),
///
class LocalScope {
public:
using AutomaticVarsTy = BumpVector<VarDecl *>;
/// const_iterator - Iterates local scope backwards and jumps to previous
/// scope on reaching the beginning of currently iterated scope.
class const_iterator {
const LocalScope* Scope = nullptr;
/// VarIter is guaranteed to be greater then 0 for every valid iterator.
/// Invalid iterator (with null Scope) has VarIter equal to 0.
unsigned VarIter = 0;
public:
/// Create invalid iterator. Dereferencing invalid iterator is not allowed.
/// Incrementing invalid iterator is allowed and will result in invalid
/// iterator.
const_iterator() = default;
/// Create valid iterator. In case when S.Prev is an invalid iterator and
/// I is equal to 0, this will create invalid iterator.
const_iterator(const LocalScope& S, unsigned I)
: Scope(&S), VarIter(I) {
// Iterator to "end" of scope is not allowed. Handle it by going up
// in scopes tree possibly up to invalid iterator in the root.
if (VarIter == 0 && Scope)
*this = Scope->Prev;
}
VarDecl *const* operator->() const {
assert(Scope && "Dereferencing invalid iterator is not allowed");
assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
return &Scope->Vars[VarIter - 1];
}
const VarDecl *getFirstVarInScope() const {
assert(Scope && "Dereferencing invalid iterator is not allowed");
assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
return Scope->Vars[0];
}
VarDecl *operator*() const {
return *this->operator->();
}
const_iterator &operator++() {
if (!Scope)
return *this;
assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
--VarIter;
if (VarIter == 0)
*this = Scope->Prev;
return *this;
}
const_iterator operator++(int) {
const_iterator P = *this;
++*this;
return P;
}
bool operator==(const const_iterator &rhs) const {
return Scope == rhs.Scope && VarIter == rhs.VarIter;
}
bool operator!=(const const_iterator &rhs) const {
return !(*this == rhs);
}
explicit operator bool() const {
return *this != const_iterator();
}
int distance(const_iterator L);
const_iterator shared_parent(const_iterator L);
bool pointsToFirstDeclaredVar() { return VarIter == 1; }
};
private:
BumpVectorContext ctx;
/// Automatic variables in order of declaration.
AutomaticVarsTy Vars;
/// Iterator to variable in previous scope that was declared just before
/// begin of this scope.
const_iterator Prev;
public:
/// Constructs empty scope linked to previous scope in specified place.
LocalScope(BumpVectorContext ctx, const_iterator P)
: ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
/// Begin of scope in direction of CFG building (backwards).
const_iterator begin() const { return const_iterator(*this, Vars.size()); }
void addVar(VarDecl *VD) {
Vars.push_back(VD, ctx);
}
};
} // namespace
/// distance - Calculates distance from this to L. L must be reachable from this
/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
/// number of scopes between this and L.
int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
int D = 0;
const_iterator F = *this;
while (F.Scope != L.Scope) {
assert(F != const_iterator() &&
"L iterator is not reachable from F iterator.");
D += F.VarIter;
F = F.Scope->Prev;
}
D += F.VarIter - L.VarIter;
return D;
}
/// Calculates the closest parent of this iterator
/// that is in a scope reachable through the parents of L.
/// I.e. when using 'goto' from this to L, the lifetime of all variables
/// between this and shared_parent(L) end.
LocalScope::const_iterator
LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL;
while (true) {
ScopesOfL.insert(L.Scope);
if (L == const_iterator())
break;
L = L.Scope->Prev;
}
const_iterator F = *this;
while (true) {
if (ScopesOfL.count(F.Scope))
return F;
assert(F != const_iterator() &&
"L iterator is not reachable from F iterator.");
F = F.Scope->Prev;
}
}
namespace {
/// Structure for specifying position in CFG during its build process. It
/// consists of CFGBlock that specifies position in CFG and
/// LocalScope::const_iterator that specifies position in LocalScope graph.
struct BlockScopePosPair {
CFGBlock *block = nullptr;
LocalScope::const_iterator scopePosition;
BlockScopePosPair() = default;
BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
: block(b), scopePosition(scopePos) {}
};
/// TryResult - a class representing a variant over the values
/// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
/// and is used by the CFGBuilder to decide if a branch condition
/// can be decided up front during CFG construction.
class TryResult {
int X = -1;
public:
TryResult() = default;
TryResult(bool b) : X(b ? 1 : 0) {}
bool isTrue() const { return X == 1; }
bool isFalse() const { return X == 0; }
bool isKnown() const { return X >= 0; }
void negate() {
assert(isKnown());
X ^= 0x1;
}
};
} // namespace
static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
if (!R1.isKnown() || !R2.isKnown())
return TryResult();
return TryResult(R1.isTrue() && R2.isTrue());
}
namespace {
class reverse_children {
llvm::SmallVector<Stmt *, 12> childrenBuf;
ArrayRef<Stmt *> children;
public:
reverse_children(Stmt *S);
using iterator = ArrayRef<Stmt *>::reverse_iterator;
iterator begin() const { return children.rbegin(); }
iterator end() const { return children.rend(); }
};
} // namespace
reverse_children::reverse_children(Stmt *S) {
if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
children = CE->getRawSubExprs();
return;
}
switch (S->getStmtClass()) {
// Note: Fill in this switch with more cases we want to optimize.
case Stmt::InitListExprClass: {
InitListExpr *IE = cast<InitListExpr>(S);
children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
IE->getNumInits());
return;
}
default:
break;
}
// Default case for all other statements.
for (Stmt *SubStmt : S->children())
childrenBuf.push_back(SubStmt);
// This needs to be done *after* childrenBuf has been populated.
children = childrenBuf;
}
namespace {
/// CFGBuilder - This class implements CFG construction from an AST.
/// The builder is stateful: an instance of the builder should be used to only
/// construct a single CFG.
///
/// Example usage:
///
/// CFGBuilder builder;
/// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
///
/// CFG construction is done via a recursive walk of an AST. We actually parse
/// the AST in reverse order so that the successor of a basic block is
/// constructed prior to its predecessor. This allows us to nicely capture
/// implicit fall-throughs without extra basic blocks.
class CFGBuilder {
using JumpTarget = BlockScopePosPair;
using JumpSource = BlockScopePosPair;
ASTContext *Context;
std::unique_ptr<CFG> cfg;
// Current block.
CFGBlock *Block = nullptr;
// Block after the current block.
CFGBlock *Succ = nullptr;
JumpTarget ContinueJumpTarget;
JumpTarget BreakJumpTarget;
JumpTarget SEHLeaveJumpTarget;
CFGBlock *SwitchTerminatedBlock = nullptr;
CFGBlock *DefaultCaseBlock = nullptr;
// This can point either to a try or a __try block. The frontend forbids
// mixing both kinds in one function, so having one for both is enough.
CFGBlock *TryTerminatedBlock = nullptr;
// Current position in local scope.
LocalScope::const_iterator ScopePos;
// LabelMap records the mapping from Label expressions to their jump targets.
using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
LabelMapTy LabelMap;
// A list of blocks that end with a "goto" that must be backpatched to their
// resolved targets upon completion of CFG construction.
using BackpatchBlocksTy = std::vector<JumpSource>;
BackpatchBlocksTy BackpatchBlocks;
// A list of labels whose address has been taken (for indirect gotos).
using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
LabelSetTy AddressTakenLabels;
// Information about the currently visited C++ object construction site.
// This is set in the construction trigger and read when the constructor
// or a function that returns an object by value is being visited.
llvm::DenseMap<Expr *, const ConstructionContextLayer *>
ConstructionContextMap;
using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>;
DeclsWithEndedScopeSetTy DeclsWithEndedScope;
bool badCFG = false;
const CFG::BuildOptions &BuildOpts;
// State to track for building switch statements.
bool switchExclusivelyCovered = false;
Expr::EvalResult *switchCond = nullptr;
CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
const Stmt *lastLookup = nullptr;
// Caches boolean evaluations of expressions to avoid multiple re-evaluations
// during construction of branches for chained logical operators.
using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
CachedBoolEvalsTy CachedBoolEvals;
public:
explicit CFGBuilder(ASTContext *astContext,
const CFG::BuildOptions &buildOpts)
: Context(astContext), cfg(new CFG()), // crew a new CFG
ConstructionContextMap(), BuildOpts(buildOpts) {}
// buildCFG - Used by external clients to construct the CFG.
std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
bool alwaysAdd(const Stmt *stmt);
private:
// Visitors to walk an AST and construct the CFG.
CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
CFGBlock *VisitBreakStmt(BreakStmt *B);
CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
CFGBlock *VisitCaseStmt(CaseStmt *C);
CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
AddStmtChoice asc);
CFGBlock *VisitContinueStmt(ContinueStmt *C);
CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
AddStmtChoice asc);
CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
AddStmtChoice asc);
CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
AddStmtChoice asc);
CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
CFGBlock *VisitDeclStmt(DeclStmt *DS);
CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
CFGBlock *VisitDefaultStmt(DefaultStmt *D);
CFGBlock *VisitDoStmt(DoStmt *D);
CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
AddStmtChoice asc, bool ExternallyDestructed);
CFGBlock *VisitForStmt(ForStmt *F);
CFGBlock *VisitGotoStmt(GotoStmt *G);
CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
CFGBlock *VisitIfStmt(IfStmt *I);
CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
CFGBlock *VisitLabelStmt(LabelStmt *L);
CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
CFGBlock *VisitLogicalOperator(BinaryOperator *B);
std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
Stmt *Term,
CFGBlock *TrueBlock,
CFGBlock *FalseBlock);
CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
AddStmtChoice asc);
CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
CFGBlock *VisitReturnStmt(Stmt *S);
CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
CFGBlock *VisitSwitchStmt(SwitchStmt *S);
CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
AddStmtChoice asc);
CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
CFGBlock *VisitWhileStmt(WhileStmt *W);
CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
bool ExternallyDestructed = false);
CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
CFGBlock *VisitChildren(Stmt *S);
CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
AddStmtChoice asc);
void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
const Stmt *S) {
if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
appendScopeBegin(B, VD, S);
}
/// When creating the CFG for temporary destructors, we want to mirror the
/// branch structure of the corresponding constructor calls.
/// Thus, while visiting a statement for temporary destructors, we keep a
/// context to keep track of the following information:
/// - whether a subexpression is executed unconditionally
/// - if a subexpression is executed conditionally, the first
/// CXXBindTemporaryExpr we encounter in that subexpression (which
/// corresponds to the last temporary destructor we have to call for this
/// subexpression) and the CFG block at that point (which will become the
/// successor block when inserting the decision point).
///
/// That way, we can build the branch structure for temporary destructors as
/// follows:
/// 1. If a subexpression is executed unconditionally, we add the temporary
/// destructor calls to the current block.
/// 2. If a subexpression is executed conditionally, when we encounter a
/// CXXBindTemporaryExpr:
/// a) If it is the first temporary destructor call in the subexpression,
/// we remember the CXXBindTemporaryExpr and the current block in the
/// TempDtorContext; we start a new block, and insert the temporary
/// destructor call.
/// b) Otherwise, add the temporary destructor call to the current block.
/// 3. When we finished visiting a conditionally executed subexpression,
/// and we found at least one temporary constructor during the visitation
/// (2.a has executed), we insert a decision block that uses the
/// CXXBindTemporaryExpr as terminator, and branches to the current block
/// if the CXXBindTemporaryExpr was marked executed, and otherwise
/// branches to the stored successor.
struct TempDtorContext {
TempDtorContext() = default;
TempDtorContext(TryResult KnownExecuted)
: IsConditional(true), KnownExecuted(KnownExecuted) {}
/// Returns whether we need to start a new branch for a temporary destructor
/// call. This is the case when the temporary destructor is
/// conditionally executed, and it is the first one we encounter while
/// visiting a subexpression - other temporary destructors at the same level
/// will be added to the same block and are executed under the same
/// condition.
bool needsTempDtorBranch() const {
return IsConditional && !TerminatorExpr;
}
/// Remember the successor S of a temporary destructor decision branch for
/// the corresponding CXXBindTemporaryExpr E.
void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
Succ = S;
TerminatorExpr = E;
}
const bool IsConditional = false;
const TryResult KnownExecuted = true;
CFGBlock *Succ = nullptr;
CXXBindTemporaryExpr *TerminatorExpr = nullptr;
};
// Visitors to walk an AST and generate destructors of temporaries in
// full expression.
CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
TempDtorContext &Context);
CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
TempDtorContext &Context);
CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
bool ExternallyDestructed,
TempDtorContext &Context);
CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
CFGBlock *VisitConditionalOperatorForTemporaryDtors(
AbstractConditionalOperator *E, bool ExternallyDestructed,
TempDtorContext &Context);
void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
CFGBlock *FalseSucc = nullptr);
// NYS == Not Yet Supported
CFGBlock *NYS() {
badCFG = true;
return Block;
}
// Remember to apply the construction context based on the current \p Layer
// when constructing the CFG element for \p CE.
void consumeConstructionContext(const ConstructionContextLayer *Layer,
Expr *E);
// Scan \p Child statement to find constructors in it, while keeping in mind
// that its parent statement is providing a partial construction context
// described by \p Layer. If a constructor is found, it would be assigned
// the context based on the layer. If an additional construction context layer
// is found, the function recurses into that.
void findConstructionContexts(const ConstructionContextLayer *Layer,
Stmt *Child);
// Scan all arguments of a call expression for a construction context.
// These sorts of call expressions don't have a common superclass,
// hence strict duck-typing.
template <typename CallLikeExpr,
typename = std::enable_if_t<
std::is_base_of<CallExpr, CallLikeExpr>::value ||
std::is_base_of<CXXConstructExpr, CallLikeExpr>::value ||
std::is_base_of<ObjCMessageExpr, CallLikeExpr>::value>>
void findConstructionContextsForArguments(CallLikeExpr *E) {
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Expr *Arg = E->getArg(i);
if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
findConstructionContexts(
ConstructionContextLayer::create(cfg->getBumpVectorContext(),
ConstructionContextItem(E, i)),
Arg);
}
}
// Unset the construction context after consuming it. This is done immediately
// after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
// there's no need to do this manually in every Visit... function.
void cleanupConstructionContext(Expr *E);
void autoCreateBlock() { if (!Block) Block = createBlock(); }
CFGBlock *createBlock(bool add_successor = true);
CFGBlock *createNoReturnBlock();
CFGBlock *addStmt(Stmt *S) {
return Visit(S, AddStmtChoice::AlwaysAdd);
}
CFGBlock *addInitializer(CXXCtorInitializer *I);
void addLoopExit(const Stmt *LoopStmt);
void addAutomaticObjDtors(LocalScope::const_iterator B,
LocalScope::const_iterator E, Stmt *S);
void addLifetimeEnds(LocalScope::const_iterator B,
LocalScope::const_iterator E, Stmt *S);
void addAutomaticObjHandling(LocalScope::const_iterator B,
LocalScope::const_iterator E, Stmt *S);
void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E,
Stmt *S);
void getDeclsWithEndedScope(LocalScope::const_iterator B,
LocalScope::const_iterator E, Stmt *S);
// Local scopes creation.
LocalScope* createOrReuseLocalScope(LocalScope* Scope);
void addLocalScopeForStmt(Stmt *S);
LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
LocalScope* Scope = nullptr);
LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
void addLocalScopeAndDtors(Stmt *S);
const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
if (!BuildOpts.AddRichCXXConstructors)
return nullptr;
const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
if (!Layer)
return nullptr;
cleanupConstructionContext(E);
return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
Layer);
}
// Interface to CFGBlock - adding CFGElements.
void appendStmt(CFGBlock *B, const Stmt *S) {
if (alwaysAdd(S) && cachedEntry)
cachedEntry->second = B;
// All block-level expressions should have already been IgnoreParens()ed.
assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
}
void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
if (const ConstructionContext *CC =
retrieveAndCleanupConstructionContext(CE)) {
B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
return;
}
// No valid construction context found. Fall back to statement.
B->appendStmt(CE, cfg->getBumpVectorContext());
}
void appendCall(CFGBlock *B, CallExpr *CE) {
if (alwaysAdd(CE) && cachedEntry)
cachedEntry->second = B;
if (const ConstructionContext *CC =
retrieveAndCleanupConstructionContext(CE)) {
B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
return;
}
// No valid construction context found. Fall back to statement.
B->appendStmt(CE, cfg->getBumpVectorContext());
}
void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
B->appendInitializer(I, cfg->getBumpVectorContext());
}
void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
B->appendNewAllocator(NE, cfg->getBumpVectorContext());
}
void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
B->appendBaseDtor(BS, cfg->getBumpVectorContext());
}
void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
B->appendMemberDtor(FD, cfg->getBumpVectorContext());
}
void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
if (alwaysAdd(ME) && cachedEntry)
cachedEntry->second = B;
if (const ConstructionContext *CC =
retrieveAndCleanupConstructionContext(ME)) {
B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
return;
}
B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
cfg->getBumpVectorContext());
}
void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
}
void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
}
void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
}
void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
}
void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
}
void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
LocalScope::const_iterator B, LocalScope::const_iterator E);
void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk,
LocalScope::const_iterator B,
LocalScope::const_iterator E);
const VarDecl *
prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk,
LocalScope::const_iterator B,
LocalScope::const_iterator E);
void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
cfg->getBumpVectorContext());
}
/// Add a reachable successor to a block, with the alternate variant that is
/// unreachable.
void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
cfg->getBumpVectorContext());
}
void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
if (BuildOpts.AddScopes)
B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
}
void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
if (BuildOpts.AddScopes)
B->prependScopeBegin(VD, S, cfg->getBumpVectorContext());
}
void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
if (BuildOpts.AddScopes)
B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
}
void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
if (BuildOpts.AddScopes)
B->prependScopeEnd(VD, S, cfg->getBumpVectorContext());
}
/// Find a relational comparison with an expression evaluating to a
/// boolean and a constant other than 0 and 1.
/// e.g. if ((x < y) == 10)
TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
const Expr *LHSExpr = B->getLHS()->IgnoreParens();
const Expr *RHSExpr = B->getRHS()->IgnoreParens();
const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
const Expr *BoolExpr = RHSExpr;
bool IntFirst = true;
if (!IntLiteral) {
IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
BoolExpr = LHSExpr;
IntFirst = false;
}
if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
return TryResult();
llvm::APInt IntValue = IntLiteral->getValue();
if ((IntValue == 1) || (IntValue == 0))
return TryResult();
bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
!IntValue.isNegative();
BinaryOperatorKind Bok = B->getOpcode();
if (Bok == BO_GT || Bok == BO_GE) {
// Always true for 10 > bool and bool > -1
// Always false for -1 > bool and bool > 10
return TryResult(IntFirst == IntLarger);
} else {
// Always true for -1 < bool and bool < 10
// Always false for 10 < bool and bool < -1
return TryResult(IntFirst != IntLarger);
}
}
/// Find an incorrect equality comparison. Either with an expression
/// evaluating to a boolean and a constant other than 0 and 1.
/// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
/// true/false e.q. (x & 8) == 4.
TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
const Expr *LHSExpr = B->getLHS()->IgnoreParens();
const Expr *RHSExpr = B->getRHS()->IgnoreParens();
const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
const Expr *BoolExpr = RHSExpr;
if (!IntLiteral) {
IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
BoolExpr = LHSExpr;
}
if (!IntLiteral)
return TryResult();
const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
if (BitOp && (BitOp->getOpcode() == BO_And ||
BitOp->getOpcode() == BO_Or)) {
const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
if (!IntLiteral2)
IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
if (!IntLiteral2)
return TryResult();
llvm::APInt L1 = IntLiteral->getValue();
llvm::APInt L2 = IntLiteral2->getValue();
if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
(BitOp->getOpcode() == BO_Or && (L2 | L1) != L1)) {
if (BuildOpts.Observer)
BuildOpts.Observer->compareBitwiseEquality(B,
B->getOpcode() != BO_EQ);
TryResult(B->getOpcode() != BO_EQ);
}
} else if (BoolExpr->isKnownToHaveBooleanValue()) {
llvm::APInt IntValue = IntLiteral->getValue();
if ((IntValue == 1) || (IntValue == 0)) {
return TryResult();
}
return TryResult(B->getOpcode() != BO_EQ);
}
return TryResult();
}
TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
const llvm::APSInt &Value1,
const llvm::APSInt &Value2) {
assert(Value1.isSigned() == Value2.isSigned());
switch (Relation) {
default:
return TryResult();
case BO_EQ:
return TryResult(Value1 == Value2);
case BO_NE:
return TryResult(Value1 != Value2);
case BO_LT:
return TryResult(Value1 < Value2);
case BO_LE:
return TryResult(Value1 <= Value2);
case BO_GT:
return TryResult(Value1 > Value2);
case BO_GE:
return TryResult(Value1 >= Value2);
}
}
/// Find a pair of comparison expressions with or without parentheses
/// with a shared variable and constants and a logical operator between them
/// that always evaluates to either true or false.
/// e.g. if (x != 3 || x != 4)
TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
assert(B->isLogicalOp());
const BinaryOperator *LHS =
dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
const BinaryOperator *RHS =
dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
if (!LHS || !RHS)
return {};
if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
return {};
const Expr *DeclExpr1;
const Expr *NumExpr1;
BinaryOperatorKind BO1;
std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);
if (!DeclExpr1 || !NumExpr1)
return {};
const Expr *DeclExpr2;
const Expr *NumExpr2;
BinaryOperatorKind BO2;
std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);
if (!DeclExpr2 || !NumExpr2)
return {};
// Check that it is the same variable on both sides.
if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
return {};
// Make sure the user's intent is clear (e.g. they're comparing against two
// int literals, or two things from the same enum)
if (!areExprTypesCompatible(NumExpr1, NumExpr2))
return {};
Expr::EvalResult L1Result, L2Result;
if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
!NumExpr2->EvaluateAsInt(L2Result, *Context))
return {};
llvm::APSInt L1 = L1Result.Val.getInt();
llvm::APSInt L2 = L2Result.Val.getInt();
// Can't compare signed with unsigned or with different bit width.
if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
return {};
// Values that will be used to determine if result of logical
// operator is always true/false
const llvm::APSInt Values[] = {
// Value less than both Value1 and Value2
llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
// L1
L1,
// Value between Value1 and Value2
((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
L1.isUnsigned()),
// L2
L2,
// Value greater than both Value1 and Value2
llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
};
// Check whether expression is always true/false by evaluating the following
// * variable x is less than the smallest literal.
// * variable x is equal to the smallest literal.
// * Variable x is between smallest and largest literal.
// * Variable x is equal to the largest literal.
// * Variable x is greater than largest literal.
bool AlwaysTrue = true, AlwaysFalse = true;
// Track value of both subexpressions. If either side is always
// true/false, another warning should have already been emitted.
bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
for (const llvm::APSInt &Value : Values) {
TryResult Res1, Res2;
Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
if (!Res1.isKnown() || !Res2.isKnown())
return {};
if (B->getOpcode() == BO_LAnd) {
AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
} else {
AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
}
LHSAlwaysTrue &= Res1.isTrue();
LHSAlwaysFalse &= Res1.isFalse();
RHSAlwaysTrue &= Res2.isTrue();
RHSAlwaysFalse &= Res2.isFalse();
}
if (AlwaysTrue || AlwaysFalse) {
if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
!RHSAlwaysFalse && BuildOpts.Observer)
BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
return TryResult(AlwaysTrue);
}
return {};
}
/// A bitwise-or with a non-zero constant always evaluates to true.
TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
const Expr *LHSConstant =
tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
const Expr *RHSConstant =
tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());
if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
return {};
const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;
Expr::EvalResult Result;
if (!Constant->EvaluateAsInt(Result, *Context))
return {};
if (Result.Val.getInt() == 0)
return {};
if (BuildOpts.Observer)
BuildOpts.Observer->compareBitwiseOr(B);
return TryResult(true);
}
/// Try and evaluate an expression to an integer constant.
bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
if (!BuildOpts.PruneTriviallyFalseEdges)
return false;
return !S->isTypeDependent() &&
!S->isValueDependent() &&
S->EvaluateAsRValue(outResult, *Context);
}
/// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
/// if we can evaluate to a known value, otherwise return -1.
TryResult tryEvaluateBool(Expr *S) {
if (!BuildOpts.PruneTriviallyFalseEdges ||
S->isTypeDependent() || S->isValueDependent())
return {};
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
// Check the cache first.
CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
if (I != CachedBoolEvals.end())
return I->second; // already in map;
// Retrieve result at first, or the map might be updated.
TryResult Result = evaluateAsBooleanConditionNoCache(S);
CachedBoolEvals[S] = Result; // update or insert
return Result;
}
else {
switch (Bop->getOpcode()) {
default: break;
// For 'x & 0' and 'x * 0', we can determine that
// the value is always false.
case BO_Mul:
case BO_And: {
// If either operand is zero, we know the value
// must be false.
Expr::EvalResult LHSResult;
if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
llvm::APSInt IntVal = LHSResult.Val.getInt();
if (!IntVal.getBoolValue()) {
return TryResult(false);
}
}
Expr::EvalResult RHSResult;
if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
llvm::APSInt IntVal = RHSResult.Val.getInt();
if (!IntVal.getBoolValue()) {
return TryResult(false);
}
}
}
break;
}
}
}
return evaluateAsBooleanConditionNoCache(S);
}
/// Evaluate as boolean \param E without using the cache.
TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
if (Bop->isLogicalOp()) {
TryResult LHS = tryEvaluateBool(Bop->getLHS());
if (LHS.isKnown()) {
// We were able to evaluate the LHS, see if we can get away with not
// evaluating the RHS: 0 && X -> 0, 1 || X -> 1
if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
return LHS.isTrue();
TryResult RHS = tryEvaluateBool(Bop->getRHS());
if (RHS.isKnown()) {
if (Bop->getOpcode() == BO_LOr)
return LHS.isTrue() || RHS.isTrue();
else
return LHS.isTrue() && RHS.isTrue();
}
} else {
TryResult RHS = tryEvaluateBool(Bop->getRHS());
if (RHS.isKnown()) {
// We can't evaluate the LHS; however, sometimes the result
// is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
return RHS.isTrue();
} else {
TryResult BopRes = checkIncorrectLogicOperator(Bop);
if (BopRes.isKnown())
return BopRes.isTrue();
}
}
return {};
} else if (Bop->isEqualityOp()) {
TryResult BopRes = checkIncorrectEqualityOperator(Bop);
if (BopRes.isKnown())
return BopRes.isTrue();
} else if (Bop->isRelationalOp()) {
TryResult BopRes = checkIncorrectRelationalOperator(Bop);
if (BopRes.isKnown())
return BopRes.isTrue();
} else if (Bop->getOpcode() == BO_Or) {
TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
if (BopRes.isKnown())
return BopRes.isTrue();
}
}
bool Result;
if (E->EvaluateAsBooleanCondition(Result, *Context))
return Result;
return {};
}
bool hasTrivialDestructor(VarDecl *VD);
};
} // namespace
inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
const Stmt *stmt) const {
return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
}
bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
bool shouldAdd = BuildOpts.alwaysAdd(stmt);
if (!BuildOpts.forcedBlkExprs)
return shouldAdd;
if (lastLookup == stmt) {
if (cachedEntry) {
assert(cachedEntry->first == stmt);
return true;
}
return shouldAdd;
}
lastLookup = stmt;
// Perform the lookup!
CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
if (!fb) {
// No need to update 'cachedEntry', since it will always be null.
assert(!cachedEntry);
return shouldAdd;
}
CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
if (itr == fb->end()) {
cachedEntry = nullptr;
return shouldAdd;
}
cachedEntry = &*itr;
return true;
}
// FIXME: Add support for dependent-sized array types in C++?
// Does it even make sense to build a CFG for an uninstantiated template?
static const VariableArrayType *FindVA(const Type *t) {
while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
if (vat->getSizeExpr())
return vat;
t = vt->getElementType().getTypePtr();
}
return nullptr;
}
void CFGBuilder::consumeConstructionContext(
const ConstructionContextLayer *Layer, Expr *E) {
assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
if (const ConstructionContextLayer *PreviouslyStoredLayer =
ConstructionContextMap.lookup(E)) {
(void)PreviouslyStoredLayer;
// We might have visited this child when we were finding construction
// contexts within its parents.
assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
"Already within a different construction context!");
} else {
ConstructionContextMap[E] = Layer;
}
}
void CFGBuilder::findConstructionContexts(
const ConstructionContextLayer *Layer, Stmt *Child) {
if (!BuildOpts.AddRichCXXConstructors)
return;
if (!Child)
return;
auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
Layer);
};
switch(Child->getStmtClass()) {
case Stmt::CXXConstructExprClass:
case Stmt::CXXTemporaryObjectExprClass: {
// Support pre-C++17 copy elision AST.
auto *CE = cast<CXXConstructExpr>(Child);
if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
}
consumeConstructionContext(Layer, CE);
break;
}
// FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
// FIXME: An isa<> would look much better but this whole switch is a
// workaround for an internal compiler error in MSVC 2015 (see r326021).
case Stmt::CallExprClass:
case Stmt::CXXMemberCallExprClass:
case Stmt::CXXOperatorCallExprClass:
case Stmt::UserDefinedLiteralClass:
case Stmt::ObjCMessageExprClass: {
auto *E = cast<Expr>(Child);
if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
consumeConstructionContext(Layer, E);
break;
}
case Stmt::ExprWithCleanupsClass: {
auto *Cleanups = cast<ExprWithCleanups>(Child);
findConstructionContexts(Layer, Cleanups->getSubExpr());
break;
}
case Stmt::CXXFunctionalCastExprClass: {
auto *Cast = cast<CXXFunctionalCastExpr>(Child);
findConstructionContexts(Layer, Cast->getSubExpr());
break;
}
case Stmt::ImplicitCastExprClass: {
auto *Cast = cast<ImplicitCastExpr>(Child);
// Should we support other implicit cast kinds?
switch (Cast->getCastKind()) {
case CK_NoOp:
case CK_ConstructorConversion:
findConstructionContexts(Layer, Cast->getSubExpr());
break;
default:
break;
}
break;
}
case Stmt::CXXBindTemporaryExprClass: {
auto *BTE = cast<CXXBindTemporaryExpr>(Child);
findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
break;
}
case Stmt::MaterializeTemporaryExprClass: {
// Normally we don't want to search in MaterializeTemporaryExpr because
// it indicates the beginning of a temporary object construction context,
// so it shouldn't be found in the middle. However, if it is the beginning
// of an elidable copy or move construction context, we need to include it.
if (Layer->getItem().getKind() ==
ConstructionContextItem::ElidableConstructorKind) {
auto *MTE = cast<MaterializeTemporaryExpr>(Child);
findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
}
break;
}
case Stmt::ConditionalOperatorClass: {
auto *CO = cast<ConditionalOperator>(Child);
if (Layer->getItem().getKind() !=
ConstructionContextItem::MaterializationKind) {
// If the object returned by the conditional operator is not going to be a
// temporary object that needs to be immediately materialized, then
// it must be C++17 with its mandatory copy elision. Do not yet promise
// to support this case.
assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
Context->getLangOpts().CPlusPlus17);
break;
}
findConstructionContexts(Layer, CO->getLHS());
findConstructionContexts(Layer, CO->getRHS());
break;
}
case Stmt::InitListExprClass: {
auto *ILE = cast<InitListExpr>(Child);
if (ILE->isTransparent()) {
findConstructionContexts(Layer, ILE->getInit(0));
break;
}
// TODO: Handle other cases. For now, fail to find construction contexts.
break;
}
default:
break;
}
}
void CFGBuilder::cleanupConstructionContext(Expr *E) {
assert(BuildOpts.AddRichCXXConstructors &&
"We should not be managing construction contexts!");
assert(ConstructionContextMap.count(E) &&
"Cannot exit construction context without the context!");
ConstructionContextMap.erase(E);
}
/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
/// arbitrary statement. Examples include a single expression or a function
/// body (compound statement). The ownership of the returned CFG is
/// transferred to the caller. If CFG construction fails, this method returns
/// NULL.
std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
assert(cfg.get());
if (!Statement)
return nullptr;
// Create an empty block that will serve as the exit block for the CFG. Since
// this is the first block added to the CFG, it will be implicitly registered
// as the exit block.
Succ = createBlock();
assert(Succ == &cfg->getExit());
Block = nullptr; // the EXIT block is empty. Create all other blocks lazily.
assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
"AddImplicitDtors and AddLifetime cannot be used at the same time");
if (BuildOpts.AddImplicitDtors)
if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
addImplicitDtorsForDestructor(DD);
// Visit the statements and create the CFG.
CFGBlock *B = addStmt(Statement);
if (badCFG)
return nullptr;
// For C++ constructor add initializers to CFG. Constructors of virtual bases
// are ignored unless the object is of the most derived class.
// class VBase { VBase() = default; VBase(int) {} };
// class A : virtual public VBase { A() : VBase(0) {} };
// class B : public A {};
// B b; // Constructor calls in order: VBase(), A(), B().
// // VBase(0) is ignored because A isn't the most derived class.
// This may result in the virtual base(s) being already initialized at this
// point, in which case we should jump right onto non-virtual bases and
// fields. To handle this, make a CFG branch. We only need to add one such
// branch per constructor, since the Standard states that all virtual bases
// shall be initialized before non-virtual bases and direct data members.
if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
CFGBlock *VBaseSucc = nullptr;
for (auto *I : llvm::reverse(CD->inits())) {
if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
I->isBaseInitializer() && I->isBaseVirtual()) {
// We've reached the first virtual base init while iterating in reverse
// order. Make a new block for virtual base initializers so that we
// could skip them.
VBaseSucc = Succ = B ? B : &cfg->getExit();
Block = createBlock();
}
B = addInitializer(I);
if (badCFG)
return nullptr;
}
if (VBaseSucc) {
// Make a branch block for potentially skipping virtual base initializers.
Succ = VBaseSucc;
B = createBlock();
B->setTerminator(
CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
addSuccessor(B, Block, true);
}
}
if (B)
Succ = B;
// Backpatch the gotos whose label -> block mappings we didn't know when we
// encountered them.
for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
E = BackpatchBlocks.end(); I != E; ++I ) {
CFGBlock *B = I->block;
if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
// If there is no target for the goto, then we are looking at an
// incomplete AST. Handle this by not registering a successor.
if (LI == LabelMap.end())
continue;
JumpTarget JT = LI->second;
prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition,
JT.scopePosition);
prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
JT.scopePosition);
const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator(
B, I->scopePosition, JT.scopePosition);
appendScopeBegin(JT.block, VD, G);
addSuccessor(B, JT.block);
};
if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
CFGBlock *Successor = (I+1)->block;
for (auto *L : G->labels()) {
LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
// If there is no target for the goto, then we are looking at an
// incomplete AST. Handle this by not registering a successor.
if (LI == LabelMap.end())
continue;
JumpTarget JT = LI->second;
// Successor has been added, so skip it.
if (JT.block == Successor)
continue;
addSuccessor(B, JT.block);
}
I++;
}
}
// Add successors to the Indirect Goto Dispatch block (if we have one).
if (CFGBlock *B = cfg->getIndirectGotoBlock())
for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
E = AddressTakenLabels.end(); I != E; ++I ) {
// Lookup the target block.
LabelMapTy::iterator LI = LabelMap.find(*I);
// If there is no target block that contains label, then we are looking
// at an incomplete AST. Handle this by not registering a successor.
if (LI == LabelMap.end()) continue;
addSuccessor(B, LI->second.block);
}
// Create an empty entry block that has no predecessors.
cfg->setEntry(createBlock());
if (BuildOpts.AddRichCXXConstructors)
assert(ConstructionContextMap.empty() &&
"Not all construction contexts were cleaned up!");
return std::move(cfg);
}
/// createBlock - Used to lazily create blocks that are connected
/// to the current (global) succcessor.
CFGBlock *CFGBuilder::createBlock(bool add_successor) {
CFGBlock *B = cfg->createBlock();
if (add_successor && Succ)
addSuccessor(B, Succ);
return B;
}
/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
/// CFG. It is *not* connected to the current (global) successor, and instead
/// directly tied to the exit block in order to be reachable.
CFGBlock *CFGBuilder::createNoReturnBlock() {
CFGBlock *B = createBlock(false);
B->setHasNoReturnElement();
addSuccessor(B, &cfg->getExit(), Succ);
return B;
}
/// addInitializer - Add C++ base or member initializer element to CFG.
CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
if (!BuildOpts.AddInitializers)
return Block;
bool HasTemporaries = false;
// Destructors of temporaries in initialization expression should be called
// after initialization finishes.
Expr *Init = I->getInit();
if (Init) {
HasTemporaries = isa<ExprWithCleanups>(Init);
if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
// Generate destructors for temporaries in initialization expression.
TempDtorContext Context;
VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
/*ExternallyDestructed=*/false, Context);
}
}
autoCreateBlock();
appendInitializer(Block, I);
if (Init) {
findConstructionContexts(
ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
Init);
if (HasTemporaries) {
// For expression with temporaries go directly to subexpression to omit
// generating destructors for the second time.
return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
}
if (BuildOpts.AddCXXDefaultInitExprInCtors) {
if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
// In general, appending the expression wrapped by a CXXDefaultInitExpr
// may cause the same Expr to appear more than once in the CFG. Doing it
// here is safe because there's only one initializer per field.
autoCreateBlock();
appendStmt(Block, Default);
if (Stmt *Child = Default->getExpr())
if (CFGBlock *R = Visit(Child))
Block = R;
return Block;
}
}
return Visit(Init);
}
return Block;
}
/// Retrieve the type of the temporary object whose lifetime was
/// extended by a local reference with the given initializer.
static QualType getReferenceInitTemporaryType(const Expr *Init,
bool *FoundMTE = nullptr) {
while (true) {
// Skip parentheses.
Init = Init->IgnoreParens();
// Skip through cleanups.
if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
Init = EWC->getSubExpr();
continue;
}
// Skip through the temporary-materialization expression.
if (const MaterializeTemporaryExpr *MTE
= dyn_cast<MaterializeTemporaryExpr>(Init)) {
Init = MTE->getSubExpr();
if (FoundMTE)
*FoundMTE = true;
continue;
}
// Skip sub-object accesses into rvalues.
SmallVector<const Expr *, 2> CommaLHSs;
SmallVector<SubobjectAdjustment, 2> Adjustments;
const Expr *SkippedInit =
Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
if (SkippedInit != Init) {
Init = SkippedInit;
continue;
}
break;
}
return Init->getType();
}
// TODO: Support adding LoopExit element to the CFG in case where the loop is
// ended by ReturnStmt, GotoStmt or ThrowExpr.
void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
if(!BuildOpts.AddLoopExit)
return;
autoCreateBlock();
appendLoopExit(Block, LoopStmt);
}
void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B,
LocalScope::const_iterator E, Stmt *S) {
if (!BuildOpts.AddScopes)
return;
if (B == E)
return;
// To go from B to E, one first goes up the scopes from B to P
// then sideways in one scope from P to P' and then down
// the scopes from P' to E.
// The lifetime of all objects between B and P end.
LocalScope::const_iterator P = B.shared_parent(E);
int Dist = B.distance(P);
if (Dist <= 0)
return;
for (LocalScope::const_iterator I = B; I != P; ++I)
if (I.pointsToFirstDeclaredVar())
DeclsWithEndedScope.insert(*I);
}
void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
LocalScope::const_iterator E,
Stmt *S) {
getDeclsWithEndedScope(B, E, S);
if (BuildOpts.AddScopes)
addScopesEnd(B, E, S);
if (BuildOpts.AddImplicitDtors)
addAutomaticObjDtors(B, E, S);
if (BuildOpts.AddLifetime)
addLifetimeEnds(B, E, S);
}
/// Add to current block automatic objects that leave the scope.
void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B,
LocalScope::const_iterator E, Stmt *S) {
if (!BuildOpts.AddLifetime)
return;
if (B == E)
return;
// To go from B to E, one first goes up the scopes from B to P
// then sideways in one scope from P to P' and then down
// the scopes from P' to E.
// The lifetime of all objects between B and P end.
LocalScope::const_iterator P = B.shared_parent(E);
int dist = B.distance(P);
if (dist <= 0)
return;
// We need to perform the scope leaving in reverse order
SmallVector<VarDecl *, 10> DeclsTrivial;
SmallVector<VarDecl *, 10> DeclsNonTrivial;
DeclsTrivial.reserve(dist);
DeclsNonTrivial.reserve(dist);
for (LocalScope::const_iterator I = B; I != P; ++I)
if (hasTrivialDestructor(*I))
DeclsTrivial.push_back(*I);
else
DeclsNonTrivial.push_back(*I);
autoCreateBlock();
// object with trivial destructor end their lifetime last (when storage
// duration ends)
for (SmallVectorImpl<VarDecl *>::reverse_iterator I = DeclsTrivial.rbegin(),
E = DeclsTrivial.rend();
I != E; ++I)
appendLifetimeEnds(Block, *I, S);
for (SmallVectorImpl<VarDecl *>::reverse_iterator
I = DeclsNonTrivial.rbegin(),
E = DeclsNonTrivial.rend();
I != E; ++I)
appendLifetimeEnds(Block, *I, S);
}
/// Add to current block markers for ending scopes.
void CFGBuilder::addScopesEnd(LocalScope::const_iterator B,
LocalScope::const_iterator E, Stmt *S) {
// If implicit destructors are enabled, we'll add scope ends in
// addAutomaticObjDtors.
if (BuildOpts.AddImplicitDtors)
return;
autoCreateBlock();
for (auto I = DeclsWithEndedScope.rbegin(), E = DeclsWithEndedScope.rend();
I != E; ++I)
appendScopeEnd(Block, *I, S);
return;
}
/// addAutomaticObjDtors - Add to current block automatic objects destructors
/// for objects in range of local scope positions. Use S as trigger statement
/// for destructors.
void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
LocalScope::const_iterator E, Stmt *S) {
if (!BuildOpts.AddImplicitDtors)
return;
if (B == E)
return;
// We need to append the destructors in reverse order, but any one of them
// may be a no-return destructor which changes the CFG. As a result, buffer
// this sequence up and replay them in reverse order when appending onto the
// CFGBlock(s).
SmallVector<VarDecl*, 10> Decls;
Decls.reserve(B.distance(E));
for (LocalScope::const_iterator I = B; I != E; ++I)
Decls.push_back(*I);
for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
E = Decls.rend();
I != E; ++I) {
if (hasTrivialDestructor(*I)) {
// If AddScopes is enabled and *I is a first variable in a scope, add a
// ScopeEnd marker in a Block.
if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I)) {
autoCreateBlock();
appendScopeEnd(Block, *I, S);
}
continue;
}
// If this destructor is marked as a no-return destructor, we need to
// create a new block for the destructor which does not have as a successor
// anything built thus far: control won't flow out of this block.
QualType Ty = (*I)->getType();
if (Ty->isReferenceType()) {
Ty = getReferenceInitTemporaryType((*I)->getInit());
}
Ty = Context->getBaseElementType(Ty);
if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
Block = createNoReturnBlock();
else
autoCreateBlock();
// Add ScopeEnd just after automatic obj destructor.
if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I))
appendScopeEnd(Block, *I, S);
appendAutomaticObjDtor(Block, *I, S);
}
}
/// addImplicitDtorsForDestructor - Add implicit destructors generated for
/// base and member objects in destructor.
void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
assert(BuildOpts.AddImplicitDtors &&
"Can be called only when dtors should be added");
const CXXRecordDecl *RD = DD->getParent();
// At the end destroy virtual base objects.
for (const auto &VI : RD->vbases()) {
// TODO: Add a VirtualBaseBranch to see if the most derived class
// (which is different from the current class) is responsible for
// destroying them.
const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
if (!CD->hasTrivialDestructor()) {
autoCreateBlock();
appendBaseDtor(Block, &VI);
}
}
// Before virtual bases destroy direct base objects.
for (const auto &BI : RD->bases()) {
if (!BI.isVirtual()) {
const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
if (!CD->hasTrivialDestructor()) {
autoCreateBlock();
appendBaseDtor(Block, &BI);
}
}
}
// First destroy member objects.
for (auto *FI : RD->fields()) {
// Check for constant size array. Set type to array element type.
QualType QT = FI->getType();
if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
if (AT->getSize() == 0)
continue;
QT = AT->getElementType();
}
if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
if (!CD->hasTrivialDestructor()) {
autoCreateBlock();
appendMemberDtor(Block, FI);
}
}
}
/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
/// way return valid LocalScope object.
LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
if (Scope)
return Scope;
llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
return new (alloc.Allocate<LocalScope>())
LocalScope(BumpVectorContext(alloc), ScopePos);
}
/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
/// that should create implicit scope (e.g. if/else substatements).
void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
!BuildOpts.AddScopes)
return;
LocalScope *Scope = nullptr;
// For compound statement we will be creating explicit scope.
if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
for (auto *BI : CS->body()) {
Stmt *SI = BI->stripLabelLikeStatements();
if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
Scope = addLocalScopeForDeclStmt(DS, Scope);
}
return;
}
// For any other statement scope will be implicit and as such will be
// interesting only for DeclStmt.
if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
addLocalScopeForDeclStmt(DS);
}
/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
/// reuse Scope if not NULL.
LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
LocalScope* Scope) {
if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
!BuildOpts.AddScopes)
return Scope;
for (auto *DI : DS->decls())
if (VarDecl *VD = dyn_cast<VarDecl>(DI))
Scope = addLocalScopeForVarDecl(VD, Scope);
return Scope;
}
bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) {
// Check for const references bound to temporary. Set type to pointee.
QualType QT = VD->getType();
if (QT->isReferenceType()) {
// Attempt to determine whether this declaration lifetime-extends a
// temporary.
//
// FIXME: This is incorrect. Non-reference declarations can lifetime-extend
// temporaries, and a single declaration can extend multiple temporaries.
// We should look at the storage duration on each nested
// MaterializeTemporaryExpr instead.
const Expr *Init = VD->getInit();
if (!Init) {
// Probably an exception catch-by-reference variable.
// FIXME: It doesn't really mean that the object has a trivial destructor.
// Also are there other cases?
return true;
}
// Lifetime-extending a temporary?
bool FoundMTE = false;
QT = getReferenceInitTemporaryType(Init, &FoundMTE);
if (!FoundMTE)
return true;
}
// Check for constant size array. Set type to array element type.
while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
if (AT->getSize() == 0)
return true;
QT = AT->getElementType();
}
// Check if type is a C++ class with non-trivial destructor.
if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
return !CD->hasDefinition() || CD->hasTrivialDestructor();
return true;
}
/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
/// create add scope for automatic objects and temporary objects bound to
/// const reference. Will reuse Scope if not NULL.
LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
LocalScope* Scope) {
assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
"AddImplicitDtors and AddLifetime cannot be used at the same time");
if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
!BuildOpts.AddScopes)
return Scope;
// Check if variable is local.
switch (VD->getStorageClass()) {
case SC_None:
case SC_Auto:
case SC_Register:
break;
default: return Scope;
}
if (BuildOpts.AddImplicitDtors) {
if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) {
// Add the variable to scope
Scope = createOrReuseLocalScope(Scope);
Scope->addVar(VD);
ScopePos = Scope->begin();
}
return Scope;
}
assert(BuildOpts.AddLifetime);
// Add the variable to scope
Scope = createOrReuseLocalScope(Scope);
Scope->addVar(VD);
ScopePos = Scope->begin();
return Scope;
}
/// addLocalScopeAndDtors - For given statement add local scope for it and
/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
LocalScope::const_iterator scopeBeginPos = ScopePos;
addLocalScopeForStmt(S);
addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
}
/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
/// variables with automatic storage duration to CFGBlock's elements vector.
/// Elements will be prepended to physical beginning of the vector which
/// happens to be logical end. Use blocks terminator as statement that specifies
/// destructors call site.
/// FIXME: This mechanism for adding automatic destructors doesn't handle
/// no-return destructors properly.
void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
LocalScope::const_iterator B, LocalScope::const_iterator E) {
if (!BuildOpts.AddImplicitDtors)
return;
BumpVectorContext &C = cfg->getBumpVectorContext();
CFGBlock::iterator InsertPos
= Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
for (LocalScope::const_iterator I = B; I != E; ++I)
InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
Blk->getTerminatorStmt());
}
/// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
/// variables with automatic storage duration to CFGBlock's elements vector.
/// Elements will be prepended to physical beginning of the vector which
/// happens to be logical end. Use blocks terminator as statement that specifies
/// where lifetime ends.
void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
if (!BuildOpts.AddLifetime)
return;
BumpVectorContext &C = cfg->getBumpVectorContext();
CFGBlock::iterator InsertPos =
Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C);
for (LocalScope::const_iterator I = B; I != E; ++I) {
InsertPos =
Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminatorStmt());
}
}
/// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
/// variables with automatic storage duration to CFGBlock's elements vector.
/// Elements will be prepended to physical beginning of the vector which
/// happens to be logical end. Use blocks terminator as statement that specifies
/// where scope ends.
const VarDecl *
CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
if (!BuildOpts.AddScopes)
return nullptr;
BumpVectorContext &C = cfg->getBumpVectorContext();
CFGBlock::iterator InsertPos =
Blk->beginScopeEndInsert(Blk->end(), 1, C);
LocalScope::const_iterator PlaceToInsert = B;
for (LocalScope::const_iterator I = B; I != E; ++I)
PlaceToInsert = I;
Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminatorStmt());
return *PlaceToInsert;
}
/// Visit - Walk the subtree of a statement and add extra
/// blocks for ternary operators, &&, and ||. We also process "," and
/// DeclStmts (which may contain nested control-flow).
CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
bool ExternallyDestructed) {
if (!S) {
badCFG = true;
return nullptr;
}
if (Expr *E = dyn_cast<Expr>(S))
S = E->IgnoreParens();
if (Context->getLangOpts().OpenMP)
if (auto *D = dyn_cast<OMPExecutableDirective>(S))
return VisitOMPExecutableDirective(D, asc);
switch (S->getStmtClass()) {
default:
return VisitStmt(S, asc);
case Stmt::ImplicitValueInitExprClass:
if (BuildOpts.OmitImplicitValueInitializers)
return Block;
return VisitStmt(S, asc);
case Stmt::InitListExprClass:
return VisitInitListExpr(cast<InitListExpr>(S), asc);
case Stmt::AddrLabelExprClass:
return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
case Stmt::BinaryConditionalOperatorClass:
return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
case Stmt::BinaryOperatorClass:
return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
case Stmt::BlockExprClass:
return VisitBlockExpr(cast<BlockExpr>(S), asc);
case Stmt::BreakStmtClass:
return VisitBreakStmt(cast<BreakStmt>(S));
case Stmt::CallExprClass:
case Stmt::CXXOperatorCallExprClass:
case Stmt::CXXMemberCallExprClass:
case Stmt::UserDefinedLiteralClass:
return VisitCallExpr(cast<CallExpr>(S), asc);
case Stmt::CaseStmtClass:
return VisitCaseStmt(cast<CaseStmt>(S));
case Stmt::ChooseExprClass:
return VisitChooseExpr(cast<ChooseExpr>(S), asc);
case Stmt::CompoundStmtClass:
return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);
case Stmt::ConditionalOperatorClass:
return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
case Stmt::ContinueStmtClass:
return VisitContinueStmt(cast<ContinueStmt>(S));
case Stmt::CXXCatchStmtClass:
return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
case Stmt::ExprWithCleanupsClass:
return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
asc, ExternallyDestructed);
case Stmt::CXXDefaultArgExprClass:
case Stmt::CXXDefaultInitExprClass:
// FIXME: The expression inside a CXXDefaultArgExpr is owned by the
// called function's declaration, not by the caller. If we simply add
// this expression to the CFG, we could end up with the same Expr
// appearing multiple times.
// PR13385 / <rdar://problem/12156507>
//
// It's likewise possible for multiple CXXDefaultInitExprs for the same
// expression to be used in the same function (through aggregate
// initialization).
return VisitStmt(S, asc);
case Stmt::CXXBindTemporaryExprClass:
return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
case Stmt::CXXConstructExprClass:
return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
case Stmt::CXXNewExprClass:
return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
case Stmt::CXXDeleteExprClass:
return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
case Stmt::CXXFunctionalCastExprClass:
return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
case Stmt::CXXTemporaryObjectExprClass:
return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
case Stmt::CXXThrowExprClass:
return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
case Stmt::CXXTryStmtClass:
return VisitCXXTryStmt(cast<CXXTryStmt>(S));
case Stmt::CXXForRangeStmtClass:
return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
case Stmt::DeclStmtClass:
return VisitDeclStmt(cast<DeclStmt>(S));
case Stmt::DefaultStmtClass:
return VisitDefaultStmt(cast<DefaultStmt>(S));
case Stmt::DoStmtClass:
return VisitDoStmt(cast<DoStmt>(S));
case Stmt::ForStmtClass:
return VisitForStmt(cast<ForStmt>(S));
case Stmt::GotoStmtClass:
return VisitGotoStmt(cast<GotoStmt>(S));
case Stmt::GCCAsmStmtClass:
return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);
case Stmt::IfStmtClass:
return VisitIfStmt(cast<IfStmt>(S));
case Stmt::ImplicitCastExprClass:
return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
case Stmt::ConstantExprClass:
return VisitConstantExpr(cast<ConstantExpr>(S), asc);
case Stmt::IndirectGotoStmtClass:
return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
case Stmt::LabelStmtClass:
return VisitLabelStmt(cast<LabelStmt>(S));
case Stmt::LambdaExprClass:
return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
case Stmt::MaterializeTemporaryExprClass:
return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
asc);
case Stmt::MemberExprClass:
return VisitMemberExpr(cast<MemberExpr>(S), asc);
case Stmt::NullStmtClass:
return Block;
case Stmt::ObjCAtCatchStmtClass:
return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
case Stmt::ObjCAutoreleasePoolStmtClass:
return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
case Stmt::ObjCAtSynchronizedStmtClass:
return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
case Stmt::ObjCAtThrowStmtClass:
return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
case Stmt::ObjCAtTryStmtClass:
return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
case Stmt::ObjCForCollectionStmtClass:
return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
case Stmt::ObjCMessageExprClass:
return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
case Stmt::OpaqueValueExprClass:
return Block;
case Stmt::PseudoObjectExprClass:
return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
case Stmt::ReturnStmtClass:
case Stmt::CoreturnStmtClass:
return VisitReturnStmt(S);
case Stmt::SEHExceptStmtClass:
return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
case Stmt::SEHFinallyStmtClass:
return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
case Stmt::SEHLeaveStmtClass:
return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
case Stmt::SEHTryStmtClass:
return VisitSEHTryStmt(cast<SEHTryStmt>(S));
case Stmt::UnaryExprOrTypeTraitExprClass:
return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
asc);
case Stmt::StmtExprClass:
return VisitStmtExpr(cast<StmtExpr>(S), asc);
case Stmt::SwitchStmtClass:
return VisitSwitchStmt(cast<SwitchStmt>(S));
case Stmt::UnaryOperatorClass:
return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
case Stmt::WhileStmtClass:
return VisitWhileStmt(cast<WhileStmt>(S));
}
}
CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
if (asc.alwaysAdd(*this, S)) {
autoCreateBlock();
appendStmt(Block, S);
}
return VisitChildren(S);
}
/// VisitChildren - Visit the children of a Stmt.
CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
CFGBlock *B = Block;
// Visit the children in their reverse order so that they appear in
// left-to-right (natural) order in the CFG.
reverse_children RChildren(S);
for (Stmt *Child : RChildren) {
if (Child)
if (CFGBlock *R = Visit(Child))
B = R;
}
return B;
}
CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
if (asc.alwaysAdd(*this, ILE)) {
autoCreateBlock();
appendStmt(Block, ILE);
}
CFGBlock *B = Block;
reverse_children RChildren(ILE);
for (Stmt *Child : RChildren) {
if (!Child)
continue;
if (CFGBlock *R = Visit(Child))
B = R;
if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
if (Stmt *Child = DIE->getExpr())
if (CFGBlock *R = Visit(Child))
B = R;
}
}
return B;
}
CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
AddStmtChoice asc) {
AddressTakenLabels.insert(A->getLabel());
if (asc.alwaysAdd(*this, A)) {
autoCreateBlock();
appendStmt(Block, A);
}
return Block;
}
CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
AddStmtChoice asc) {
if (asc.alwaysAdd(*this, U)) {
autoCreateBlock();
appendStmt(Block, U);
}
if (U->getOpcode() == UO_LNot)
tryEvaluateBool(U->getSubExpr()->IgnoreParens());
return Visit(U->getSubExpr(), AddStmtChoice());
}
CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
appendStmt(ConfluenceBlock, B);
if (badCFG)
return nullptr;
return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
ConfluenceBlock).first;
}
std::pair<CFGBlock*, CFGBlock*>
CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
Stmt *Term,
CFGBlock *TrueBlock,
CFGBlock *FalseBlock) {
// Introspect the RHS. If it is a nested logical operation, we recursively
// build the CFG using this function. Otherwise, resort to default
// CFG construction behavior.
Expr *RHS = B->getRHS()->IgnoreParens();
CFGBlock *RHSBlock, *ExitBlock;
do {
if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
if (B_RHS->isLogicalOp()) {
std::tie(RHSBlock, ExitBlock) =
VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
break;
}
// The RHS is not a nested logical operation. Don't push the terminator
// down further, but instead visit RHS and construct the respective
// pieces of the CFG, and link up the RHSBlock with the terminator
// we have been provided.
ExitBlock = RHSBlock = createBlock(false);
// Even though KnownVal is only used in the else branch of the next
// conditional, tryEvaluateBool performs additional checking on the
// Expr, so it should be called unconditionally.
TryResult KnownVal = tryEvaluateBool(RHS);
if (!KnownVal.isKnown())
KnownVal = tryEvaluateBool(B);
if (!Term) {
assert(TrueBlock == FalseBlock);
addSuccessor(RHSBlock, TrueBlock);
}
else {
RHSBlock->setTerminator(Term);
addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
}
Block = RHSBlock;
RHSBlock = addStmt(RHS);
}
while (false);
if (badCFG)
return std::make_pair(nullptr, nullptr);
// Generate the blocks for evaluating the LHS.
Expr *LHS = B->getLHS()->IgnoreParens();
if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
if (B_LHS->isLogicalOp()) {
if (B->getOpcode() == BO_LOr)
FalseBlock = RHSBlock;
else
TrueBlock = RHSBlock;
// For the LHS, treat 'B' as the terminator that we want to sink
// into the nested branch. The RHS always gets the top-most
// terminator.
return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
}
// Create the block evaluating the LHS.
// This contains the '&&' or '||' as the terminator.
CFGBlock *LHSBlock = createBlock(false);
LHSBlock->setTerminator(B);
Block = LHSBlock;
CFGBlock *EntryLHSBlock = addStmt(LHS);
if (badCFG)
return std::make_pair(nullptr, nullptr);
// See if this is a known constant.
TryResult KnownVal = tryEvaluateBool(LHS);
// Now link the LHSBlock with RHSBlock.
if (B->getOpcode() == BO_LOr) {
addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
} else {
assert(B->getOpcode() == BO_LAnd);
addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
}
return std::make_pair(EntryLHSBlock, ExitBlock);
}
CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
AddStmtChoice asc) {
// && or ||
if (B->isLogicalOp())
return VisitLogicalOperator(B);
if (B->getOpcode() == BO_Comma) { // ,
autoCreateBlock();
appendStmt(Block, B);
addStmt(B->getRHS());
return addStmt(B->getLHS());
}
if (B->isAssignmentOp()) {
if (asc.alwaysAdd(*this, B)) {
autoCreateBlock();
appendStmt(Block, B);
}
Visit(B->getLHS());
return Visit(B->getRHS());
}
if (asc.alwaysAdd(*this, B)) {
autoCreateBlock();
appendStmt(Block, B);
}
if (B->isEqualityOp() || B->isRelationalOp())
tryEvaluateBool(B);
CFGBlock *RBlock = Visit(B->getRHS());
CFGBlock *LBlock = Visit(B->getLHS());
// If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
// containing a DoStmt, and the LHS doesn't create a new block, then we should
// return RBlock. Otherwise we'll incorrectly return NULL.
return (LBlock ? LBlock : RBlock);
}
CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
if (asc.alwaysAdd(*this, E)) {
autoCreateBlock();
appendStmt(Block, E);
}
return Block;
}
CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
// "break" is a control-flow statement. Thus we stop processing the current
// block.
if (badCFG)
return nullptr;
// Now create a new block that ends with the break statement.
Block = createBlock(false);
Block->setTerminator(B);
// If there is no target for the break, then we are looking at an incomplete
// AST. This means that the CFG cannot be constructed.
if (BreakJumpTarget.block) {
addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
addSuccessor(Block, BreakJumpTarget.block);
} else
badCFG = true;
return Block;
}
static bool CanThrow(Expr *E, ASTContext &Ctx) {
QualType Ty = E->getType();
if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
Ty = Ty->getPointeeType();
const FunctionType *FT = Ty->getAs<FunctionType>();
if (FT) {
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
Proto->isNothrow())
return false;
}
return true;
}
CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
// Compute the callee type.
QualType calleeType = C->getCallee()->getType();
if (calleeType == Context->BoundMemberTy) {
QualType boundType = Expr::findBoundMemberType(C->getCallee());
// We should only get a null bound type if processing a dependent
// CFG. Recover by assuming nothing.
if (!boundType.isNull()) calleeType = boundType;
}
// If this is a call to a no-return function, this stops the block here.
bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
bool AddEHEdge = false;
// Languages without exceptions are assumed to not throw.
if (Context->getLangOpts().Exceptions) {
if (BuildOpts.AddEHEdges)
AddEHEdge = true;
}
// If this is a call to a builtin function, it might not actually evaluate
// its arguments. Don't add them to the CFG if this is the case.
bool OmitArguments = false;
if (FunctionDecl *FD = C->getDirectCallee()) {
// TODO: Support construction contexts for variadic function arguments.
// These are a bit problematic and not very useful because passing
// C++ objects as C-style variadic arguments doesn't work in general
// (see [expr.call]).
if (!FD->isVariadic())
findConstructionContextsForArguments(C);
if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
NoReturn = true;
if (FD->hasAttr<NoThrowAttr>())
AddEHEdge = false;
if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
OmitArguments = true;
}
if (!CanThrow(C->getCallee(), *Context))
AddEHEdge = false;
if (OmitArguments) {
assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
autoCreateBlock();
appendStmt(Block, C);
return Visit(C->getCallee());
}
if (!NoReturn && !AddEHEdge) {
autoCreateBlock();
appendCall(Block, C);
return VisitChildren(C);
}
if (Block) {
Succ = Block;
if (badCFG)
return nullptr;
}
if (NoReturn)
Block = createNoReturnBlock();
else
Block = createBlock();
appendCall(Block, C);
if (AddEHEdge) {
// Add exceptional edges.
if (TryTerminatedBlock)
addSuccessor(Block, TryTerminatedBlock);
else
addSuccessor(Block, &cfg->getExit());
}
return VisitChildren(C);
}
CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
AddStmtChoice asc) {
CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
appendStmt(ConfluenceBlock, C);
if (badCFG)
return nullptr;
AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
Succ = ConfluenceBlock;
Block = nullptr;
CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
if (badCFG)
return nullptr;
Succ = ConfluenceBlock;
Block = nullptr;
CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
if (badCFG)
return nullptr;
Block = createBlock(false);
// See if this is a known constant.
const TryResult& KnownVal = tryEvaluateBool(C->getCond());
addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
Block->setTerminator(C);
return addStmt(C->getCond());
}
CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed) {
LocalScope::const_iterator scopeBeginPos = ScopePos;
addLocalScopeForStmt(C);
if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
// If the body ends with a ReturnStmt, the dtors will be added in
// VisitReturnStmt.
addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
}
CFGBlock *LastBlock = Block;
for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
I != E; ++I ) {
// If we hit a segment of code just containing ';' (NullStmts), we can
// get a null block back. In such cases, just use the LastBlock
CFGBlock *newBlock = Visit(*I, AddStmtChoice::AlwaysAdd,
ExternallyDestructed);
if (newBlock)
LastBlock = newBlock;
if (badCFG)
return nullptr;
ExternallyDestructed = false;
}
return LastBlock;
}
CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
AddStmtChoice asc) {
const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
// Create the confluence block that will "merge" the results of the ternary
// expression.
CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
appendStmt(ConfluenceBlock, C);
if (badCFG)
return nullptr;
AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
// Create a block for the LHS expression if there is an LHS expression. A
// GCC extension allows LHS to be NULL, causing the condition to be the
// value that is returned instead.
// e.g: x ?: y is shorthand for: x ? x : y;
Succ = ConfluenceBlock;
Block = nullptr;
CFGBlock *LHSBlock = nullptr;
const Expr *trueExpr = C->getTrueExpr();
if (trueExpr != opaqueValue) {
LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
if (badCFG)
return nullptr;
Block = nullptr;
}
else
LHSBlock = ConfluenceBlock;
// Create the block for the RHS expression.
Succ = ConfluenceBlock;
CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
if (badCFG)
return nullptr;
// If the condition is a logical '&&' or '||', build a more accurate CFG.
if (BinaryOperator *Cond =
dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
if (Cond->isLogicalOp())
return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
// Create the block that will contain the condition.
Block = createBlock(false);
// See if this is a known constant.
const TryResult& KnownVal = tryEvaluateBool(C->getCond());
addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
Block->setTerminator(C);
Expr *condExpr = C->getCond();
if (opaqueValue) {
// Run the condition expression if it's not trivially expressed in
// terms of the opaque value (or if there is no opaque value).
if (condExpr != opaqueValue)
addStmt(condExpr);
// Before that, run the common subexpression if there was one.
// At least one of this or the above will be run.
return addStmt(BCO->getCommon());
}
return addStmt(condExpr);
}
CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
// Check if the Decl is for an __label__. If so, elide it from the
// CFG entirely.
if (isa<LabelDecl>(*DS->decl_begin()))
return