blob: 9894fb32c503c3ab9e34daefa7e1a12e184b6b90 [file] [log] [blame]
//===- Target.h -------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_TARGET_H
#define LLD_ELF_TARGET_H
#include "Config.h"
#include "InputSection.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <array>
namespace lld {
std::string toString(elf::RelType type);
namespace elf {
class Defined;
class InputFile;
class Symbol;
class TargetInfo {
public:
virtual uint32_t calcEFlags() const { return 0; }
virtual RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const = 0;
virtual RelType getDynRel(RelType type) const { return 0; }
virtual void writeGotPltHeader(uint8_t *buf) const {}
virtual void writeGotHeader(uint8_t *buf) const {}
virtual void writeGotPlt(uint8_t *buf, const Symbol &s) const {};
virtual void writeIgotPlt(uint8_t *buf, const Symbol &s) const {}
virtual int64_t getImplicitAddend(const uint8_t *buf, RelType type) const;
virtual int getTlsGdRelaxSkip(RelType type) const { return 1; }
// If lazy binding is supported, the first entry of the PLT has code
// to call the dynamic linker to resolve PLT entries the first time
// they are called. This function writes that code.
virtual void writePltHeader(uint8_t *buf) const {}
virtual void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {}
virtual void writeIplt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
// All but PPC32 and PPC64 use the same format for .plt and .iplt entries.
writePlt(buf, sym, pltEntryAddr);
}
virtual void writeIBTPlt(uint8_t *buf, size_t numEntries) const {}
virtual void addPltHeaderSymbols(InputSection &isec) const {}
virtual void addPltSymbols(InputSection &isec, uint64_t off) const {}
// Returns true if a relocation only uses the low bits of a value such that
// all those bits are in the same page. For example, if the relocation
// only uses the low 12 bits in a system with 4k pages. If this is true, the
// bits will always have the same value at runtime and we don't have to emit
// a dynamic relocation.
virtual bool usesOnlyLowPageBits(RelType type) const;
// Decide whether a Thunk is needed for the relocation from File
// targeting S.
virtual bool needsThunk(RelExpr expr, RelType relocType,
const InputFile *file, uint64_t branchAddr,
const Symbol &s, int64_t a) const;
// On systems with range extensions we place collections of Thunks at
// regular spacings that enable the majority of branches reach the Thunks.
// a value of 0 means range extension thunks are not supported.
virtual uint32_t getThunkSectionSpacing() const { return 0; }
// The function with a prologue starting at Loc was compiled with
// -fsplit-stack and it calls a function compiled without. Adjust the prologue
// to do the right thing. See https://gcc.gnu.org/wiki/SplitStacks.
// The symbols st_other flags are needed on PowerPC64 for determining the
// offset to the split-stack prologue.
virtual bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
uint8_t stOther) const;
// Return true if we can reach dst from src with RelType type.
virtual bool inBranchRange(RelType type, uint64_t src,
uint64_t dst) const;
virtual void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const = 0;
void relocateNoSym(uint8_t *loc, RelType type, uint64_t val) const {
relocate(loc, Relocation{R_NONE, type, 0, 0, nullptr}, val);
}
virtual void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const;
// Do a linker relaxation pass and return true if we changed something.
virtual bool relaxOnce(int pass) const { return false; }
// Do finalize relaxation after collecting relaxation infos.
virtual void finalizeRelax(int passes) const {}
virtual void applyJumpInstrMod(uint8_t *loc, JumpModType type,
JumpModType val) const {}
virtual ~TargetInfo();
// This deletes a jump insn at the end of the section if it is a fall thru to
// the next section. Further, if there is a conditional jump and a direct
// jump consecutively, it tries to flip the conditional jump to convert the
// direct jump into a fall thru and delete it. Returns true if a jump
// instruction can be deleted.
virtual bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
InputSection *nextIS) const {
return false;
}
unsigned defaultCommonPageSize = 4096;
unsigned defaultMaxPageSize = 4096;
uint64_t getImageBase() const;
// True if _GLOBAL_OFFSET_TABLE_ is relative to .got.plt, false if .got.
bool gotBaseSymInGotPlt = false;
static constexpr RelType noneRel = 0;
RelType copyRel;
RelType gotRel;
RelType pltRel;
RelType relativeRel;
RelType iRelativeRel;
RelType symbolicRel;
RelType tlsDescRel;
RelType tlsGotRel;
RelType tlsModuleIndexRel;
RelType tlsOffsetRel;
unsigned gotEntrySize = config->wordsize;
unsigned pltEntrySize;
unsigned pltHeaderSize;
unsigned ipltEntrySize;
// At least on x86_64 positions 1 and 2 are used by the first plt entry
// to support lazy loading.
unsigned gotPltHeaderEntriesNum = 3;
// On PPC ELF V2 abi, the first entry in the .got is the .TOC.
unsigned gotHeaderEntriesNum = 0;
// On PPC ELF V2 abi, the dynamic section needs DT_PPC64_OPT (DT_LOPROC + 3)
// to be set to 0x2 if there can be multiple TOC's. Although we do not emit
// multiple TOC's, there can be a mix of TOC and NOTOC addressing which
// is functionally equivalent.
int ppc64DynamicSectionOpt = 0;
bool needsThunks = false;
// A 4-byte field corresponding to one or more trap instructions, used to pad
// executable OutputSections.
std::array<uint8_t, 4> trapInstr;
// Stores the NOP instructions of different sizes for the target and is used
// to pad sections that are relaxed.
std::optional<std::vector<std::vector<uint8_t>>> nopInstrs;
// If a target needs to rewrite calls to __morestack to instead call
// __morestack_non_split when a split-stack enabled caller calls a
// non-split-stack callee this will return true. Otherwise returns false.
bool needsMoreStackNonSplit = true;
virtual RelExpr adjustTlsExpr(RelType type, RelExpr expr) const;
virtual RelExpr adjustGotPcExpr(RelType type, int64_t addend,
const uint8_t *loc) const;
protected:
// On FreeBSD x86_64 the first page cannot be mmaped.
// On Linux this is controlled by vm.mmap_min_addr. At least on some x86_64
// installs this is set to 65536, so the first 15 pages cannot be used.
// Given that, the smallest value that can be used in here is 0x10000.
uint64_t defaultImageBase = 0x10000;
};
TargetInfo *getAArch64TargetInfo();
TargetInfo *getAMDGPUTargetInfo();
TargetInfo *getARMTargetInfo();
TargetInfo *getAVRTargetInfo();
TargetInfo *getHexagonTargetInfo();
TargetInfo *getLoongArchTargetInfo();
TargetInfo *getMSP430TargetInfo();
TargetInfo *getPPC64TargetInfo();
TargetInfo *getPPCTargetInfo();
TargetInfo *getRISCVTargetInfo();
TargetInfo *getSPARCV9TargetInfo();
TargetInfo *getSystemZTargetInfo();
TargetInfo *getX86TargetInfo();
TargetInfo *getX86_64TargetInfo();
template <class ELFT> TargetInfo *getMipsTargetInfo();
struct ErrorPlace {
InputSectionBase *isec;
std::string loc;
std::string srcLoc;
};
// Returns input section and corresponding source string for the given location.
ErrorPlace getErrorPlace(const uint8_t *loc);
static inline std::string getErrorLocation(const uint8_t *loc) {
return getErrorPlace(loc).loc;
}
void processArmCmseSymbols();
void writePPC32GlinkSection(uint8_t *buf, size_t numEntries);
unsigned getPPCDFormOp(unsigned secondaryOp);
unsigned getPPCDSFormOp(unsigned secondaryOp);
// In the PowerPC64 Elf V2 abi a function can have 2 entry points. The first
// is a global entry point (GEP) which typically is used to initialize the TOC
// pointer in general purpose register 2. The second is a local entry
// point (LEP) which bypasses the TOC pointer initialization code. The
// offset between GEP and LEP is encoded in a function's st_other flags.
// This function will return the offset (in bytes) from the global entry-point
// to the local entry-point.
unsigned getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther);
// Write a prefixed instruction, which is a 4-byte prefix followed by a 4-byte
// instruction (regardless of endianness). Therefore, the prefix is always in
// lower memory than the instruction.
void writePrefixedInstruction(uint8_t *loc, uint64_t insn);
void addPPC64SaveRestore();
uint64_t getPPC64TocBase();
uint64_t getAArch64Page(uint64_t expr);
template <typename ELFT> void writeARMCmseImportLib();
uint64_t getLoongArchPageDelta(uint64_t dest, uint64_t pc, RelType type);
void riscvFinalizeRelax(int passes);
void mergeRISCVAttributesSections();
void addArmInputSectionMappingSymbols();
void addArmSyntheticSectionMappingSymbol(Defined *);
void sortArmMappingSymbols();
void convertArmInstructionstoBE8(InputSection *sec, uint8_t *buf);
void createTaggedSymbols(const SmallVector<ELFFileBase *, 0> &files);
void initSymbolAnchors();
TargetInfo *getTarget();
template <class ELFT> bool isMipsPIC(const Defined *sym);
void reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
int64_t min, uint64_t max);
void reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
const Twine &msg);
// Make sure that V can be represented as an N bit signed integer.
inline void checkInt(uint8_t *loc, int64_t v, int n, const Relocation &rel) {
if (v != llvm::SignExtend64(v, n))
reportRangeError(loc, rel, Twine(v), llvm::minIntN(n), llvm::maxIntN(n));
}
// Make sure that V can be represented as an N bit unsigned integer.
inline void checkUInt(uint8_t *loc, uint64_t v, int n, const Relocation &rel) {
if ((v >> n) != 0)
reportRangeError(loc, rel, Twine(v), 0, llvm::maxUIntN(n));
}
// Make sure that V can be represented as an N bit signed or unsigned integer.
inline void checkIntUInt(uint8_t *loc, uint64_t v, int n,
const Relocation &rel) {
// For the error message we should cast V to a signed integer so that error
// messages show a small negative value rather than an extremely large one
if (v != (uint64_t)llvm::SignExtend64(v, n) && (v >> n) != 0)
reportRangeError(loc, rel, Twine((int64_t)v), llvm::minIntN(n),
llvm::maxUIntN(n));
}
inline void checkAlignment(uint8_t *loc, uint64_t v, int n,
const Relocation &rel) {
if ((v & (n - 1)) != 0)
error(getErrorLocation(loc) + "improper alignment for relocation " +
lld::toString(rel.type) + ": 0x" + llvm::utohexstr(v) +
" is not aligned to " + Twine(n) + " bytes");
}
// Endianness-aware read/write.
inline uint16_t read16(const void *p) {
return llvm::support::endian::read16(p, config->endianness);
}
inline uint32_t read32(const void *p) {
return llvm::support::endian::read32(p, config->endianness);
}
inline uint64_t read64(const void *p) {
return llvm::support::endian::read64(p, config->endianness);
}
inline void write16(void *p, uint16_t v) {
llvm::support::endian::write16(p, v, config->endianness);
}
inline void write32(void *p, uint32_t v) {
llvm::support::endian::write32(p, v, config->endianness);
}
inline void write64(void *p, uint64_t v) {
llvm::support::endian::write64(p, v, config->endianness);
}
// Overwrite a ULEB128 value and keep the original length.
inline uint64_t overwriteULEB128(uint8_t *bufLoc, uint64_t val) {
while (*bufLoc & 0x80) {
*bufLoc++ = 0x80 | (val & 0x7f);
val >>= 7;
}
*bufLoc = val;
return val;
}
} // namespace elf
} // namespace lld
#ifdef __clang__
#pragma clang diagnostic ignored "-Wgnu-zero-variadic-macro-arguments"
#endif
#define invokeELFT(f, ...) \
switch (config->ekind) { \
case lld::elf::ELF32LEKind: \
f<llvm::object::ELF32LE>(__VA_ARGS__); \
break; \
case lld::elf::ELF32BEKind: \
f<llvm::object::ELF32BE>(__VA_ARGS__); \
break; \
case lld::elf::ELF64LEKind: \
f<llvm::object::ELF64LE>(__VA_ARGS__); \
break; \
case lld::elf::ELF64BEKind: \
f<llvm::object::ELF64BE>(__VA_ARGS__); \
break; \
default: \
llvm_unreachable("unknown config->ekind"); \
}
#endif