blob: 57de437e2311c0b97b010fb490b52ca42bde0bfc [file] [log] [blame]
//===- CodegenUtils.h - Utilities for generating MLIR -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This header file defines utilities for generating MLIR.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_
#define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/IR/Builders.h"
namespace mlir {
class Location;
class Type;
class Value;
namespace sparse_tensor {
/// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
/// `createFuncCall()`, and `replaceOpWithFuncCall()`.
enum class EmitCInterface : bool { Off = false, On = true };
//===----------------------------------------------------------------------===//
// ExecutionEngine/SparseTensorUtils helper functions.
//===----------------------------------------------------------------------===//
/// Converts an overhead storage bitwidth to its internal type-encoding.
OverheadType overheadTypeEncoding(unsigned width);
/// Converts an overhead storage type to its internal type-encoding.
OverheadType overheadTypeEncoding(Type tp);
/// Converts the internal type-encoding for overhead storage to an mlir::Type.
Type getOverheadType(Builder &builder, OverheadType ot);
/// Returns the OverheadType for position overhead storage.
OverheadType posTypeEncoding(SparseTensorEncodingAttr enc);
/// Returns the OverheadType for coordinate overhead storage.
OverheadType crdTypeEncoding(SparseTensorEncodingAttr enc);
/// Convert OverheadType to its function-name suffix.
StringRef overheadTypeFunctionSuffix(OverheadType ot);
/// Converts an overhead storage type to its function-name suffix.
StringRef overheadTypeFunctionSuffix(Type overheadTp);
/// Converts a primary storage type to its internal type-encoding.
PrimaryType primaryTypeEncoding(Type elemTp);
/// Convert PrimaryType to its function-name suffix.
StringRef primaryTypeFunctionSuffix(PrimaryType pt);
/// Converts a primary storage type to its function-name suffix.
StringRef primaryTypeFunctionSuffix(Type elemTp);
//===----------------------------------------------------------------------===//
// Misc code generators and utilities.
//===----------------------------------------------------------------------===//
/// A helper class to simplify lowering operations with/without function calls.
template <class SubClass>
class FuncCallOrInlineGenerator {
public:
FuncCallOrInlineGenerator(TypeRange retTypes, ValueRange params, bool genCall)
: retTypes(retTypes), params(params), genCall(genCall) {}
// The main API invoked by clients, which abstracts away the details of
// creating function calls from clients.
SmallVector<Value> genCallOrInline(OpBuilder &builder, Location loc) {
if (!genCall)
return genImplementation(retTypes, params, builder, loc);
// Looks up the function.
std::string funcName = getMangledFuncName();
ModuleOp module = getParentOpOf<ModuleOp>(builder);
MLIRContext *context = module.getContext();
auto result = SymbolRefAttr::get(context, funcName);
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
if (!func) {
// Create the function if not already exist.
OpBuilder::InsertionGuard insertionGuard(builder);
builder.setInsertionPoint(getParentOpOf<func::FuncOp>(builder));
func = builder.create<func::FuncOp>(
loc, funcName,
FunctionType::get(context, params.getTypes(), retTypes));
func.setPrivate();
// Set the insertion point to the body of the function.
Block *entryBB = func.addEntryBlock();
builder.setInsertionPointToStart(entryBB);
ValueRange args = entryBB->getArguments();
// Delegates to user to generate the actually implementation.
SmallVector<Value> result =
genImplementation(retTypes, args, builder, loc);
builder.create<func::ReturnOp>(loc, result);
}
// Returns the CallOp result.
func::CallOp call = builder.create<func::CallOp>(loc, func, params);
return call.getResults();
}
private:
template <class OpTp>
OpTp getParentOpOf(OpBuilder &builder) {
return builder.getInsertionBlock()->getParent()->getParentOfType<OpTp>();
}
// CRTP: get the mangled function name (only called when genCall=true).
std::string getMangledFuncName() {
return static_cast<SubClass *>(this)->getMangledFuncName();
}
// CRTP: Client implementation.
SmallVector<Value> genImplementation(TypeRange retTypes, ValueRange params,
OpBuilder &builder, Location loc) {
return static_cast<SubClass *>(this)->genImplementation(retTypes, params,
builder, loc);
}
private:
TypeRange retTypes; // The types of all returned results
ValueRange params; // The values of all input parameters
bool genCall; // Should the implemetantion be wrapped in a function
};
/// Add type casting between arith and index types when needed.
Value genCast(OpBuilder &builder, Location loc, Value value, Type dstTy);
/// Add conversion from scalar to given type (possibly a 0-rank tensor).
Value genScalarToTensor(OpBuilder &builder, Location loc, Value elem,
Type dstTp);
/// Generates a pointer/index load from the sparse storage scheme. Narrower
/// data types need to be zero extended before casting the value into the
/// index type used for looping and indexing.
Value genIndexLoad(OpBuilder &builder, Location loc, Value mem, Value s);
/// Generates a 1-valued attribute of the given type. This supports
/// all the same types as `getZeroAttr`; however, unlike `getZeroAttr`,
/// for unsupported types we raise `llvm_unreachable` rather than
/// returning a null attribute.
TypedAttr getOneAttr(Builder &builder, Type tp);
/// Generates the comparison `v != 0` where `v` is of numeric type.
/// For floating types, we use the "unordered" comparator (i.e., returns
/// true if `v` is NaN).
Value genIsNonzero(OpBuilder &builder, Location loc, Value v);
/// Computes the shape of destination tensor of a reshape operator. This is only
/// used when operands have dynamic shape. The shape of the destination is
/// stored into dstShape.
void genReshapeDstShape(OpBuilder &builder, Location loc,
SmallVectorImpl<Value> &dstShape,
ArrayRef<Value> srcShape, ArrayRef<Size> staticDstShape,
ArrayRef<ReassociationIndices> reassociation);
/// Reshape coordinates during a reshaping operation.
void reshapeCvs(OpBuilder &builder, Location loc,
ArrayRef<ReassociationIndices> reassociation,
ValueRange srcSizes, ValueRange srcCvs, // NOLINT
ValueRange dstSizes, SmallVectorImpl<Value> &dstCvs);
/// Returns a function reference (first hit also inserts into module). Sets
/// the "_emit_c_interface" on the function declaration when requested,
/// so that LLVM lowering generates a wrapper function that takes care
/// of ABI complications with passing in and returning MemRefs to C functions.
FlatSymbolRefAttr getFunc(ModuleOp module, StringRef name, TypeRange resultType,
ValueRange operands, EmitCInterface emitCInterface);
/// Creates a `CallOp` to the function reference returned by `getFunc()` in
/// the builder's module.
func::CallOp createFuncCall(OpBuilder &builder, Location loc, StringRef name,
TypeRange resultType, ValueRange operands,
EmitCInterface emitCInterface);
/// Returns the equivalent of `void*` for opaque arguments to the
/// execution engine.
Type getOpaquePointerType(MLIRContext *ctx);
Type getOpaquePointerType(Builder &builder);
/// Generates an uninitialized temporary buffer of the given size and
/// type, but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`).
Value genAlloca(OpBuilder &builder, Location loc, Value sz, Type tp);
/// Generates an uninitialized temporary buffer of the given size and
/// type, and returns it as type `memref<? x $tp>` (staticShape=false) or
/// `memref<$sz x $tp>` (staticShape=true).
Value genAlloca(OpBuilder &builder, Location loc, unsigned sz, Type tp,
bool staticShape = false);
/// Generates an uninitialized temporary buffer with room for one value
/// of the given type, and returns the `memref<$tp>`.
Value genAllocaScalar(OpBuilder &builder, Location loc, Type tp);
/// Generates a temporary buffer, initializes it with the given contents,
/// and returns it as type `memref<? x $tp>` (rather than specifying the
/// size of the buffer).
Value allocaBuffer(OpBuilder &builder, Location loc, ValueRange values);
/// Generates code to allocate a buffer of the given type, and zero
/// initialize it. If the buffer type has any dynamic sizes, then the
/// `sizes` parameter should be as filled by sizesFromPtr(); that way
/// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
Value allocDenseTensor(OpBuilder &builder, Location loc,
RankedTensorType tensorTp, ValueRange sizes);
/// Generates code to deallocate a dense buffer.
void deallocDenseTensor(OpBuilder &builder, Location loc, Value buffer);
/// Populates given sizes array from dense tensor or sparse tensor constant.
void sizesFromSrc(OpBuilder &builder, SmallVectorImpl<Value> &sizes,
Location loc, Value src);
/// Generates a 1D MemRefType with a dynamic size. When withLayout is set, the
/// returned memref has a layout has unknown strides and offsets. Otherwise,
/// a memref with a standard unit stride zero offset layout is returned.
inline MemRefType get1DMemRefType(Type etp, bool withLayout) {
auto layout = withLayout ? StridedLayoutAttr::StridedLayoutAttr::get(
etp.getContext(), ShapedType::kDynamic,
{ShapedType::kDynamic})
: StridedLayoutAttr();
return MemRefType::get(ShapedType::kDynamic, etp, layout);
}
/// Scans to top of generated loop.
Operation *getTop(Operation *op);
/// Iterate over a sparse constant, generates constantOp for value
/// and coordinates. E.g.,
/// sparse<[ [0], [28], [31] ],
/// [ (-5.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] >
/// =>
/// %c1 = arith.constant 0
/// %v1 = complex.constant (5.13, 2.0)
/// callback({%c1}, %v1)
///
/// %c2 = arith.constant 28
/// %v2 = complex.constant (3.0, 4.0)
/// callback({%c2}, %v2)
///
/// %c3 = arith.constant 31
/// %v3 = complex.constant (5.0, 6.0)
/// callback({%c3}, %v3)
void foreachInSparseConstant(
OpBuilder &builder, Location loc, SparseElementsAttr attr, AffineMap order,
function_ref<void(ArrayRef<Value>, Value)> callback);
/// Loads `size`-many values from the memref, which must have rank-1 and
/// size greater-or-equal to `size`. If the optional `(offsetIdx,offsetVal)`
/// arguments are provided, then the `offsetVal` will be added to the
/// `offsetIdx`-th value after loading.
SmallVector<Value> loadAll(OpBuilder &builder, Location loc, size_t size,
Value mem, size_t offsetIdx = 0,
Value offsetVal = Value());
/// Stores all the values of `vs` into the memref `mem`, which must have
/// rank-1 and size greater-or-equal to `vs.size()`. If the optional
/// `(offsetIdx,offsetVal)` arguments are provided, then the `offsetVal`
/// will be added to the `offsetIdx`-th value before storing.
void storeAll(OpBuilder &builder, Location loc, Value mem, ValueRange vs,
size_t offsetIdx = 0, Value offsetVal = Value());
// Generates code to cast a tensor to a memref.
TypedValue<BaseMemRefType> genToMemref(OpBuilder &builder, Location loc,
Value tensor);
/// Infers the result type and generates `ToPositionsOp`.
Value genToPositions(OpBuilder &builder, Location loc, Value tensor, Level lvl);
/// Infers the result type and generates `ToCoordinatesOp`. If the
/// level is within a COO region, the result type is a memref with unknown
/// stride and offset. Otherwise, the result type is a memref without
/// any specified layout.
Value genToCoordinates(OpBuilder &builder, Location loc, Value tensor,
Level lvl, Level cooStart);
/// Infers the result type and generates `ToCoordinatesBufferOp`.
Value genToCoordinatesBuffer(OpBuilder &builder, Location loc, Value tensor);
/// Infers the result type and generates `ToValuesOp`.
Value genToValues(OpBuilder &builder, Location loc, Value tensor);
/// Generates code to retrieve the values size for the sparse tensor.
Value genValMemSize(OpBuilder &builder, Location loc, Value tensor);
/// Generates code to retrieve the slice offset for the sparse tensor slice,
/// return a constant if the offset is statically known.
Value createOrFoldSliceOffsetOp(OpBuilder &builder, Location loc, Value tensor,
Dimension dim);
/// Generates code to retrieve the slice slice for the sparse tensor slice,
/// return a constant if the offset is statically known.
Value createOrFoldSliceStrideOp(OpBuilder &builder, Location loc, Value tensor,
Dimension dim);
/// Generates code that opens a reader and sets the dimension sizes.
Value genReader(OpBuilder &builder, Location loc, SparseTensorType stt,
Value tensor,
/*out*/ SmallVectorImpl<Value> &dimSizesValues,
/*out*/ Value &dimSizesBuffer);
/// Generates code to set up the buffer parameters for a map.
Value genMapBuffers(OpBuilder &builder, Location loc, SparseTensorType stt,
ArrayRef<Value> dimSizesValues, Value dimSizesBuffer,
/*out*/ SmallVectorImpl<Value> &lvlSizesValues,
/*out*/ Value &dim2lvlBuffer,
/*out*/ Value &lvl2dimBuffer);
//===----------------------------------------------------------------------===//
// Inlined constant generators.
//
// All these functions are just wrappers to improve code legibility;
// therefore, we mark them as `inline` to avoid introducing any additional
// overhead due to the legibility. Ideally these should move upstream.
//
//===----------------------------------------------------------------------===//
/// Generates a 0-valued constant of the given type. In addition to
/// the scalar types (`ComplexType`, `FloatType`, `IndexType`,
/// `IntegerType`), this also works for `RankedTensorType` and `VectorType`
/// (for which it generates a constant `DenseElementsAttr` of zeros).
inline Value constantZero(OpBuilder &builder, Location loc, Type tp) {
if (auto ctp = dyn_cast<ComplexType>(tp)) {
auto zeroe = builder.getZeroAttr(ctp.getElementType());
auto zeroa = builder.getArrayAttr({zeroe, zeroe});
return builder.create<complex::ConstantOp>(loc, tp, zeroa);
}
return builder.create<arith::ConstantOp>(loc, tp, builder.getZeroAttr(tp));
}
/// Generates a 1-valued constant of the given type. This supports all
/// the same types as `constantZero`.
inline Value constantOne(OpBuilder &builder, Location loc, Type tp) {
if (auto ctp = dyn_cast<ComplexType>(tp)) {
auto zeroe = builder.getZeroAttr(ctp.getElementType());
auto onee = getOneAttr(builder, ctp.getElementType());
auto zeroa = builder.getArrayAttr({onee, zeroe});
return builder.create<complex::ConstantOp>(loc, tp, zeroa);
}
return builder.create<arith::ConstantOp>(loc, tp, getOneAttr(builder, tp));
}
/// Generates a constant of `index` type.
inline Value constantIndex(OpBuilder &builder, Location loc, int64_t i) {
return builder.create<arith::ConstantIndexOp>(loc, i);
}
/// Generates a constant of `i64` type.
inline Value constantI64(OpBuilder &builder, Location loc, int64_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 64);
}
/// Generates a constant of `i32` type.
inline Value constantI32(OpBuilder &builder, Location loc, int32_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 32);
}
/// Generates a constant of `i16` type.
inline Value constantI16(OpBuilder &builder, Location loc, int16_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 16);
}
/// Generates a constant of `i8` type.
inline Value constantI8(OpBuilder &builder, Location loc, int8_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 8);
}
/// Generates a constant of `i1` type.
inline Value constantI1(OpBuilder &builder, Location loc, bool b) {
return builder.create<arith::ConstantIntOp>(loc, b, 1);
}
/// Generates a constant of the given `Action`.
inline Value constantAction(OpBuilder &builder, Location loc, Action action) {
return constantI32(builder, loc, static_cast<uint32_t>(action));
}
/// Generates a constant of the internal type-encoding for overhead storage.
inline Value constantOverheadTypeEncoding(OpBuilder &builder, Location loc,
unsigned width) {
return constantI32(builder, loc,
static_cast<uint32_t>(overheadTypeEncoding(width)));
}
/// Generates a constant of the internal type-encoding for position
/// overhead storage.
inline Value constantPosTypeEncoding(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc) {
return constantOverheadTypeEncoding(builder, loc, enc.getPosWidth());
}
/// Generates a constant of the internal type-encoding for coordinate
/// overhead storage.
inline Value constantCrdTypeEncoding(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc) {
return constantOverheadTypeEncoding(builder, loc, enc.getCrdWidth());
}
/// Generates a constant of the internal type-encoding for primary storage.
inline Value constantPrimaryTypeEncoding(OpBuilder &builder, Location loc,
Type elemTp) {
return constantI32(builder, loc,
static_cast<uint32_t>(primaryTypeEncoding(elemTp)));
}
/// Generates a constant of the internal dimension level type encoding.
inline Value constantLevelTypeEncoding(OpBuilder &builder, Location loc,
LevelType lt) {
return constantI8(builder, loc, static_cast<uint8_t>(lt));
}
inline bool isZeroRankedTensorOrScalar(Type type) {
auto rtp = dyn_cast<RankedTensorType>(type);
return !rtp || rtp.getRank() == 0;
}
} // namespace sparse_tensor
} // namespace mlir
#endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_