| //===- SyntheticSections.cpp ----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains linker-synthesized sections. Currently, |
| // synthetic sections are created either output sections or input sections, |
| // but we are rewriting code so that all synthetic sections are created as |
| // input sections. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SyntheticSections.h" |
| #include "Config.h" |
| #include "DWARF.h" |
| #include "EhFrame.h" |
| #include "InputFiles.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| #include "Writer.h" |
| #include "lld/Common/CommonLinkerContext.h" |
| #include "lld/Common/DWARF.h" |
| #include "lld/Common/Strings.h" |
| #include "lld/Common/Version.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" |
| #include "llvm/Support/DJB.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/Parallel.h" |
| #include "llvm/Support/TimeProfiler.h" |
| #include <cinttypes> |
| #include <cstdlib> |
| |
| using namespace llvm; |
| using namespace llvm::dwarf; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| using llvm::support::endian::read32le; |
| using llvm::support::endian::write32le; |
| using llvm::support::endian::write64le; |
| |
| constexpr size_t MergeNoTailSection::numShards; |
| |
| static uint64_t readUint(uint8_t *buf) { |
| return config->is64 ? read64(buf) : read32(buf); |
| } |
| |
| static void writeUint(uint8_t *buf, uint64_t val) { |
| if (config->is64) |
| write64(buf, val); |
| else |
| write32(buf, val); |
| } |
| |
| // Returns an LLD version string. |
| static ArrayRef<uint8_t> getVersion() { |
| // Check LLD_VERSION first for ease of testing. |
| // You can get consistent output by using the environment variable. |
| // This is only for testing. |
| StringRef s = getenv("LLD_VERSION"); |
| if (s.empty()) |
| s = saver().save(Twine("Linker: ") + getLLDVersion()); |
| |
| // +1 to include the terminating '\0'. |
| return {(const uint8_t *)s.data(), s.size() + 1}; |
| } |
| |
| // Creates a .comment section containing LLD version info. |
| // With this feature, you can identify LLD-generated binaries easily |
| // by "readelf --string-dump .comment <file>". |
| // The returned object is a mergeable string section. |
| MergeInputSection *elf::createCommentSection() { |
| auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, |
| getVersion(), ".comment"); |
| sec->splitIntoPieces(); |
| return sec; |
| } |
| |
| // .MIPS.abiflags section. |
| template <class ELFT> |
| MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) |
| : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), |
| flags(flags) { |
| this->entsize = sizeof(Elf_Mips_ABIFlags); |
| } |
| |
| template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { |
| memcpy(buf, &flags, sizeof(flags)); |
| } |
| |
| template <class ELFT> |
| std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() { |
| Elf_Mips_ABIFlags flags = {}; |
| bool create = false; |
| |
| for (InputSectionBase *sec : ctx.inputSections) { |
| if (sec->type != SHT_MIPS_ABIFLAGS) |
| continue; |
| sec->markDead(); |
| create = true; |
| |
| std::string filename = toString(sec->file); |
| const size_t size = sec->content().size(); |
| // Older version of BFD (such as the default FreeBSD linker) concatenate |
| // .MIPS.abiflags instead of merging. To allow for this case (or potential |
| // zero padding) we ignore everything after the first Elf_Mips_ABIFlags |
| if (size < sizeof(Elf_Mips_ABIFlags)) { |
| error(filename + ": invalid size of .MIPS.abiflags section: got " + |
| Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); |
| return nullptr; |
| } |
| auto *s = |
| reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data()); |
| if (s->version != 0) { |
| error(filename + ": unexpected .MIPS.abiflags version " + |
| Twine(s->version)); |
| return nullptr; |
| } |
| |
| // LLD checks ISA compatibility in calcMipsEFlags(). Here we just |
| // select the highest number of ISA/Rev/Ext. |
| flags.isa_level = std::max(flags.isa_level, s->isa_level); |
| flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); |
| flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); |
| flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); |
| flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); |
| flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); |
| flags.ases |= s->ases; |
| flags.flags1 |= s->flags1; |
| flags.flags2 |= s->flags2; |
| flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); |
| }; |
| |
| if (create) |
| return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags); |
| return nullptr; |
| } |
| |
| // .MIPS.options section. |
| template <class ELFT> |
| MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) |
| : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), |
| reginfo(reginfo) { |
| this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { |
| auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); |
| options->kind = ODK_REGINFO; |
| options->size = getSize(); |
| |
| if (!config->relocatable) |
| reginfo.ri_gp_value = in.mipsGot->getGp(); |
| memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); |
| } |
| |
| template <class ELFT> |
| std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() { |
| // N64 ABI only. |
| if (!ELFT::Is64Bits) |
| return nullptr; |
| |
| SmallVector<InputSectionBase *, 0> sections; |
| for (InputSectionBase *sec : ctx.inputSections) |
| if (sec->type == SHT_MIPS_OPTIONS) |
| sections.push_back(sec); |
| |
| if (sections.empty()) |
| return nullptr; |
| |
| Elf_Mips_RegInfo reginfo = {}; |
| for (InputSectionBase *sec : sections) { |
| sec->markDead(); |
| |
| std::string filename = toString(sec->file); |
| ArrayRef<uint8_t> d = sec->content(); |
| |
| while (!d.empty()) { |
| if (d.size() < sizeof(Elf_Mips_Options)) { |
| error(filename + ": invalid size of .MIPS.options section"); |
| break; |
| } |
| |
| auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); |
| if (opt->kind == ODK_REGINFO) { |
| reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; |
| sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; |
| break; |
| } |
| |
| if (!opt->size) |
| fatal(filename + ": zero option descriptor size"); |
| d = d.slice(opt->size); |
| } |
| }; |
| |
| return std::make_unique<MipsOptionsSection<ELFT>>(reginfo); |
| } |
| |
| // MIPS .reginfo section. |
| template <class ELFT> |
| MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) |
| : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), |
| reginfo(reginfo) { |
| this->entsize = sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { |
| if (!config->relocatable) |
| reginfo.ri_gp_value = in.mipsGot->getGp(); |
| memcpy(buf, ®info, sizeof(reginfo)); |
| } |
| |
| template <class ELFT> |
| std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() { |
| // Section should be alive for O32 and N32 ABIs only. |
| if (ELFT::Is64Bits) |
| return nullptr; |
| |
| SmallVector<InputSectionBase *, 0> sections; |
| for (InputSectionBase *sec : ctx.inputSections) |
| if (sec->type == SHT_MIPS_REGINFO) |
| sections.push_back(sec); |
| |
| if (sections.empty()) |
| return nullptr; |
| |
| Elf_Mips_RegInfo reginfo = {}; |
| for (InputSectionBase *sec : sections) { |
| sec->markDead(); |
| |
| if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) { |
| error(toString(sec->file) + ": invalid size of .reginfo section"); |
| return nullptr; |
| } |
| |
| auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data()); |
| reginfo.ri_gprmask |= r->ri_gprmask; |
| sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; |
| }; |
| |
| return std::make_unique<MipsReginfoSection<ELFT>>(reginfo); |
| } |
| |
| InputSection *elf::createInterpSection() { |
| // StringSaver guarantees that the returned string ends with '\0'. |
| StringRef s = saver().save(config->dynamicLinker); |
| ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; |
| |
| return make<InputSection>(ctx.internalFile, SHF_ALLOC, SHT_PROGBITS, 1, |
| contents, ".interp"); |
| } |
| |
| Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, |
| uint64_t size, InputSectionBase §ion) { |
| Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type, |
| value, size, §ion); |
| if (in.symTab) |
| in.symTab->addSymbol(s); |
| |
| if (config->emachine == EM_ARM && !config->isLE && config->armBe8 && |
| (section.flags & SHF_EXECINSTR)) |
| // Adding Linker generated mapping symbols to the arm specific mapping |
| // symbols list. |
| addArmSyntheticSectionMappingSymbol(s); |
| |
| return s; |
| } |
| |
| static size_t getHashSize() { |
| switch (config->buildId) { |
| case BuildIdKind::Fast: |
| return 8; |
| case BuildIdKind::Md5: |
| case BuildIdKind::Uuid: |
| return 16; |
| case BuildIdKind::Sha1: |
| return 20; |
| case BuildIdKind::Hexstring: |
| return config->buildIdVector.size(); |
| default: |
| llvm_unreachable("unknown BuildIdKind"); |
| } |
| } |
| |
| // This class represents a linker-synthesized .note.gnu.property section. |
| // |
| // In x86 and AArch64, object files may contain feature flags indicating the |
| // features that they have used. The flags are stored in a .note.gnu.property |
| // section. |
| // |
| // lld reads the sections from input files and merges them by computing AND of |
| // the flags. The result is written as a new .note.gnu.property section. |
| // |
| // If the flag is zero (which indicates that the intersection of the feature |
| // sets is empty, or some input files didn't have .note.gnu.property sections), |
| // we don't create this section. |
| GnuPropertySection::GnuPropertySection() |
| : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, |
| config->wordsize, ".note.gnu.property") {} |
| |
| void GnuPropertySection::writeTo(uint8_t *buf) { |
| write32(buf, 4); // Name size |
| write32(buf + 4, getSize() - 16); // Content size |
| write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type |
| memcpy(buf + 12, "GNU", 4); // Name string |
| |
| uint32_t featureAndType = config->emachine == EM_AARCH64 |
| ? GNU_PROPERTY_AARCH64_FEATURE_1_AND |
| : GNU_PROPERTY_X86_FEATURE_1_AND; |
| |
| unsigned offset = 16; |
| if (config->andFeatures != 0) { |
| write32(buf + offset + 0, featureAndType); // Feature type |
| write32(buf + offset + 4, 4); // Feature size |
| write32(buf + offset + 8, config->andFeatures); // Feature flags |
| if (config->is64) |
| write32(buf + offset + 12, 0); // Padding |
| offset += 16; |
| } |
| |
| if (!ctx.aarch64PauthAbiCoreInfo.empty()) { |
| write32(buf + offset + 0, GNU_PROPERTY_AARCH64_FEATURE_PAUTH); |
| write32(buf + offset + 4, ctx.aarch64PauthAbiCoreInfo.size()); |
| memcpy(buf + offset + 8, ctx.aarch64PauthAbiCoreInfo.data(), |
| ctx.aarch64PauthAbiCoreInfo.size()); |
| } |
| } |
| |
| size_t GnuPropertySection::getSize() const { |
| uint32_t contentSize = 0; |
| if (config->andFeatures != 0) |
| contentSize += config->is64 ? 16 : 12; |
| if (!ctx.aarch64PauthAbiCoreInfo.empty()) |
| contentSize += 4 + 4 + ctx.aarch64PauthAbiCoreInfo.size(); |
| assert(contentSize != 0); |
| return contentSize + 16; |
| } |
| |
| BuildIdSection::BuildIdSection() |
| : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), |
| hashSize(getHashSize()) {} |
| |
| void BuildIdSection::writeTo(uint8_t *buf) { |
| write32(buf, 4); // Name size |
| write32(buf + 4, hashSize); // Content size |
| write32(buf + 8, NT_GNU_BUILD_ID); // Type |
| memcpy(buf + 12, "GNU", 4); // Name string |
| hashBuf = buf + 16; |
| } |
| |
| void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { |
| assert(buf.size() == hashSize); |
| memcpy(hashBuf, buf.data(), hashSize); |
| } |
| |
| BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { |
| this->bss = true; |
| this->size = size; |
| } |
| |
| EhFrameSection::EhFrameSection() |
| : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} |
| |
| // Search for an existing CIE record or create a new one. |
| // CIE records from input object files are uniquified by their contents |
| // and where their relocations point to. |
| template <class ELFT, class RelTy> |
| CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { |
| Symbol *personality = nullptr; |
| unsigned firstRelI = cie.firstRelocation; |
| if (firstRelI != (unsigned)-1) |
| personality = &cie.sec->file->getRelocTargetSym(rels[firstRelI]); |
| |
| // Search for an existing CIE by CIE contents/relocation target pair. |
| CieRecord *&rec = cieMap[{cie.data(), personality}]; |
| |
| // If not found, create a new one. |
| if (!rec) { |
| rec = make<CieRecord>(); |
| rec->cie = &cie; |
| cieRecords.push_back(rec); |
| } |
| return rec; |
| } |
| |
| // There is one FDE per function. Returns a non-null pointer to the function |
| // symbol if the given FDE points to a live function. |
| template <class ELFT, class RelTy> |
| Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { |
| auto *sec = cast<EhInputSection>(fde.sec); |
| unsigned firstRelI = fde.firstRelocation; |
| |
| // An FDE should point to some function because FDEs are to describe |
| // functions. That's however not always the case due to an issue of |
| // ld.gold with -r. ld.gold may discard only functions and leave their |
| // corresponding FDEs, which results in creating bad .eh_frame sections. |
| // To deal with that, we ignore such FDEs. |
| if (firstRelI == (unsigned)-1) |
| return nullptr; |
| |
| const RelTy &rel = rels[firstRelI]; |
| Symbol &b = sec->file->getRelocTargetSym(rel); |
| |
| // FDEs for garbage-collected or merged-by-ICF sections, or sections in |
| // another partition, are dead. |
| if (auto *d = dyn_cast<Defined>(&b)) |
| if (!d->folded && d->section && d->section->partition == partition) |
| return d; |
| return nullptr; |
| } |
| |
| // .eh_frame is a sequence of CIE or FDE records. In general, there |
| // is one CIE record per input object file which is followed by |
| // a list of FDEs. This function searches an existing CIE or create a new |
| // one and associates FDEs to the CIE. |
| template <class ELFT, class RelTy> |
| void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { |
| offsetToCie.clear(); |
| for (EhSectionPiece &cie : sec->cies) |
| offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels); |
| for (EhSectionPiece &fde : sec->fdes) { |
| uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); |
| CieRecord *rec = offsetToCie[fde.inputOff + 4 - id]; |
| if (!rec) |
| fatal(toString(sec) + ": invalid CIE reference"); |
| |
| if (!isFdeLive<ELFT>(fde, rels)) |
| continue; |
| rec->fdes.push_back(&fde); |
| numFdes++; |
| } |
| } |
| |
| template <class ELFT> |
| void EhFrameSection::addSectionAux(EhInputSection *sec) { |
| if (!sec->isLive()) |
| return; |
| const RelsOrRelas<ELFT> rels = |
| sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); |
| if (rels.areRelocsRel()) |
| addRecords<ELFT>(sec, rels.rels); |
| else |
| addRecords<ELFT>(sec, rels.relas); |
| } |
| |
| // Used by ICF<ELFT>::handleLSDA(). This function is very similar to |
| // EhFrameSection::addRecords(). |
| template <class ELFT, class RelTy> |
| void EhFrameSection::iterateFDEWithLSDAAux( |
| EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, |
| llvm::function_ref<void(InputSection &)> fn) { |
| for (EhSectionPiece &cie : sec.cies) |
| if (hasLSDA(cie)) |
| ciesWithLSDA.insert(cie.inputOff); |
| for (EhSectionPiece &fde : sec.fdes) { |
| uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); |
| if (!ciesWithLSDA.contains(fde.inputOff + 4 - id)) |
| continue; |
| |
| // The CIE has a LSDA argument. Call fn with d's section. |
| if (Defined *d = isFdeLive<ELFT>(fde, rels)) |
| if (auto *s = dyn_cast_or_null<InputSection>(d->section)) |
| fn(*s); |
| } |
| } |
| |
| template <class ELFT> |
| void EhFrameSection::iterateFDEWithLSDA( |
| llvm::function_ref<void(InputSection &)> fn) { |
| DenseSet<size_t> ciesWithLSDA; |
| for (EhInputSection *sec : sections) { |
| ciesWithLSDA.clear(); |
| const RelsOrRelas<ELFT> rels = |
| sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); |
| if (rels.areRelocsRel()) |
| iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); |
| else |
| iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); |
| } |
| } |
| |
| static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { |
| memcpy(buf, d.data(), d.size()); |
| // Fix the size field. -4 since size does not include the size field itself. |
| write32(buf, d.size() - 4); |
| } |
| |
| void EhFrameSection::finalizeContents() { |
| assert(!this->size); // Not finalized. |
| |
| switch (config->ekind) { |
| case ELFNoneKind: |
| llvm_unreachable("invalid ekind"); |
| case ELF32LEKind: |
| for (EhInputSection *sec : sections) |
| addSectionAux<ELF32LE>(sec); |
| break; |
| case ELF32BEKind: |
| for (EhInputSection *sec : sections) |
| addSectionAux<ELF32BE>(sec); |
| break; |
| case ELF64LEKind: |
| for (EhInputSection *sec : sections) |
| addSectionAux<ELF64LE>(sec); |
| break; |
| case ELF64BEKind: |
| for (EhInputSection *sec : sections) |
| addSectionAux<ELF64BE>(sec); |
| break; |
| } |
| |
| size_t off = 0; |
| for (CieRecord *rec : cieRecords) { |
| rec->cie->outputOff = off; |
| off += rec->cie->size; |
| |
| for (EhSectionPiece *fde : rec->fdes) { |
| fde->outputOff = off; |
| off += fde->size; |
| } |
| } |
| |
| // The LSB standard does not allow a .eh_frame section with zero |
| // Call Frame Information records. glibc unwind-dw2-fde.c |
| // classify_object_over_fdes expects there is a CIE record length 0 as a |
| // terminator. Thus we add one unconditionally. |
| off += 4; |
| |
| this->size = off; |
| } |
| |
| // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table |
| // to get an FDE from an address to which FDE is applied. This function |
| // returns a list of such pairs. |
| SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { |
| uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff; |
| SmallVector<FdeData, 0> ret; |
| |
| uint64_t va = getPartition().ehFrameHdr->getVA(); |
| for (CieRecord *rec : cieRecords) { |
| uint8_t enc = getFdeEncoding(rec->cie); |
| for (EhSectionPiece *fde : rec->fdes) { |
| uint64_t pc = getFdePc(buf, fde->outputOff, enc); |
| uint64_t fdeVA = getParent()->addr + fde->outputOff; |
| if (!isInt<32>(pc - va)) { |
| errorOrWarn(toString(fde->sec) + ": PC offset is too large: 0x" + |
| Twine::utohexstr(pc - va)); |
| continue; |
| } |
| ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); |
| } |
| } |
| |
| // Sort the FDE list by their PC and uniqueify. Usually there is only |
| // one FDE for a PC (i.e. function), but if ICF merges two functions |
| // into one, there can be more than one FDEs pointing to the address. |
| auto less = [](const FdeData &a, const FdeData &b) { |
| return a.pcRel < b.pcRel; |
| }; |
| llvm::stable_sort(ret, less); |
| auto eq = [](const FdeData &a, const FdeData &b) { |
| return a.pcRel == b.pcRel; |
| }; |
| ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); |
| |
| return ret; |
| } |
| |
| static uint64_t readFdeAddr(uint8_t *buf, int size) { |
| switch (size) { |
| case DW_EH_PE_udata2: |
| return read16(buf); |
| case DW_EH_PE_sdata2: |
| return (int16_t)read16(buf); |
| case DW_EH_PE_udata4: |
| return read32(buf); |
| case DW_EH_PE_sdata4: |
| return (int32_t)read32(buf); |
| case DW_EH_PE_udata8: |
| case DW_EH_PE_sdata8: |
| return read64(buf); |
| case DW_EH_PE_absptr: |
| return readUint(buf); |
| } |
| fatal("unknown FDE size encoding"); |
| } |
| |
| // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. |
| // We need it to create .eh_frame_hdr section. |
| uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, |
| uint8_t enc) const { |
| // The starting address to which this FDE applies is |
| // stored at FDE + 8 byte. And this offset is within |
| // the .eh_frame section. |
| size_t off = fdeOff + 8; |
| uint64_t addr = readFdeAddr(buf + off, enc & 0xf); |
| if ((enc & 0x70) == DW_EH_PE_absptr) |
| return config->is64 ? addr : uint32_t(addr); |
| if ((enc & 0x70) == DW_EH_PE_pcrel) |
| return addr + getParent()->addr + off + outSecOff; |
| fatal("unknown FDE size relative encoding"); |
| } |
| |
| void EhFrameSection::writeTo(uint8_t *buf) { |
| // Write CIE and FDE records. |
| for (CieRecord *rec : cieRecords) { |
| size_t cieOffset = rec->cie->outputOff; |
| writeCieFde(buf + cieOffset, rec->cie->data()); |
| |
| for (EhSectionPiece *fde : rec->fdes) { |
| size_t off = fde->outputOff; |
| writeCieFde(buf + off, fde->data()); |
| |
| // FDE's second word should have the offset to an associated CIE. |
| // Write it. |
| write32(buf + off + 4, off + 4 - cieOffset); |
| } |
| } |
| |
| // Apply relocations. .eh_frame section contents are not contiguous |
| // in the output buffer, but relocateAlloc() still works because |
| // getOffset() takes care of discontiguous section pieces. |
| for (EhInputSection *s : sections) |
| ctx.target->relocateAlloc(*s, buf); |
| |
| if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) |
| getPartition().ehFrameHdr->write(); |
| } |
| |
| GotSection::GotSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, |
| ctx.target->gotEntrySize, ".got") { |
| numEntries = ctx.target->gotHeaderEntriesNum; |
| } |
| |
| void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); } |
| void GotSection::addEntry(const Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().gotIdx = numEntries++; |
| } |
| |
| bool GotSection::addTlsDescEntry(const Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().tlsDescIdx = numEntries; |
| numEntries += 2; |
| return true; |
| } |
| |
| bool GotSection::addDynTlsEntry(const Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().tlsGdIdx = numEntries; |
| // Global Dynamic TLS entries take two GOT slots. |
| numEntries += 2; |
| return true; |
| } |
| |
| // Reserves TLS entries for a TLS module ID and a TLS block offset. |
| // In total it takes two GOT slots. |
| bool GotSection::addTlsIndex() { |
| if (tlsIndexOff != uint32_t(-1)) |
| return false; |
| tlsIndexOff = numEntries * config->wordsize; |
| numEntries += 2; |
| return true; |
| } |
| |
| uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { |
| return sym.getTlsDescIdx() * config->wordsize; |
| } |
| |
| uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { |
| return getVA() + getTlsDescOffset(sym); |
| } |
| |
| uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { |
| return this->getVA() + b.getTlsGdIdx() * config->wordsize; |
| } |
| |
| uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { |
| return b.getTlsGdIdx() * config->wordsize; |
| } |
| |
| void GotSection::finalizeContents() { |
| if (config->emachine == EM_PPC64 && |
| numEntries <= ctx.target->gotHeaderEntriesNum && |
| !ctx.sym.globalOffsetTable) |
| size = 0; |
| else |
| size = numEntries * config->wordsize; |
| } |
| |
| bool GotSection::isNeeded() const { |
| // Needed if the GOT symbol is used or the number of entries is more than just |
| // the header. A GOT with just the header may not be needed. |
| return hasGotOffRel || numEntries > ctx.target->gotHeaderEntriesNum; |
| } |
| |
| void GotSection::writeTo(uint8_t *buf) { |
| // On PPC64 .got may be needed but empty. Skip the write. |
| if (size == 0) |
| return; |
| ctx.target->writeGotHeader(buf); |
| ctx.target->relocateAlloc(*this, buf); |
| } |
| |
| static uint64_t getMipsPageAddr(uint64_t addr) { |
| return (addr + 0x8000) & ~0xffff; |
| } |
| |
| static uint64_t getMipsPageCount(uint64_t size) { |
| return (size + 0xfffe) / 0xffff + 1; |
| } |
| |
| MipsGotSection::MipsGotSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, |
| ".got") {} |
| |
| void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, |
| RelExpr expr) { |
| FileGot &g = getGot(file); |
| if (expr == R_MIPS_GOT_LOCAL_PAGE) { |
| if (const OutputSection *os = sym.getOutputSection()) |
| g.pagesMap.insert({os, {}}); |
| else |
| g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); |
| } else if (sym.isTls()) |
| g.tls.insert({&sym, 0}); |
| else if (sym.isPreemptible && expr == R_ABS) |
| g.relocs.insert({&sym, 0}); |
| else if (sym.isPreemptible) |
| g.global.insert({&sym, 0}); |
| else if (expr == R_MIPS_GOT_OFF32) |
| g.local32.insert({{&sym, addend}, 0}); |
| else |
| g.local16.insert({{&sym, addend}, 0}); |
| } |
| |
| void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { |
| getGot(file).dynTlsSymbols.insert({&sym, 0}); |
| } |
| |
| void MipsGotSection::addTlsIndex(InputFile &file) { |
| getGot(file).dynTlsSymbols.insert({nullptr, 0}); |
| } |
| |
| size_t MipsGotSection::FileGot::getEntriesNum() const { |
| return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + |
| tls.size() + dynTlsSymbols.size() * 2; |
| } |
| |
| size_t MipsGotSection::FileGot::getPageEntriesNum() const { |
| size_t num = 0; |
| for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) |
| num += p.second.count; |
| return num; |
| } |
| |
| size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { |
| size_t count = getPageEntriesNum() + local16.size() + global.size(); |
| // If there are relocation-only entries in the GOT, TLS entries |
| // are allocated after them. TLS entries should be addressable |
| // by 16-bit index so count both reloc-only and TLS entries. |
| if (!tls.empty() || !dynTlsSymbols.empty()) |
| count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; |
| return count; |
| } |
| |
| MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { |
| if (f.mipsGotIndex == uint32_t(-1)) { |
| gots.emplace_back(); |
| gots.back().file = &f; |
| f.mipsGotIndex = gots.size() - 1; |
| } |
| return gots[f.mipsGotIndex]; |
| } |
| |
| uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, |
| const Symbol &sym, |
| int64_t addend) const { |
| const FileGot &g = gots[f->mipsGotIndex]; |
| uint64_t index = 0; |
| if (const OutputSection *outSec = sym.getOutputSection()) { |
| uint64_t secAddr = getMipsPageAddr(outSec->addr); |
| uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); |
| index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; |
| } else { |
| index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); |
| } |
| return index * config->wordsize; |
| } |
| |
| uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, |
| int64_t addend) const { |
| const FileGot &g = gots[f->mipsGotIndex]; |
| Symbol *sym = const_cast<Symbol *>(&s); |
| if (sym->isTls()) |
| return g.tls.lookup(sym) * config->wordsize; |
| if (sym->isPreemptible) |
| return g.global.lookup(sym) * config->wordsize; |
| return g.local16.lookup({sym, addend}) * config->wordsize; |
| } |
| |
| uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { |
| const FileGot &g = gots[f->mipsGotIndex]; |
| return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; |
| } |
| |
| uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, |
| const Symbol &s) const { |
| const FileGot &g = gots[f->mipsGotIndex]; |
| Symbol *sym = const_cast<Symbol *>(&s); |
| return g.dynTlsSymbols.lookup(sym) * config->wordsize; |
| } |
| |
| const Symbol *MipsGotSection::getFirstGlobalEntry() const { |
| if (gots.empty()) |
| return nullptr; |
| const FileGot &primGot = gots.front(); |
| if (!primGot.global.empty()) |
| return primGot.global.front().first; |
| if (!primGot.relocs.empty()) |
| return primGot.relocs.front().first; |
| return nullptr; |
| } |
| |
| unsigned MipsGotSection::getLocalEntriesNum() const { |
| if (gots.empty()) |
| return headerEntriesNum; |
| return headerEntriesNum + gots.front().getPageEntriesNum() + |
| gots.front().local16.size(); |
| } |
| |
| bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { |
| FileGot tmp = dst; |
| set_union(tmp.pagesMap, src.pagesMap); |
| set_union(tmp.local16, src.local16); |
| set_union(tmp.global, src.global); |
| set_union(tmp.relocs, src.relocs); |
| set_union(tmp.tls, src.tls); |
| set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); |
| |
| size_t count = isPrimary ? headerEntriesNum : 0; |
| count += tmp.getIndexedEntriesNum(); |
| |
| if (count * config->wordsize > config->mipsGotSize) |
| return false; |
| |
| std::swap(tmp, dst); |
| return true; |
| } |
| |
| void MipsGotSection::finalizeContents() { updateAllocSize(); } |
| |
| bool MipsGotSection::updateAllocSize() { |
| size = headerEntriesNum * config->wordsize; |
| for (const FileGot &g : gots) |
| size += g.getEntriesNum() * config->wordsize; |
| return false; |
| } |
| |
| void MipsGotSection::build() { |
| if (gots.empty()) |
| return; |
| |
| std::vector<FileGot> mergedGots(1); |
| |
| // For each GOT move non-preemptible symbols from the `Global` |
| // to `Local16` list. Preemptible symbol might become non-preemptible |
| // one if, for example, it gets a related copy relocation. |
| for (FileGot &got : gots) { |
| for (auto &p: got.global) |
| if (!p.first->isPreemptible) |
| got.local16.insert({{p.first, 0}, 0}); |
| got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { |
| return !p.first->isPreemptible; |
| }); |
| } |
| |
| // For each GOT remove "reloc-only" entry if there is "global" |
| // entry for the same symbol. And add local entries which indexed |
| // using 32-bit value at the end of 16-bit entries. |
| for (FileGot &got : gots) { |
| got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { |
| return got.global.count(p.first); |
| }); |
| set_union(got.local16, got.local32); |
| got.local32.clear(); |
| } |
| |
| // Evaluate number of "reloc-only" entries in the resulting GOT. |
| // To do that put all unique "reloc-only" and "global" entries |
| // from all GOTs to the future primary GOT. |
| FileGot *primGot = &mergedGots.front(); |
| for (FileGot &got : gots) { |
| set_union(primGot->relocs, got.global); |
| set_union(primGot->relocs, got.relocs); |
| got.relocs.clear(); |
| } |
| |
| // Evaluate number of "page" entries in each GOT. |
| for (FileGot &got : gots) { |
| for (std::pair<const OutputSection *, FileGot::PageBlock> &p : |
| got.pagesMap) { |
| const OutputSection *os = p.first; |
| uint64_t secSize = 0; |
| for (SectionCommand *cmd : os->commands) { |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) |
| for (InputSection *isec : isd->sections) { |
| uint64_t off = alignToPowerOf2(secSize, isec->addralign); |
| secSize = off + isec->getSize(); |
| } |
| } |
| p.second.count = getMipsPageCount(secSize); |
| } |
| } |
| |
| // Merge GOTs. Try to join as much as possible GOTs but do not exceed |
| // maximum GOT size. At first, try to fill the primary GOT because |
| // the primary GOT can be accessed in the most effective way. If it |
| // is not possible, try to fill the last GOT in the list, and finally |
| // create a new GOT if both attempts failed. |
| for (FileGot &srcGot : gots) { |
| InputFile *file = srcGot.file; |
| if (tryMergeGots(mergedGots.front(), srcGot, true)) { |
| file->mipsGotIndex = 0; |
| } else { |
| // If this is the first time we failed to merge with the primary GOT, |
| // MergedGots.back() will also be the primary GOT. We must make sure not |
| // to try to merge again with isPrimary=false, as otherwise, if the |
| // inputs are just right, we could allow the primary GOT to become 1 or 2 |
| // words bigger due to ignoring the header size. |
| if (mergedGots.size() == 1 || |
| !tryMergeGots(mergedGots.back(), srcGot, false)) { |
| mergedGots.emplace_back(); |
| std::swap(mergedGots.back(), srcGot); |
| } |
| file->mipsGotIndex = mergedGots.size() - 1; |
| } |
| } |
| std::swap(gots, mergedGots); |
| |
| // Reduce number of "reloc-only" entries in the primary GOT |
| // by subtracting "global" entries in the primary GOT. |
| primGot = &gots.front(); |
| primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { |
| return primGot->global.count(p.first); |
| }); |
| |
| // Calculate indexes for each GOT entry. |
| size_t index = headerEntriesNum; |
| for (FileGot &got : gots) { |
| got.startIndex = &got == primGot ? 0 : index; |
| for (std::pair<const OutputSection *, FileGot::PageBlock> &p : |
| got.pagesMap) { |
| // For each output section referenced by GOT page relocations calculate |
| // and save into pagesMap an upper bound of MIPS GOT entries required |
| // to store page addresses of local symbols. We assume the worst case - |
| // each 64kb page of the output section has at least one GOT relocation |
| // against it. And take in account the case when the section intersects |
| // page boundaries. |
| p.second.firstIndex = index; |
| index += p.second.count; |
| } |
| for (auto &p: got.local16) |
| p.second = index++; |
| for (auto &p: got.global) |
| p.second = index++; |
| for (auto &p: got.relocs) |
| p.second = index++; |
| for (auto &p: got.tls) |
| p.second = index++; |
| for (auto &p: got.dynTlsSymbols) { |
| p.second = index; |
| index += 2; |
| } |
| } |
| |
| // Update SymbolAux::gotIdx field to use this |
| // value later in the `sortMipsSymbols` function. |
| for (auto &p : primGot->global) { |
| if (p.first->auxIdx == 0) |
| p.first->allocateAux(); |
| ctx.symAux.back().gotIdx = p.second; |
| } |
| for (auto &p : primGot->relocs) { |
| if (p.first->auxIdx == 0) |
| p.first->allocateAux(); |
| ctx.symAux.back().gotIdx = p.second; |
| } |
| |
| // Create dynamic relocations. |
| for (FileGot &got : gots) { |
| // Create dynamic relocations for TLS entries. |
| for (std::pair<Symbol *, size_t> &p : got.tls) { |
| Symbol *s = p.first; |
| uint64_t offset = p.second * config->wordsize; |
| // When building a shared library we still need a dynamic relocation |
| // for the TP-relative offset as we don't know how much other data will |
| // be allocated before us in the static TLS block. |
| if (s->isPreemptible || config->shared) |
| ctx.mainPart->relaDyn->addReloc( |
| {ctx.target->tlsGotRel, this, offset, |
| DynamicReloc::AgainstSymbolWithTargetVA, *s, 0, R_ABS}); |
| } |
| for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { |
| Symbol *s = p.first; |
| uint64_t offset = p.second * config->wordsize; |
| if (s == nullptr) { |
| if (!config->shared) |
| continue; |
| ctx.mainPart->relaDyn->addReloc( |
| {ctx.target->tlsModuleIndexRel, this, offset}); |
| } else { |
| // When building a shared library we still need a dynamic relocation |
| // for the module index. Therefore only checking for |
| // S->isPreemptible is not sufficient (this happens e.g. for |
| // thread-locals that have been marked as local through a linker script) |
| if (!s->isPreemptible && !config->shared) |
| continue; |
| ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsModuleIndexRel, |
| *this, offset, *s); |
| // However, we can skip writing the TLS offset reloc for non-preemptible |
| // symbols since it is known even in shared libraries |
| if (!s->isPreemptible) |
| continue; |
| offset += config->wordsize; |
| ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsOffsetRel, *this, |
| offset, *s); |
| } |
| } |
| |
| // Do not create dynamic relocations for non-TLS |
| // entries in the primary GOT. |
| if (&got == primGot) |
| continue; |
| |
| // Dynamic relocations for "global" entries. |
| for (const std::pair<Symbol *, size_t> &p : got.global) { |
| uint64_t offset = p.second * config->wordsize; |
| ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->relativeRel, *this, |
| offset, *p.first); |
| } |
| if (!config->isPic) |
| continue; |
| // Dynamic relocations for "local" entries in case of PIC. |
| for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : |
| got.pagesMap) { |
| size_t pageCount = l.second.count; |
| for (size_t pi = 0; pi < pageCount; ++pi) { |
| uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; |
| ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset, |
| l.first, int64_t(pi * 0x10000)}); |
| } |
| } |
| for (const std::pair<GotEntry, size_t> &p : got.local16) { |
| uint64_t offset = p.second * config->wordsize; |
| ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset, |
| DynamicReloc::AddendOnlyWithTargetVA, |
| *p.first.first, p.first.second, R_ABS}); |
| } |
| } |
| } |
| |
| bool MipsGotSection::isNeeded() const { |
| // We add the .got section to the result for dynamic MIPS target because |
| // its address and properties are mentioned in the .dynamic section. |
| return !config->relocatable; |
| } |
| |
| uint64_t MipsGotSection::getGp(const InputFile *f) const { |
| // For files without related GOT or files refer a primary GOT |
| // returns "common" _gp value. For secondary GOTs calculate |
| // individual _gp values. |
| if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) |
| return ctx.sym.mipsGp->getVA(0); |
| return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0; |
| } |
| |
| void MipsGotSection::writeTo(uint8_t *buf) { |
| // Set the MSB of the second GOT slot. This is not required by any |
| // MIPS ABI documentation, though. |
| // |
| // There is a comment in glibc saying that "The MSB of got[1] of a |
| // gnu object is set to identify gnu objects," and in GNU gold it |
| // says "the second entry will be used by some runtime loaders". |
| // But how this field is being used is unclear. |
| // |
| // We are not really willing to mimic other linkers behaviors |
| // without understanding why they do that, but because all files |
| // generated by GNU tools have this special GOT value, and because |
| // we've been doing this for years, it is probably a safe bet to |
| // keep doing this for now. We really need to revisit this to see |
| // if we had to do this. |
| writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); |
| for (const FileGot &g : gots) { |
| auto write = [&](size_t i, const Symbol *s, int64_t a) { |
| uint64_t va = a; |
| if (s) |
| va = s->getVA(a); |
| writeUint(buf + i * config->wordsize, va); |
| }; |
| // Write 'page address' entries to the local part of the GOT. |
| for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : |
| g.pagesMap) { |
| size_t pageCount = l.second.count; |
| uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); |
| for (size_t pi = 0; pi < pageCount; ++pi) |
| write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); |
| } |
| // Local, global, TLS, reloc-only entries. |
| // If TLS entry has a corresponding dynamic relocations, leave it |
| // initialized by zero. Write down adjusted TLS symbol's values otherwise. |
| // To calculate the adjustments use offsets for thread-local storage. |
| // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL |
| for (const std::pair<GotEntry, size_t> &p : g.local16) |
| write(p.second, p.first.first, p.first.second); |
| // Write VA to the primary GOT only. For secondary GOTs that |
| // will be done by REL32 dynamic relocations. |
| if (&g == &gots.front()) |
| for (const std::pair<Symbol *, size_t> &p : g.global) |
| write(p.second, p.first, 0); |
| for (const std::pair<Symbol *, size_t> &p : g.relocs) |
| write(p.second, p.first, 0); |
| for (const std::pair<Symbol *, size_t> &p : g.tls) |
| write(p.second, p.first, |
| p.first->isPreemptible || config->shared ? 0 : -0x7000); |
| for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { |
| if (p.first == nullptr && !config->shared) |
| write(p.second, nullptr, 1); |
| else if (p.first && !p.first->isPreemptible) { |
| // If we are emitting a shared library with relocations we mustn't write |
| // anything to the GOT here. When using Elf_Rel relocations the value |
| // one will be treated as an addend and will cause crashes at runtime |
| if (!config->shared) |
| write(p.second, nullptr, 1); |
| write(p.second + 1, p.first, -0x8000); |
| } |
| } |
| } |
| } |
| |
| // On PowerPC the .plt section is used to hold the table of function addresses |
| // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss |
| // section. I don't know why we have a BSS style type for the section but it is |
| // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. |
| GotPltSection::GotPltSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, |
| ".got.plt") { |
| if (config->emachine == EM_PPC) { |
| name = ".plt"; |
| } else if (config->emachine == EM_PPC64) { |
| type = SHT_NOBITS; |
| name = ".plt"; |
| } |
| } |
| |
| void GotPltSection::addEntry(Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1 && |
| ctx.symAux.back().pltIdx == entries.size()); |
| entries.push_back(&sym); |
| } |
| |
| size_t GotPltSection::getSize() const { |
| return (ctx.target->gotPltHeaderEntriesNum + entries.size()) * |
| ctx.target->gotEntrySize; |
| } |
| |
| void GotPltSection::writeTo(uint8_t *buf) { |
| ctx.target->writeGotPltHeader(buf); |
| buf += ctx.target->gotPltHeaderEntriesNum * ctx.target->gotEntrySize; |
| for (const Symbol *b : entries) { |
| ctx.target->writeGotPlt(buf, *b); |
| buf += ctx.target->gotEntrySize; |
| } |
| } |
| |
| bool GotPltSection::isNeeded() const { |
| // We need to emit GOTPLT even if it's empty if there's a relocation relative |
| // to it. |
| return !entries.empty() || hasGotPltOffRel; |
| } |
| |
| static StringRef getIgotPltName() { |
| // On ARM the IgotPltSection is part of the GotSection. |
| if (config->emachine == EM_ARM) |
| return ".got"; |
| |
| // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection |
| // needs to be named the same. |
| if (config->emachine == EM_PPC64) |
| return ".plt"; |
| |
| return ".got.plt"; |
| } |
| |
| // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit |
| // with the IgotPltSection. |
| IgotPltSection::IgotPltSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, |
| config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, |
| ctx.target->gotEntrySize, getIgotPltName()) {} |
| |
| void IgotPltSection::addEntry(Symbol &sym) { |
| assert(ctx.symAux.back().pltIdx == entries.size()); |
| entries.push_back(&sym); |
| } |
| |
| size_t IgotPltSection::getSize() const { |
| return entries.size() * ctx.target->gotEntrySize; |
| } |
| |
| void IgotPltSection::writeTo(uint8_t *buf) { |
| for (const Symbol *b : entries) { |
| ctx.target->writeIgotPlt(buf, *b); |
| buf += ctx.target->gotEntrySize; |
| } |
| } |
| |
| StringTableSection::StringTableSection(StringRef name, bool dynamic) |
| : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), |
| dynamic(dynamic) { |
| // ELF string tables start with a NUL byte. |
| strings.push_back(""); |
| stringMap.try_emplace(CachedHashStringRef(""), 0); |
| size = 1; |
| } |
| |
| // Adds a string to the string table. If `hashIt` is true we hash and check for |
| // duplicates. It is optional because the name of global symbols are already |
| // uniqued and hashing them again has a big cost for a small value: uniquing |
| // them with some other string that happens to be the same. |
| unsigned StringTableSection::addString(StringRef s, bool hashIt) { |
| if (hashIt) { |
| auto r = stringMap.try_emplace(CachedHashStringRef(s), size); |
| if (!r.second) |
| return r.first->second; |
| } |
| if (s.empty()) |
| return 0; |
| unsigned ret = this->size; |
| this->size = this->size + s.size() + 1; |
| strings.push_back(s); |
| return ret; |
| } |
| |
| void StringTableSection::writeTo(uint8_t *buf) { |
| for (StringRef s : strings) { |
| memcpy(buf, s.data(), s.size()); |
| buf[s.size()] = '\0'; |
| buf += s.size() + 1; |
| } |
| } |
| |
| // Returns the number of entries in .gnu.version_d: the number of |
| // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. |
| // Note that we don't support vd_cnt > 1 yet. |
| static unsigned getVerDefNum() { |
| return namedVersionDefs().size() + 1; |
| } |
| |
| template <class ELFT> |
| DynamicSection<ELFT>::DynamicSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, |
| ".dynamic") { |
| this->entsize = ELFT::Is64Bits ? 16 : 8; |
| |
| // .dynamic section is not writable on MIPS and on Fuchsia OS |
| // which passes -z rodynamic. |
| // See "Special Section" in Chapter 4 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (config->emachine == EM_MIPS || config->zRodynamic) |
| this->flags = SHF_ALLOC; |
| } |
| |
| // The output section .rela.dyn may include these synthetic sections: |
| // |
| // - part.relaDyn |
| // - in.relaPlt: this is included if a linker script places .rela.plt inside |
| // .rela.dyn |
| // |
| // DT_RELASZ is the total size of the included sections. |
| static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) { |
| size_t size = relaDyn.getSize(); |
| if (in.relaPlt->getParent() == relaDyn.getParent()) |
| size += in.relaPlt->getSize(); |
| return size; |
| } |
| |
| // A Linker script may assign the RELA relocation sections to the same |
| // output section. When this occurs we cannot just use the OutputSection |
| // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to |
| // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). |
| static uint64_t addPltRelSz() { return in.relaPlt->getSize(); } |
| |
| // Add remaining entries to complete .dynamic contents. |
| template <class ELFT> |
| std::vector<std::pair<int32_t, uint64_t>> |
| DynamicSection<ELFT>::computeContents() { |
| elf::Partition &part = getPartition(); |
| bool isMain = part.name.empty(); |
| std::vector<std::pair<int32_t, uint64_t>> entries; |
| |
| auto addInt = [&](int32_t tag, uint64_t val) { |
| entries.emplace_back(tag, val); |
| }; |
| auto addInSec = [&](int32_t tag, const InputSection &sec) { |
| entries.emplace_back(tag, sec.getVA()); |
| }; |
| |
| for (StringRef s : config->filterList) |
| addInt(DT_FILTER, part.dynStrTab->addString(s)); |
| for (StringRef s : config->auxiliaryList) |
| addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); |
| |
| if (!config->rpath.empty()) |
| addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, |
| part.dynStrTab->addString(config->rpath)); |
| |
| for (SharedFile *file : ctx.sharedFiles) |
| if (file->isNeeded) |
| addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); |
| |
| if (isMain) { |
| if (!config->soName.empty()) |
| addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); |
| } else { |
| if (!config->soName.empty()) |
| addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); |
| addInt(DT_SONAME, part.dynStrTab->addString(part.name)); |
| } |
| |
| // Set DT_FLAGS and DT_FLAGS_1. |
| uint32_t dtFlags = 0; |
| uint32_t dtFlags1 = 0; |
| if (config->bsymbolic == BsymbolicKind::All) |
| dtFlags |= DF_SYMBOLIC; |
| if (config->zGlobal) |
| dtFlags1 |= DF_1_GLOBAL; |
| if (config->zInitfirst) |
| dtFlags1 |= DF_1_INITFIRST; |
| if (config->zInterpose) |
| dtFlags1 |= DF_1_INTERPOSE; |
| if (config->zNodefaultlib) |
| dtFlags1 |= DF_1_NODEFLIB; |
| if (config->zNodelete) |
| dtFlags1 |= DF_1_NODELETE; |
| if (config->zNodlopen) |
| dtFlags1 |= DF_1_NOOPEN; |
| if (config->pie) |
| dtFlags1 |= DF_1_PIE; |
| if (config->zNow) { |
| dtFlags |= DF_BIND_NOW; |
| dtFlags1 |= DF_1_NOW; |
| } |
| if (config->zOrigin) { |
| dtFlags |= DF_ORIGIN; |
| dtFlags1 |= DF_1_ORIGIN; |
| } |
| if (!config->zText) |
| dtFlags |= DF_TEXTREL; |
| if (ctx.hasTlsIe && config->shared) |
| dtFlags |= DF_STATIC_TLS; |
| |
| if (dtFlags) |
| addInt(DT_FLAGS, dtFlags); |
| if (dtFlags1) |
| addInt(DT_FLAGS_1, dtFlags1); |
| |
| // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We |
| // need it for each process, so we don't write it for DSOs. The loader writes |
| // the pointer into this entry. |
| // |
| // DT_DEBUG is the only .dynamic entry that needs to be written to. Some |
| // systems (currently only Fuchsia OS) provide other means to give the |
| // debugger this information. Such systems may choose make .dynamic read-only. |
| // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. |
| if (!config->shared && !config->relocatable && !config->zRodynamic) |
| addInt(DT_DEBUG, 0); |
| |
| if (part.relaDyn->isNeeded()) { |
| addInSec(part.relaDyn->dynamicTag, *part.relaDyn); |
| entries.emplace_back(part.relaDyn->sizeDynamicTag, |
| addRelaSz(*part.relaDyn)); |
| |
| bool isRela = config->isRela; |
| addInt(isRela ? DT_RELAENT : DT_RELENT, |
| isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); |
| |
| // MIPS dynamic loader does not support RELCOUNT tag. |
| // The problem is in the tight relation between dynamic |
| // relocations and GOT. So do not emit this tag on MIPS. |
| if (config->emachine != EM_MIPS) { |
| size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); |
| if (config->zCombreloc && numRelativeRels) |
| addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); |
| } |
| } |
| if (part.relrDyn && part.relrDyn->getParent() && |
| !part.relrDyn->relocs.empty()) { |
| addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, |
| *part.relrDyn); |
| addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, |
| part.relrDyn->getParent()->size); |
| addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, |
| sizeof(Elf_Relr)); |
| } |
| if (part.relrAuthDyn && part.relrAuthDyn->getParent() && |
| !part.relrAuthDyn->relocs.empty()) { |
| addInSec(DT_AARCH64_AUTH_RELR, *part.relrAuthDyn); |
| addInt(DT_AARCH64_AUTH_RELRSZ, part.relrAuthDyn->getParent()->size); |
| addInt(DT_AARCH64_AUTH_RELRENT, sizeof(Elf_Relr)); |
| } |
| if (isMain && in.relaPlt->isNeeded()) { |
| addInSec(DT_JMPREL, *in.relaPlt); |
| entries.emplace_back(DT_PLTRELSZ, addPltRelSz()); |
| switch (config->emachine) { |
| case EM_MIPS: |
| addInSec(DT_MIPS_PLTGOT, *in.gotPlt); |
| break; |
| case EM_S390: |
| addInSec(DT_PLTGOT, *in.got); |
| break; |
| case EM_SPARCV9: |
| addInSec(DT_PLTGOT, *in.plt); |
| break; |
| case EM_AARCH64: |
| if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { |
| return r.type == ctx.target->pltRel && |
| r.sym->stOther & STO_AARCH64_VARIANT_PCS; |
| }) != in.relaPlt->relocs.end()) |
| addInt(DT_AARCH64_VARIANT_PCS, 0); |
| addInSec(DT_PLTGOT, *in.gotPlt); |
| break; |
| case EM_RISCV: |
| if (llvm::any_of(in.relaPlt->relocs, [](const DynamicReloc &r) { |
| return r.type == ctx.target->pltRel && |
| (r.sym->stOther & STO_RISCV_VARIANT_CC); |
| })) |
| addInt(DT_RISCV_VARIANT_CC, 0); |
| [[fallthrough]]; |
| default: |
| addInSec(DT_PLTGOT, *in.gotPlt); |
| break; |
| } |
| addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); |
| } |
| |
| if (config->emachine == EM_AARCH64) { |
| if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) |
| addInt(DT_AARCH64_BTI_PLT, 0); |
| if (config->zPacPlt) |
| addInt(DT_AARCH64_PAC_PLT, 0); |
| |
| if (hasMemtag()) { |
| addInt(DT_AARCH64_MEMTAG_MODE, config->androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC); |
| addInt(DT_AARCH64_MEMTAG_HEAP, config->androidMemtagHeap); |
| addInt(DT_AARCH64_MEMTAG_STACK, config->androidMemtagStack); |
| if (ctx.mainPart->memtagGlobalDescriptors->isNeeded()) { |
| addInSec(DT_AARCH64_MEMTAG_GLOBALS, |
| *ctx.mainPart->memtagGlobalDescriptors); |
| addInt(DT_AARCH64_MEMTAG_GLOBALSSZ, |
| ctx.mainPart->memtagGlobalDescriptors->getSize()); |
| } |
| } |
| } |
| |
| addInSec(DT_SYMTAB, *part.dynSymTab); |
| addInt(DT_SYMENT, sizeof(Elf_Sym)); |
| addInSec(DT_STRTAB, *part.dynStrTab); |
| addInt(DT_STRSZ, part.dynStrTab->getSize()); |
| if (!config->zText) |
| addInt(DT_TEXTREL, 0); |
| if (part.gnuHashTab && part.gnuHashTab->getParent()) |
| addInSec(DT_GNU_HASH, *part.gnuHashTab); |
| if (part.hashTab && part.hashTab->getParent()) |
| addInSec(DT_HASH, *part.hashTab); |
| |
| if (isMain) { |
| if (ctx.out.preinitArray) { |
| addInt(DT_PREINIT_ARRAY, ctx.out.preinitArray->addr); |
| addInt(DT_PREINIT_ARRAYSZ, ctx.out.preinitArray->size); |
| } |
| if (ctx.out.initArray) { |
| addInt(DT_INIT_ARRAY, ctx.out.initArray->addr); |
| addInt(DT_INIT_ARRAYSZ, ctx.out.initArray->size); |
| } |
| if (ctx.out.finiArray) { |
| addInt(DT_FINI_ARRAY, ctx.out.finiArray->addr); |
| addInt(DT_FINI_ARRAYSZ, ctx.out.finiArray->size); |
| } |
| |
| if (Symbol *b = symtab.find(config->init)) |
| if (b->isDefined()) |
| addInt(DT_INIT, b->getVA()); |
| if (Symbol *b = symtab.find(config->fini)) |
| if (b->isDefined()) |
| addInt(DT_FINI, b->getVA()); |
| } |
| |
| if (part.verSym && part.verSym->isNeeded()) |
| addInSec(DT_VERSYM, *part.verSym); |
| if (part.verDef && part.verDef->isLive()) { |
| addInSec(DT_VERDEF, *part.verDef); |
| addInt(DT_VERDEFNUM, getVerDefNum()); |
| } |
| if (part.verNeed && part.verNeed->isNeeded()) { |
| addInSec(DT_VERNEED, *part.verNeed); |
| unsigned needNum = 0; |
| for (SharedFile *f : ctx.sharedFiles) |
| if (!f->vernauxs.empty()) |
| ++needNum; |
| addInt(DT_VERNEEDNUM, needNum); |
| } |
| |
| if (config->emachine == EM_MIPS) { |
| addInt(DT_MIPS_RLD_VERSION, 1); |
| addInt(DT_MIPS_FLAGS, RHF_NOTPOT); |
| addInt(DT_MIPS_BASE_ADDRESS, ctx.target->getImageBase()); |
| addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); |
| addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum()); |
| |
| if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) |
| addInt(DT_MIPS_GOTSYM, b->dynsymIndex); |
| else |
| addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); |
| addInSec(DT_PLTGOT, *in.mipsGot); |
| if (in.mipsRldMap) { |
| if (!config->pie) |
| addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap); |
| // Store the offset to the .rld_map section |
| // relative to the address of the tag. |
| addInt(DT_MIPS_RLD_MAP_REL, |
| in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); |
| } |
| } |
| |
| // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, |
| // glibc assumes the old-style BSS PLT layout which we don't support. |
| if (config->emachine == EM_PPC) |
| addInSec(DT_PPC_GOT, *in.got); |
| |
| // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. |
| if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { |
| // The Glink tag points to 32 bytes before the first lazy symbol resolution |
| // stub, which starts directly after the header. |
| addInt(DT_PPC64_GLINK, in.plt->getVA() + ctx.target->pltHeaderSize - 32); |
| } |
| |
| if (config->emachine == EM_PPC64) |
| addInt(DT_PPC64_OPT, getPPC64TargetInfo()->ppc64DynamicSectionOpt); |
| |
| addInt(DT_NULL, 0); |
| return entries; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { |
| if (OutputSection *sec = getPartition().dynStrTab->getParent()) |
| getParent()->link = sec->sectionIndex; |
| this->size = computeContents().size() * this->entsize; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { |
| auto *p = reinterpret_cast<Elf_Dyn *>(buf); |
| |
| for (std::pair<int32_t, uint64_t> kv : computeContents()) { |
| p->d_tag = kv.first; |
| p->d_un.d_val = kv.second; |
| ++p; |
| } |
| } |
| |
| uint64_t DynamicReloc::getOffset() const { |
| return inputSec->getVA(offsetInSec); |
| } |
| |
| int64_t DynamicReloc::computeAddend() const { |
| switch (kind) { |
| case AddendOnly: |
| assert(sym == nullptr); |
| return addend; |
| case AgainstSymbol: |
| assert(sym != nullptr); |
| return addend; |
| case AddendOnlyWithTargetVA: |
| case AgainstSymbolWithTargetVA: { |
| uint64_t ca = InputSection::getRelocTargetVA(inputSec->file, type, addend, |
| getOffset(), *sym, expr); |
| return config->is64 ? ca : SignExtend64<32>(ca); |
| } |
| case MipsMultiGotPage: |
| assert(sym == nullptr); |
| return getMipsPageAddr(outputSec->addr) + addend; |
| } |
| llvm_unreachable("Unknown DynamicReloc::Kind enum"); |
| } |
| |
| uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { |
| if (!needsDynSymIndex()) |
| return 0; |
| |
| size_t index = symTab->getSymbolIndex(*sym); |
| assert((index != 0 || |
| (type != ctx.target->gotRel && type != ctx.target->pltRel) || |
| !ctx.mainPart->dynSymTab->getParent()) && |
| "GOT or PLT relocation must refer to symbol in dynamic symbol table"); |
| return index; |
| } |
| |
| RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, |
| int32_t dynamicTag, |
| int32_t sizeDynamicTag, |
| bool combreloc, |
| unsigned concurrency) |
| : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), |
| dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), |
| relocsVec(concurrency), combreloc(combreloc) {} |
| |
| void RelocationBaseSection::addSymbolReloc( |
| RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, |
| int64_t addend, std::optional<RelType> addendRelType) { |
| addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, |
| R_ADDEND, addendRelType ? *addendRelType : ctx.target->noneRel); |
| } |
| |
| void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( |
| RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, |
| RelType addendRelType) { |
| // No need to write an addend to the section for preemptible symbols. |
| if (sym.isPreemptible) |
| addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, |
| R_ABS}); |
| else |
| addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, |
| sym, 0, R_ABS, addendRelType); |
| } |
| |
| void RelocationBaseSection::mergeRels() { |
| size_t newSize = relocs.size(); |
| for (const auto &v : relocsVec) |
| newSize += v.size(); |
| relocs.reserve(newSize); |
| for (const auto &v : relocsVec) |
| llvm::append_range(relocs, v); |
| relocsVec.clear(); |
| } |
| |
| void RelocationBaseSection::partitionRels() { |
| if (!combreloc) |
| return; |
| const RelType relativeRel = ctx.target->relativeRel; |
| numRelativeRelocs = |
| std::stable_partition(relocs.begin(), relocs.end(), |
| [=](auto &r) { return r.type == relativeRel; }) - |
| relocs.begin(); |
| } |
| |
| void RelocationBaseSection::finalizeContents() { |
| SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); |
| |
| // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE |
| // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that |
| // case. |
| if (symTab && symTab->getParent()) |
| getParent()->link = symTab->getParent()->sectionIndex; |
| else |
| getParent()->link = 0; |
| |
| if (in.relaPlt.get() == this && in.gotPlt->getParent()) { |
| getParent()->flags |= ELF::SHF_INFO_LINK; |
| getParent()->info = in.gotPlt->getParent()->sectionIndex; |
| } |
| } |
| |
| void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) { |
| r_offset = getOffset(); |
| r_sym = getSymIndex(symtab); |
| addend = computeAddend(); |
| kind = AddendOnly; // Catch errors |
| } |
| |
| void RelocationBaseSection::computeRels() { |
| SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); |
| parallelForEach(relocs, |
| [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); }); |
| |
| auto irelative = std::stable_partition( |
| relocs.begin() + numRelativeRelocs, relocs.end(), |
| [t = ctx.target->iRelativeRel](auto &r) { return r.type != t; }); |
| |
| // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to |
| // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset |
| // is to make results easier to read. |
| if (combreloc) { |
| auto nonRelative = relocs.begin() + numRelativeRelocs; |
| parallelSort(relocs.begin(), nonRelative, |
| [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); |
| // Non-relative relocations are few, so don't bother with parallelSort. |
| llvm::sort(nonRelative, irelative, [&](auto &a, auto &b) { |
| return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); |
| }); |
| } |
| } |
| |
| template <class ELFT> |
| RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc, |
| unsigned concurrency) |
| : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, |
| config->isRela ? DT_RELA : DT_REL, |
| config->isRela ? DT_RELASZ : DT_RELSZ, combreloc, |
| concurrency) { |
| this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { |
| computeRels(); |
| for (const DynamicReloc &rel : relocs) { |
| auto *p = reinterpret_cast<Elf_Rela *>(buf); |
| p->r_offset = rel.r_offset; |
| p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL); |
| if (config->isRela) |
| p->r_addend = rel.addend; |
| buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| } |
| } |
| |
| RelrBaseSection::RelrBaseSection(unsigned concurrency, bool isAArch64Auth) |
| : SyntheticSection( |
| SHF_ALLOC, |
| isAArch64Auth |
| ? SHT_AARCH64_AUTH_RELR |
| : (config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR), |
| config->wordsize, isAArch64Auth ? ".relr.auth.dyn" : ".relr.dyn"), |
| relocsVec(concurrency) {} |
| |
| void RelrBaseSection::mergeRels() { |
| size_t newSize = relocs.size(); |
| for (const auto &v : relocsVec) |
| newSize += v.size(); |
| relocs.reserve(newSize); |
| for (const auto &v : relocsVec) |
| llvm::append_range(relocs, v); |
| relocsVec.clear(); |
| } |
| |
| template <class ELFT> |
| AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( |
| StringRef name, unsigned concurrency) |
| : RelocationBaseSection( |
| name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, |
| config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, |
| config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, |
| /*combreloc=*/false, concurrency) { |
| this->entsize = 1; |
| } |
| |
| template <class ELFT> |
| bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { |
| // This function computes the contents of an Android-format packed relocation |
| // section. |
| // |
| // This format compresses relocations by using relocation groups to factor out |
| // fields that are common between relocations and storing deltas from previous |
| // relocations in SLEB128 format (which has a short representation for small |
| // numbers). A good example of a relocation type with common fields is |
| // R_*_RELATIVE, which is normally used to represent function pointers in |
| // vtables. In the REL format, each relative relocation has the same r_info |
| // field, and is only different from other relative relocations in terms of |
| // the r_offset field. By sorting relocations by offset, grouping them by |
| // r_info and representing each relocation with only the delta from the |
| // previous offset, each 8-byte relocation can be compressed to as little as 1 |
| // byte (or less with run-length encoding). This relocation packer was able to |
| // reduce the size of the relocation section in an Android Chromium DSO from |
| // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. |
| // |
| // A relocation section consists of a header containing the literal bytes |
| // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two |
| // elements are the total number of relocations in the section and an initial |
| // r_offset value. The remaining elements define a sequence of relocation |
| // groups. Each relocation group starts with a header consisting of the |
| // following elements: |
| // |
| // - the number of relocations in the relocation group |
| // - flags for the relocation group |
| // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta |
| // for each relocation in the group. |
| // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info |
| // field for each relocation in the group. |
| // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and |
| // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for |
| // each relocation in the group. |
| // |
| // Following the relocation group header are descriptions of each of the |
| // relocations in the group. They consist of the following elements: |
| // |
| // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset |
| // delta for this relocation. |
| // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info |
| // field for this relocation. |
| // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and |
| // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for |
| // this relocation. |
| |
| size_t oldSize = relocData.size(); |
| |
| relocData = {'A', 'P', 'S', '2'}; |
| raw_svector_ostream os(relocData); |
| auto add = [&](int64_t v) { encodeSLEB128(v, os); }; |
| |
| // The format header includes the number of relocations and the initial |
| // offset (we set this to zero because the first relocation group will |
| // perform the initial adjustment). |
| add(relocs.size()); |
| add(0); |
| |
| std::vector<Elf_Rela> relatives, nonRelatives; |
| |
| for (const DynamicReloc &rel : relocs) { |
| Elf_Rela r; |
| r.r_offset = rel.getOffset(); |
| r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()), |
| rel.type, false); |
| r.r_addend = config->isRela ? rel.computeAddend() : 0; |
| |
| if (r.getType(config->isMips64EL) == ctx.target->relativeRel) |
| relatives.push_back(r); |
| else |
| nonRelatives.push_back(r); |
| } |
| |
| llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { |
| return a.r_offset < b.r_offset; |
| }); |
| |
| // Try to find groups of relative relocations which are spaced one word |
| // apart from one another. These generally correspond to vtable entries. The |
| // format allows these groups to be encoded using a sort of run-length |
| // encoding, but each group will cost 7 bytes in addition to the offset from |
| // the previous group, so it is only profitable to do this for groups of |
| // size 8 or larger. |
| std::vector<Elf_Rela> ungroupedRelatives; |
| std::vector<std::vector<Elf_Rela>> relativeGroups; |
| for (auto i = relatives.begin(), e = relatives.end(); i != e;) { |
| std::vector<Elf_Rela> group; |
| do { |
| group.push_back(*i++); |
| } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); |
| |
| if (group.size() < 8) |
| ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), |
| group.end()); |
| else |
| relativeGroups.emplace_back(std::move(group)); |
| } |
| |
| // For non-relative relocations, we would like to: |
| // 1. Have relocations with the same symbol offset to be consecutive, so |
| // that the runtime linker can speed-up symbol lookup by implementing an |
| // 1-entry cache. |
| // 2. Group relocations by r_info to reduce the size of the relocation |
| // section. |
| // Since the symbol offset is the high bits in r_info, sorting by r_info |
| // allows us to do both. |
| // |
| // For Rela, we also want to sort by r_addend when r_info is the same. This |
| // enables us to group by r_addend as well. |
| llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { |
| if (a.r_info != b.r_info) |
| return a.r_info < b.r_info; |
| if (a.r_addend != b.r_addend) |
| return a.r_addend < b.r_addend; |
| return a.r_offset < b.r_offset; |
| }); |
| |
| // Group relocations with the same r_info. Note that each group emits a group |
| // header and that may make the relocation section larger. It is hard to |
| // estimate the size of a group header as the encoded size of that varies |
| // based on r_info. However, we can approximate this trade-off by the number |
| // of values encoded. Each group header contains 3 values, and each relocation |
| // in a group encodes one less value, as compared to when it is not grouped. |
| // Therefore, we only group relocations if there are 3 or more of them with |
| // the same r_info. |
| // |
| // For Rela, the addend for most non-relative relocations is zero, and thus we |
| // can usually get a smaller relocation section if we group relocations with 0 |
| // addend as well. |
| std::vector<Elf_Rela> ungroupedNonRelatives; |
| std::vector<std::vector<Elf_Rela>> nonRelativeGroups; |
| for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { |
| auto j = i + 1; |
| while (j != e && i->r_info == j->r_info && |
| (!config->isRela || i->r_addend == j->r_addend)) |
| ++j; |
| if (j - i < 3 || (config->isRela && i->r_addend != 0)) |
| ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); |
| else |
| nonRelativeGroups.emplace_back(i, j); |
| i = j; |
| } |
| |
| // Sort ungrouped relocations by offset to minimize the encoded length. |
| llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { |
| return a.r_offset < b.r_offset; |
| }); |
| |
| unsigned hasAddendIfRela = |
| config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; |
| |
| uint64_t offset = 0; |
| uint64_t addend = 0; |
| |
| // Emit the run-length encoding for the groups of adjacent relative |
| // relocations. Each group is represented using two groups in the packed |
| // format. The first is used to set the current offset to the start of the |
| // group (and also encodes the first relocation), and the second encodes the |
| // remaining relocations. |
| for (std::vector<Elf_Rela> &g : relativeGroups) { |
| // The first relocation in the group. |
| add(1); |
| add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | |
| RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); |
| add(g[0].r_offset - offset); |
| add(ctx.target->relativeRel); |
| if (config->isRela) { |
| add(g[0].r_addend - addend); |
| addend = g[0].r_addend; |
| } |
| |
| // The remaining relocations. |
| add(g.size() - 1); |
| add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | |
| RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); |
| add(config->wordsize); |
| add(ctx.target->relativeRel); |
| if (config->isRela) { |
| for (const auto &i : llvm::drop_begin(g)) { |
| add(i.r_addend - addend); |
| addend = i.r_addend; |
| } |
| } |
| |
| offset = g.back().r_offset; |
| } |
| |
| // Now the ungrouped relatives. |
| if (!ungroupedRelatives.empty()) { |
| add(ungroupedRelatives.size()); |
| add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); |
| add(ctx.target->relativeRel); |
| for (Elf_Rela &r : ungroupedRelatives) { |
| add(r.r_offset - offset); |
| offset = r.r_offset; |
| if (config->isRela) { |
| add(r.r_addend - addend); |
| addend = r.r_addend; |
| } |
| } |
| } |
| |
| // Grouped non-relatives. |
| for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { |
| add(g.size()); |
| add(RELOCATION_GROUPED_BY_INFO_FLAG); |
| add(g[0].r_info); |
| for (const Elf_Rela &r : g) { |
| add(r.r_offset - offset); |
| offset = r.r_offset; |
| } |
| addend = 0; |
| } |
| |
| // Finally the ungrouped non-relative relocations. |
| if (!ungroupedNonRelatives.empty()) { |
| add(ungroupedNonRelatives.size()); |
| add(hasAddendIfRela); |
| for (Elf_Rela &r : ungroupedNonRelatives) { |
| add(r.r_offset - offset); |
| offset = r.r_offset; |
| add(r.r_info); |
| if (config->isRela) { |
| add(r.r_addend - addend); |
| addend = r.r_addend; |
| } |
| } |
| } |
| |
| // Don't allow the section to shrink; otherwise the size of the section can |
| // oscillate infinitely. |
| if (relocData.size() < oldSize) |
| relocData.append(oldSize - relocData.size(), 0); |
| |
| // Returns whether the section size changed. We need to keep recomputing both |
| // section layout and the contents of this section until the size converges |
| // because changing this section's size can affect section layout, which in |
| // turn can affect the sizes of the LEB-encoded integers stored in this |
| // section. |
| return relocData.size() != oldSize; |
| } |
| |
| template <class ELFT> |
| RelrSection<ELFT>::RelrSection(unsigned concurrency, bool isAArch64Auth) |
| : RelrBaseSection(concurrency, isAArch64Auth) { |
| this->entsize = config->wordsize; |
| } |
| |
| template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { |
| // This function computes the contents of an SHT_RELR packed relocation |
| // section. |
| // |
| // Proposal for adding SHT_RELR sections to generic-abi is here: |
| // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg |
| // |
| // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks |
| // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] |
| // |
| // i.e. start with an address, followed by any number of bitmaps. The address |
| // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 |
| // relocations each, at subsequent offsets following the last address entry. |
| // |
| // The bitmap entries must have 1 in the least significant bit. The assumption |
| // here is that an address cannot have 1 in lsb. Odd addresses are not |
| // supported. |
| // |
| // Excluding the least significant bit in the bitmap, each non-zero bit in |
| // the bitmap represents a relocation to be applied to a corresponding machine |
| // word that follows the base address word. The second least significant bit |
| // represents the machine word immediately following the initial address, and |
| // each bit that follows represents the next word, in linear order. As such, |
| // a single bitmap can encode up to 31 relocations in a 32-bit object, and |
| // 63 relocations in a 64-bit object. |
| // |
| // This encoding has a couple of interesting properties: |
| // 1. Looking at any entry, it is clear whether it's an address or a bitmap: |
| // even means address, odd means bitmap. |
| // 2. Just a simple list of addresses is a valid encoding. |
| |
| size_t oldSize = relrRelocs.size(); |
| relrRelocs.clear(); |
| |
| // Same as Config->Wordsize but faster because this is a compile-time |
| // constant. |
| const size_t wordsize = sizeof(typename ELFT::uint); |
| |
| // Number of bits to use for the relocation offsets bitmap. |
| // Must be either 63 or 31. |
| const size_t nBits = wordsize * 8 - 1; |
| |
| // Get offsets for all relative relocations and sort them. |
| std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); |
| for (auto [i, r] : llvm::enumerate(relocs)) |
| offsets[i] = r.getOffset(); |
| llvm::sort(offsets.get(), offsets.get() + relocs.size()); |
| |
| // For each leading relocation, find following ones that can be folded |
| // as a bitmap and fold them. |
| for (size_t i = 0, e = relocs.size(); i != e;) { |
| // Add a leading relocation. |
| relrRelocs.push_back(Elf_Relr(offsets[i])); |
| uint64_t base = offsets[i] + wordsize; |
| ++i; |
| |
| // Find foldable relocations to construct bitmaps. |
| for (;;) { |
| uint64_t bitmap = 0; |
| for (; i != e; ++i) { |
| uint64_t d = offsets[i] - base; |
| if (d >= nBits * wordsize || d % wordsize) |
| break; |
| bitmap |= uint64_t(1) << (d / wordsize); |
| } |
| if (!bitmap) |
| break; |
| relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); |
| base += nBits * wordsize; |
| } |
| } |
| |
| // Don't allow the section to shrink; otherwise the size of the section can |
| // oscillate infinitely. Trailing 1s do not decode to more relocations. |
| if (relrRelocs.size() < oldSize) { |
| log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + |
| " padding word(s)"); |
| relrRelocs.resize(oldSize, Elf_Relr(1)); |
| } |
| |
| return relrRelocs.size() != oldSize; |
| } |
| |
| SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) |
| : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, |
| strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, |
| config->wordsize, |
| strTabSec.isDynamic() ? ".dynsym" : ".symtab"), |
| strTabSec(strTabSec) {} |
| |
| // Orders symbols according to their positions in the GOT, |
| // in compliance with MIPS ABI rules. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| static bool sortMipsSymbols(const SymbolTableEntry &l, |
| const SymbolTableEntry &r) { |
| // Sort entries related to non-local preemptible symbols by GOT indexes. |
| // All other entries go to the beginning of a dynsym in arbitrary order. |
| if (l.sym->isInGot() && r.sym->isInGot()) |
| return l.sym->getGotIdx() < r.sym->getGotIdx(); |
| if (!l.sym->isInGot() && !r.sym->isInGot()) |
| return false; |
| return !l.sym->isInGot(); |
| } |
| |
| void SymbolTableBaseSection::finalizeContents() { |
| if (OutputSection *sec = strTabSec.getParent()) |
| getParent()->link = sec->sectionIndex; |
| |
| if (this->type != SHT_DYNSYM) { |
| sortSymTabSymbols(); |
| return; |
| } |
| |
| // If it is a .dynsym, there should be no local symbols, but we need |
| // to do a few things for the dynamic linker. |
| |
| // Section's Info field has the index of the first non-local symbol. |
| // Because the first symbol entry is a null entry, 1 is the first. |
| getParent()->info = 1; |
| |
| if (getPartition().gnuHashTab) { |
| // NB: It also sorts Symbols to meet the GNU hash table requirements. |
| getPartition().gnuHashTab->addSymbols(symbols); |
| } else if (config->emachine == EM_MIPS) { |
| llvm::stable_sort(symbols, sortMipsSymbols); |
| } |
| |
| // Only the main partition's dynsym indexes are stored in the symbols |
| // themselves. All other partitions use a lookup table. |
| if (this == ctx.mainPart->dynSymTab.get()) { |
| size_t i = 0; |
| for (const SymbolTableEntry &s : symbols) |
| s.sym->dynsymIndex = ++i; |
| } |
| } |
| |
| // The ELF spec requires that all local symbols precede global symbols, so we |
| // sort symbol entries in this function. (For .dynsym, we don't do that because |
| // symbols for dynamic linking are inherently all globals.) |
| // |
| // Aside from above, we put local symbols in groups starting with the STT_FILE |
| // symbol. That is convenient for purpose of identifying where are local symbols |
| // coming from. |
| void SymbolTableBaseSection::sortSymTabSymbols() { |
| // Move all local symbols before global symbols. |
| auto e = std::stable_partition( |
| symbols.begin(), symbols.end(), |
| [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); |
| size_t numLocals = e - symbols.begin(); |
| getParent()->info = numLocals + 1; |
| |
| // We want to group the local symbols by file. For that we rebuild the local |
| // part of the symbols vector. We do not need to care about the STT_FILE |
| // symbols, they are already naturally placed first in each group. That |
| // happens because STT_FILE is always the first symbol in the object and hence |
| // precede all other local symbols we add for a file. |
| MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; |
| for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) |
| arr[s.sym->file].push_back(s); |
| |
| auto i = symbols.begin(); |
| for (auto &p : arr) |
| for (SymbolTableEntry &entry : p.second) |
| *i++ = entry; |
| } |
| |
| void SymbolTableBaseSection::addSymbol(Symbol *b) { |
| // Adding a local symbol to a .dynsym is a bug. |
| assert(this->type != SHT_DYNSYM || !b->isLocal()); |
| symbols.push_back({b, strTabSec.addString(b->getName(), false)}); |
| } |
| |
| size_t SymbolTableBaseSection::getSymbolIndex(const Symbol &sym) { |
| if (this == ctx.mainPart->dynSymTab.get()) |
| return sym.dynsymIndex; |
| |
| // Initializes symbol lookup tables lazily. This is used only for -r, |
| // --emit-relocs and dynsyms in partitions other than the main one. |
| llvm::call_once(onceFlag, [&] { |
| symbolIndexMap.reserve(symbols.size()); |
| size_t i = 0; |
| for (const SymbolTableEntry &e : symbols) { |
| if (e.sym->type == STT_SECTION) |
| sectionIndexMap[e.sym->getOutputSection()] = ++i; |
| else |
| symbolIndexMap[e.sym] = ++i; |
| } |
| }); |
| |
| // Section symbols are mapped based on their output sections |
| // to maintain their semantics. |
| if (sym.type == STT_SECTION) |
| return sectionIndexMap.lookup(sym.getOutputSection()); |
| return symbolIndexMap.lookup(&sym); |
| } |
| |
| template <class ELFT> |
| SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) |
| : SymbolTableBaseSection(strTabSec) { |
| this->entsize = sizeof(Elf_Sym); |
| } |
| |
| static BssSection *getCommonSec(Symbol *sym) { |
| if (config->relocatable) |
| if (auto *d = dyn_cast<Defined>(sym)) |
| return dyn_cast_or_null<BssSection>(d->section); |
| return nullptr; |
| } |
| |
| static uint32_t getSymSectionIndex(Symbol *sym) { |
| assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject())); |
| if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY)) |
| return SHN_UNDEF; |
| if (const OutputSection *os = sym->getOutputSection()) |
| return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX |
| : os->sectionIndex; |
| return SHN_ABS; |
| } |
| |
| // Write the internal symbol table contents to the output symbol table. |
| template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { |
| // The first entry is a null entry as per the ELF spec. |
| buf += sizeof(Elf_Sym); |
| |
| auto *eSym = reinterpret_cast<Elf_Sym *>(buf); |
| |
| for (SymbolTableEntry &ent : symbols) { |
| Symbol *sym = ent.sym; |
| bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; |
| |
| // Set st_name, st_info and st_other. |
| eSym->st_name = ent.strTabOffset; |
| eSym->setBindingAndType(sym->binding, sym->type); |
| eSym->st_other = sym->stOther; |
| |
| if (BssSection *commonSec = getCommonSec(sym)) { |
| // When -r is specified, a COMMON symbol is not allocated. Its st_shndx |
| // holds SHN_COMMON and st_value holds the alignment. |
| eSym->st_shndx = SHN_COMMON; |
| eSym->st_value = commonSec->addralign; |
| eSym->st_size = cast<Defined>(sym)->size; |
| } else { |
| const uint32_t shndx = getSymSectionIndex(sym); |
| if (isDefinedHere) { |
| eSym->st_shndx = shndx; |
| eSym->st_value = sym->getVA(); |
| // Copy symbol size if it is a defined symbol. st_size is not |
| // significant for undefined symbols, so whether copying it or not is up |
| // to us if that's the case. We'll leave it as zero because by not |
| // setting a value, we can get the exact same outputs for two sets of |
| // input files that differ only in undefined symbol size in DSOs. |
| eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; |
| } else { |
| eSym->st_shndx = 0; |
| eSym->st_value = 0; |
| eSym->st_size = 0; |
| } |
| } |
| |
| ++eSym; |
| } |
| |
| // On MIPS we need to mark symbol which has a PLT entry and requires |
| // pointer equality by STO_MIPS_PLT flag. That is necessary to help |
| // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. |
| // https://sourceware.org/ml/binutils/2008-07/txt00000.txt |
| if (config->emachine == EM_MIPS) { |
| auto *eSym = reinterpret_cast<Elf_Sym *>(buf); |
| |
| for (SymbolTableEntry &ent : symbols) { |
| Symbol *sym = ent.sym; |
| if (sym->isInPlt() && sym->hasFlag(NEEDS_COPY)) |
| eSym->st_other |= STO_MIPS_PLT; |
| if (isMicroMips()) { |
| // We already set the less-significant bit for symbols |
| // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT |
| // records. That allows us to distinguish such symbols in |
| // the `MIPS<ELFT>::relocate()` routine. Now we should |
| // clear that bit for non-dynamic symbol table, so tools |
| // like `objdump` will be able to deal with a correct |
| // symbol position. |
| if (sym->isDefined() && |
| ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) { |
| if (!strTabSec.isDynamic()) |
| eSym->st_value &= ~1; |
| eSym->st_other |= STO_MIPS_MICROMIPS; |
| } |
| } |
| if (config->relocatable) |
| if (auto *d = dyn_cast<Defined>(sym)) |
| if (isMipsPIC<ELFT>(d)) |
| eSym->st_other |= STO_MIPS_PIC; |
| ++eSym; |
| } |
| } |
| } |
| |
| SymtabShndxSection::SymtabShndxSection() |
| : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { |
| this->entsize = 4; |
| } |
| |
| void SymtabShndxSection::writeTo(uint8_t *buf) { |
| // We write an array of 32 bit values, where each value has 1:1 association |
| // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, |
| // we need to write actual index, otherwise, we must write SHN_UNDEF(0). |
| buf += 4; // Ignore .symtab[0] entry. |
| for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { |
| if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX) |
| write32(buf, entry.sym->getOutputSection()->sectionIndex); |
| buf += 4; |
| } |
| } |
| |
| bool SymtabShndxSection::isNeeded() const { |
| // SHT_SYMTAB can hold symbols with section indices values up to |
| // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX |
| // section. Problem is that we reveal the final section indices a bit too |
| // late, and we do not know them here. For simplicity, we just always create |
| // a .symtab_shndx section when the amount of output sections is huge. |
| size_t size = 0; |
| for (SectionCommand *cmd : ctx.script->sectionCommands) |
| if (isa<OutputDesc>(cmd)) |
| ++size; |
| return size >= SHN_LORESERVE; |
| } |
| |
| void SymtabShndxSection::finalizeContents() { |
| getParent()->link = in.symTab->getParent()->sectionIndex; |
| } |
| |
| size_t SymtabShndxSection::getSize() const { |
| return in.symTab->getNumSymbols() * 4; |
| } |
| |
| // .hash and .gnu.hash sections contain on-disk hash tables that map |
| // symbol names to their dynamic symbol table indices. Their purpose |
| // is to help the dynamic linker resolve symbols quickly. If ELF files |
| // don't have them, the dynamic linker has to do linear search on all |
| // dynamic symbols, which makes programs slower. Therefore, a .hash |
| // section is added to a DSO by default. |
| // |
| // The Unix semantics of resolving dynamic symbols is somewhat expensive. |
| // Each ELF file has a list of DSOs that the ELF file depends on and a |
| // list of dynamic symbols that need to be resolved from any of the |
| // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) |
| // where m is the number of DSOs and n is the number of dynamic |
| // symbols. For modern large programs, both m and n are large. So |
| // making each step faster by using hash tables substantially |
| // improves time to load programs. |
| // |
| // (Note that this is not the only way to design the shared library. |
| // For instance, the Windows DLL takes a different approach. On |
| // Windows, each dynamic symbol has a name of DLL from which the symbol |
| // has to be resolved. That makes the cost of symbol resolution O(n). |
| // This disables some hacky techniques you can use on Unix such as |
| // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) |
| // |
| // Due to historical reasons, we have two different hash tables, .hash |
| // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new |
| // and better version of .hash. .hash is just an on-disk hash table, but |
| // .gnu.hash has a bloom filter in addition to a hash table to skip |
| // DSOs very quickly. If you are sure that your dynamic linker knows |
| // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a |
| // safe bet is to specify --hash-style=both for backward compatibility. |
| GnuHashTableSection::GnuHashTableSection() |
| : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { |
| } |
| |
| void GnuHashTableSection::finalizeContents() { |
| if (OutputSection *sec = getPartition().dynSymTab->getParent()) |
| getParent()->link = sec->sectionIndex; |
| |
| // Computes bloom filter size in word size. We want to allocate 12 |
| // bits for each symbol. It must be a power of two. |
| if (symbols.empty()) { |
| maskWords = 1; |
| } else { |
| uint64_t numBits = symbols.size() * 12; |
| maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); |
| } |
| |
| size = 16; // Header |
| size += config->wordsize * maskWords; // Bloom filter |
| size += nBuckets * 4; // Hash buckets |
| size += symbols.size() * 4; // Hash values |
| } |
| |
| void GnuHashTableSection::writeTo(uint8_t *buf) { |
| // Write a header. |
| write32(buf, nBuckets); |
| write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); |
| write32(buf + 8, maskWords); |
| write32(buf + 12, Shift2); |
| buf += 16; |
| |
| // Write the 2-bit bloom filter. |
| const unsigned c = config->is64 ? 64 : 32; |
| for (const Entry &sym : symbols) { |
| // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in |
| // the word using bits [0:5] and [26:31]. |
| size_t i = (sym.hash / c) & (maskWords - 1); |
| uint64_t val = readUint(buf + i * config->wordsize); |
| val |= uint64_t(1) << (sym.hash % c); |
| val |= uint64_t(1) << ((sym.hash >> Shift2) % c); |
| writeUint(buf + i * config->wordsize, val); |
| } |
| buf += config->wordsize * maskWords; |
| |
| // Write the hash table. |
| uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); |
| uint32_t oldBucket = -1; |
| uint32_t *values = buckets + nBuckets; |
| for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { |
| // Write a hash value. It represents a sequence of chains that share the |
| // same hash modulo value. The last element of each chain is terminated by |
| // LSB 1. |
| uint32_t hash = i->hash; |
| bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; |
| hash = isLastInChain ? hash | 1 : hash & ~1; |
| write32(values++, hash); |
| |
| if (i->bucketIdx == oldBucket) |
| continue; |
| // Write a hash bucket. Hash buckets contain indices in the following hash |
| // value table. |
| write32(buckets + i->bucketIdx, |
| getPartition().dynSymTab->getSymbolIndex(*i->sym)); |
| oldBucket = i->bucketIdx; |
| } |
| } |
| |
| // Add symbols to this symbol hash table. Note that this function |
| // destructively sort a given vector -- which is needed because |
| // GNU-style hash table places some sorting requirements. |
| void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { |
| // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce |
| // its type correctly. |
| auto mid = |
| std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { |
| return !s.sym->isDefined() || s.sym->partition != partition; |
| }); |
| |
| // We chose load factor 4 for the on-disk hash table. For each hash |
| // collision, the dynamic linker will compare a uint32_t hash value. |
| // Since the integer comparison is quite fast, we believe we can |
| // make the load factor even larger. 4 is just a conservative choice. |
| // |
| // Note that we don't want to create a zero-sized hash table because |
| // Android loader as of 2018 doesn't like a .gnu.hash containing such |
| // table. If that's the case, we create a hash table with one unused |
| // dummy slot. |
| nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); |
| |
| if (mid == v.end()) |
| return; |
| |
| for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { |
| Symbol *b = ent.sym; |
| uint32_t hash = hashGnu(b->getName()); |
| uint32_t bucketIdx = hash % nBuckets; |
| symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); |
| } |
| |
| llvm::sort(symbols, [](const Entry &l, const Entry &r) { |
| return std::tie(l.bucketIdx, l.strTabOffset) < |
| std::tie(r.bucketIdx, r.strTabOffset); |
| }); |
| |
| v.erase(mid, v.end()); |
| for (const Entry &ent : symbols) |
| v.push_back({ent.sym, ent.strTabOffset}); |
| } |
| |
| HashTableSection::HashTableSection() |
| : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { |
| this->entsize = 4; |
| } |
| |
| void HashTableSection::finalizeContents() { |
| SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); |
| |
| if (OutputSection *sec = symTab->getParent()) |
| getParent()->link = sec->sectionIndex; |
| |
| unsigned numEntries = 2; // nbucket and nchain. |
| numEntries += symTab->getNumSymbols(); // The chain entries. |
| |
| // Create as many buckets as there are symbols. |
| numEntries += symTab->getNumSymbols(); |
| this->size = numEntries * 4; |
| } |
| |
| void HashTableSection::writeTo(uint8_t *buf) { |
| SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); |
| unsigned numSymbols = symTab->getNumSymbols(); |
| |
| uint32_t *p = reinterpret_cast<uint32_t *>(buf); |
| write32(p++, numSymbols); // nbucket |
| write32(p++, numSymbols); // nchain |
| |
| uint32_t *buckets = p; |
| uint32_t *chains = p + numSymbols; |
| |
| for (const SymbolTableEntry &s : symTab->getSymbols()) { |
| Symbol *sym = s.sym; |
| StringRef name = sym->getName(); |
| unsigned i = sym->dynsymIndex; |
| uint32_t hash = hashSysV(name) % numSymbols; |
| chains[i] = buckets[hash]; |
| write32(buckets + hash, i); |
| } |
| } |
| |
| PltSection::PltSection() |
| : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), |
| headerSize(ctx.target->pltHeaderSize) { |
| // On PowerPC, this section contains lazy symbol resolvers. |
| if (config->emachine == EM_PPC64) { |
| name = ".glink"; |
| addralign = 4; |
| } |
| |
| // On x86 when IBT is enabled, this section contains the second PLT (lazy |
| // symbol resolvers). |
| if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && |
| (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) |
| name = ".plt.sec"; |
| |
| // The PLT needs to be writable on SPARC as the dynamic linker will |
| // modify the instructions in the PLT entries. |
| if (config->emachine == EM_SPARCV9) |
| this->flags |= SHF_WRITE; |
| } |
| |
| void PltSection::writeTo(uint8_t *buf) { |
| // At beginning of PLT, we have code to call the dynamic |
| // linker to resolve dynsyms at runtime. Write such code. |
| ctx.target->writePltHeader(buf); |
| size_t off = headerSize; |
| |
| for (const Symbol *sym : entries) { |
| ctx.target->writePlt(buf + off, *sym, getVA() + off); |
| off += ctx.target->pltEntrySize; |
| } |
| } |
| |
| void PltSection::addEntry(Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().pltIdx = entries.size(); |
| entries.push_back(&sym); |
| } |
| |
| size_t PltSection::getSize() const { |
| return headerSize + entries.size() * ctx.target->pltEntrySize; |
| } |
| |
| bool PltSection::isNeeded() const { |
| // For -z retpolineplt, .iplt needs the .plt header. |
| return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); |
| } |
| |
| // Used by ARM to add mapping symbols in the PLT section, which aid |
| // disassembly. |
| void PltSection::addSymbols() { |
| ctx.target->addPltHeaderSymbols(*this); |
| |
| size_t off = headerSize; |
| for (size_t i = 0; i < entries.size(); ++i) { |
| ctx.target->addPltSymbols(*this, off); |
| off += ctx.target->pltEntrySize; |
| } |
| } |
| |
| IpltSection::IpltSection() |
| : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { |
| if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { |
| name = ".glink"; |
| addralign = 4; |
| } |
| } |
| |
| void IpltSection::writeTo(uint8_t *buf) { |
| uint32_t off = 0; |
| for (const Symbol *sym : entries) { |
| ctx.target->writeIplt(buf + off, *sym, getVA() + off); |
| off += ctx.target->ipltEntrySize; |
| } |
| } |
| |
| size_t IpltSection::getSize() const { |
| return entries.size() * ctx.target->ipltEntrySize; |
| } |
| |
| void IpltSection::addEntry(Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().pltIdx = entries.size(); |
| entries.push_back(&sym); |
| } |
| |
| // ARM uses mapping symbols to aid disassembly. |
| void IpltSection::addSymbols() { |
| size_t off = 0; |
| for (size_t i = 0, e = entries.size(); i != e; ++i) { |
| ctx.target->addPltSymbols(*this, off); |
| off += ctx.target->pltEntrySize; |
| } |
| } |
| |
| PPC32GlinkSection::PPC32GlinkSection() { |
| name = ".glink"; |
| addralign = 4; |
| } |
| |
| void PPC32GlinkSection::writeTo(uint8_t *buf) { |
| writePPC32GlinkSection(buf, entries.size()); |
| } |
| |
| size_t PPC32GlinkSection::getSize() const { |
| return headerSize + entries.size() * ctx.target->pltEntrySize + footerSize; |
| } |
| |
| // This is an x86-only extra PLT section and used only when a security |
| // enhancement feature called CET is enabled. In this comment, I'll explain what |
| // the feature is and why we have two PLT sections if CET is enabled. |
| // |
| // So, what does CET do? CET introduces a new restriction to indirect jump |
| // instructions. CET works this way. Assume that CET is enabled. Then, if you |
| // execute an indirect jump instruction, the processor verifies that a special |
| // "landing pad" instruction (which is actually a repurposed NOP instruction and |
| // now called "endbr32" or "endbr64") is at the jump target. If the jump target |
| // does not start with that instruction, the processor raises an exception |
| // instead of continuing executing code. |
| // |
| // If CET is enabled, the compiler emits endbr to all locations where indirect |
| // jumps may jump to. |
| // |
| // This mechanism makes it extremely hard to transfer the control to a middle of |
| // a function that is not supporsed to be a indirect jump target, preventing |
| // certain types of attacks such as ROP or JOP. |
| // |
| // Note that the processors in the market as of 2019 don't actually support the |
| // feature. Only the spec is available at the moment. |
| // |
| // Now, I'll explain why we have this extra PLT section for CET. |
| // |
| // Since you can indirectly jump to a PLT entry, we have to make PLT entries |
| // start with endbr. The problem is there's no extra space for endbr (which is 4 |
| // bytes long), as the PLT entry is only 16 bytes long and all bytes are already |
| // used. |
| // |
| // In order to deal with the issue, we split a PLT entry into two PLT entries. |
| // Remember that each PLT entry contains code to jump to an address read from |
| // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, |
| // the former code is written to .plt.sec, and the latter code is written to |
| // .plt. |
| // |
| // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except |
| // that the regular .plt is now called .plt.sec and .plt is repurposed to |
| // contain only code for lazy symbol resolution. |
| // |
| // In other words, this is how the 2-PLT scheme works. Application code is |
| // supposed to jump to .plt.sec to call an external function. Each .plt.sec |
| // entry contains code to read an address from a corresponding .got.plt entry |
| // and jump to that address. Addresses in .got.plt initially point to .plt, so |
| // when an application calls an external function for the first time, the |
| // control is transferred to a function that resolves a symbol name from |
| // external shared object files. That function then rewrites a .got.plt entry |
| // with a resolved address, so that the subsequent function calls directly jump |
| // to a desired location from .plt.sec. |
| // |
| // There is an open question as to whether the 2-PLT scheme was desirable or |
| // not. We could have simply extended the PLT entry size to 32-bytes to |
| // accommodate endbr, and that scheme would have been much simpler than the |
| // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot |
| // code (.plt.sec) from cold code (.plt). But as far as I know no one proved |
|